Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 22;64(Pt 12):m1593–m1594. doi: 10.1107/S1600536808038099

catena-Poly[[di-μ-chlorido-bis­{[6-methoxy-2-(4-methyl­phenyl­iminio­methyl)phenolato-κ2 O,O′]cadmium(II)}]-di-μ2-thio­cyanato-κ2 N:S2 S:N]

Hua-Qiong Li a, Hui-Duo Xian a, Jian-Feng Liu a, Guo-Liang Zhao a,*
PMCID: PMC2959993  PMID: 21581192

Abstract

The asymmetric unit of the title compound, [Cd2Cl2(NCS)2(C15H15NO2)2]n, contains the Schiff base 2-[(4-methyl­phenyl­imino)meth­yl]-6-methoxy­phenol (HL) ligand, one thio­cyanate and one chloride ligand coordinated to a cadmium centre. The cadmium centers are linked to each other via two thio­cyanate and two chloride bridges alternately, resulting in centrosymmetric zigzag chains running parallel to the a axis. The CdII coordination environment contains two Cl atoms, one thio­cyanate (SCN) S atom, one isothio­cyanate (NCS) N atom and two O atoms from the HL ligand. The Schiff base ligand is in the trans conformation.

Related literature

For related literature regarding Schiff bases and their complexes, see: Mondal et al. (1999); Sen et al. (2006); Yi et al. (2004); Yu et al. (2007); Zhao et al. (2007); Zhou & Zhao (2007). For related structures, see: Ding et al. (2006); Suh et al. (2007).graphic file with name e-64-m1593-scheme1.jpg

Experimental

Crystal data

  • [Cd2Cl2(NCS)2(C15H15NO2)2]

  • M r = 447.23

  • Triclinic, Inline graphic

  • a = 9.0485 (2) Å

  • b = 9.7321 (2) Å

  • c = 10.6676 (3) Å

  • α = 71.518 (2)°

  • β = 77.444 (2)°

  • γ = 80.732 (2)°

  • V = 865.32 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 296 (2) K

  • 0.27 × 0.11 × 0.08 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.82, T max = 0.882

  • 13032 measured reflections

  • 3940 independent reflections

  • 3225 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.081

  • S = 1.01

  • 3940 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038099/ez2146sup1.cif

e-64-m1593-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038099/ez2146Isup2.hkl

e-64-m1593-Isup2.hkl (190KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

salen-type Schiff bases are capable of forming complexes with different coordination modes, with certain metal ions. Some of these compounds have promising applications in catalysis, enzyme models and optical and magnetic materials (Sen et al., 2006). In addition, the unusual coordination modes of Schiff base ligands leads to unusual structures of the complexes. In previous articles (Zhou & Zhao, 2007; Yu et al., 2007; Zhao et al., 2007), we reported the synthesis and the ligating properties of the title Schiff base ligand, HL, derived from the condensation of o-vanillin and p-toluidine, to several transition and rare earth metals with different anions. In addition, many coordination polymers of one-, two-, and three-dimensional infinite frameworks involving cadmium(II) ions have been synthesized and studied due to their potential applications (Mondal et al., 1999). Coordination polymers of cadmium(II) have been exploited using anionic ligands, e.g., Cl-, Br-, I-, SCN-, N3-, SeCN-, etc., which are also an essential part of the coordination polyhedron, besides the organic ligand (Yi et al., 2004). Here we decribe the synthesis and crystal structure of a new cadmium(II) complex (Figure 1), [Cd(HL)(SCN)Cl]n, involving the Schiff base HL.

As shown in Fig. 1 and 2, each CdII atom is hexacoordinated by two Cl atoms, one thiocyanate S atom, one isothiocyanate N atom and two O atoms from the Schiff base ligand, HL. The HL ligand is in the trans conformation. The geometry around the CdII atom is a distorted octahedron. Neighbouring octahedral Cd centres are bridged by, alternately, the SCN and NCS ligands and two Cl ligands to form alternating eight-membered Cd—S—C—N—Cd—S—C—N– and four-membered Cd—Cl—Cd—Cl- rings. These chains run parallel to the a axis. The Cd—SSCN bond length is longer than the Cd—NNCS distance [2.7096 (11) versus 2.2484 (26) Å], which, together with the bond angles, are similar to related compounds in the literatures (Suh et al., 2007; Ding et al., 2006).

Experimental

First, the ligand was prepared by the direct solid-phase reaction of o-vanillin (10 mmol, 1.5251 g) and p-toluidine (10 mmol, 1.0700 g). The reactants were ground in an agate mortar. The color of the mixture changed from light yellow to orange. Then, for the preparation of the complex, a solution of CdCl2. 2.5H2O (1 mmol, 0.2931 g) and KSCN (0.1945 g, 2 mmol) in methanol (10 ml) was added to a methanol (30 ml) solution of the Schiff base ligand (2 mmol, 0.4826 g). Yellow crystals were obtained after 10 days.

Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H=0.93 Å, aliphatic C—H = 0.97 (2) Å, N—H=0.86 Å, Uiso(H) = 1.2Ueq(C,N)].

Figures

Fig. 1.

Fig. 1.

The coordination around the cadmium(II) center, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A perspective view of the title compound along the b axis. H atoms have been omitted for clarity.

Crystal data

[Cd2Cl2(NCS)2(C15H15NO2)2] Z = 2
Mr = 447.23 F000 = 444
Triclinic, P1 Dx = 1.717 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.0485 (2) Å Cell parameters from 4749 reflections
b = 9.7321 (2) Å θ = 2.1–27.4º
c = 10.6676 (3) Å µ = 1.55 mm1
α = 71.518 (2)º T = 296 (2) K
β = 77.444 (2)º Block, red
γ = 80.732 (2)º 0.27 × 0.11 × 0.08 mm
V = 865.32 (4) Å3

Data collection

Bruker APEXII diffractometer 3940 independent reflections
Radiation source: fine-focus sealed tube 3225 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.029
T = 296(2) K θmax = 27.4º
ω scans θmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.82, Tmax = 0.882 k = −12→12
13032 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.081   w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1806P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
3940 reflections Δρmax = 0.54 e Å3
208 parameters Δρmin = −0.52 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.16960 (2) 0.06238 (2) 0.54427 (2) 0.04022 (10)
Cl1 0.05869 (9) 0.10606 (10) 0.33628 (8) 0.0508 (2)
O1 −0.0129 (2) 0.2707 (2) 0.5970 (2) 0.0479 (5)
N1 0.2771 (3) −0.0247 (3) 0.9681 (2) 0.0380 (5)
H1D 0.2767 −0.0267 0.8882 0.046*
C1 0.6806 (5) −0.4746 (4) 1.2474 (5) 0.0786 (13)
H1A 0.6777 −0.4648 1.3347 0.118*
H1B 0.7825 −0.4685 1.1977 0.118*
H1C 0.6482 −0.5672 1.2569 0.118*
S1 0.64223 (10) −0.27344 (10) 0.58734 (12) 0.0690 (3)
O2 0.1735 (2) 0.0798 (2) 0.7460 (2) 0.0448 (5)
C2 0.5752 (4) −0.3537 (4) 1.1732 (4) 0.0549 (9)
N2 0.3597 (3) −0.1180 (3) 0.5586 (3) 0.0555 (7)
C3 0.4944 (4) −0.2504 (4) 1.2320 (4) 0.0538 (9)
H3A 0.5066 −0.2555 1.3178 0.065*
C4 0.3960 (4) −0.1396 (4) 1.1679 (3) 0.0472 (8)
H4A 0.3428 −0.0712 1.2097 0.057*
C5 0.3782 (3) −0.1326 (3) 1.0407 (3) 0.0385 (7)
C6 0.4605 (4) −0.2321 (4) 0.9780 (4) 0.0541 (9)
H6A 0.4510 −0.2254 0.8911 0.065*
C7 0.5572 (4) −0.3416 (4) 1.0452 (4) 0.0645 (10)
H7A 0.6116 −0.4091 1.0029 0.077*
C8 0.1852 (3) 0.0767 (3) 1.0080 (3) 0.0405 (7)
H8A 0.1835 0.0824 1.0937 0.049*
C9 0.0880 (3) 0.1784 (3) 0.9282 (3) 0.0373 (6)
C10 −0.0067 (4) 0.2857 (4) 0.9810 (3) 0.0543 (9)
H10A −0.0047 0.2876 1.0673 0.065*
C11 −0.0998 (4) 0.3851 (4) 0.9058 (4) 0.0604 (10)
H11A −0.1604 0.4560 0.9404 0.073*
C12 −0.1062 (3) 0.3829 (3) 0.7766 (3) 0.0464 (8)
H12A −0.1718 0.4514 0.7267 0.056*
C13 −0.0171 (3) 0.2811 (3) 0.7232 (3) 0.0369 (6)
C14 0.0858 (3) 0.1752 (3) 0.7971 (3) 0.0334 (6)
C15 −0.1276 (4) 0.3549 (4) 0.5233 (3) 0.0516 (8)
H15A −0.1801 0.4271 0.5654 0.077*
H15B −0.1987 0.2921 0.5221 0.077*
H15C −0.0812 0.4019 0.4330 0.077*
C16 0.4777 (4) −0.1803 (3) 0.5696 (3) 0.0441 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.03390 (14) 0.05451 (16) 0.03464 (15) 0.00929 (10) −0.01210 (9) −0.01906 (11)
Cl1 0.0445 (4) 0.0800 (6) 0.0284 (4) −0.0077 (4) −0.0083 (3) −0.0144 (4)
O1 0.0485 (12) 0.0591 (13) 0.0372 (12) 0.0207 (10) −0.0209 (10) −0.0196 (10)
N1 0.0383 (13) 0.0445 (13) 0.0308 (14) 0.0031 (11) −0.0115 (10) −0.0104 (11)
C1 0.056 (2) 0.062 (2) 0.100 (3) −0.0001 (19) −0.035 (2) 0.012 (2)
S1 0.0392 (5) 0.0516 (5) 0.0980 (8) 0.0070 (4) −0.0190 (5) 0.0023 (5)
O2 0.0492 (13) 0.0502 (12) 0.0392 (12) 0.0204 (10) −0.0211 (10) −0.0226 (10)
C2 0.0390 (18) 0.0470 (19) 0.068 (3) −0.0045 (15) −0.0191 (17) 0.0037 (17)
N2 0.0361 (15) 0.0505 (16) 0.076 (2) 0.0055 (13) −0.0112 (14) −0.0172 (15)
C3 0.052 (2) 0.063 (2) 0.040 (2) −0.0058 (17) −0.0179 (16) 0.0018 (16)
C4 0.0464 (18) 0.0571 (19) 0.0355 (18) 0.0009 (15) −0.0106 (14) −0.0105 (15)
C5 0.0341 (15) 0.0419 (16) 0.0375 (17) −0.0010 (12) −0.0119 (13) −0.0066 (13)
C6 0.052 (2) 0.061 (2) 0.051 (2) 0.0156 (16) −0.0234 (17) −0.0204 (17)
C7 0.057 (2) 0.062 (2) 0.079 (3) 0.0174 (18) −0.025 (2) −0.030 (2)
C8 0.0395 (17) 0.0526 (18) 0.0284 (16) −0.0012 (14) −0.0054 (13) −0.0125 (13)
C9 0.0336 (15) 0.0459 (16) 0.0314 (16) 0.0038 (13) −0.0064 (12) −0.0132 (13)
C10 0.056 (2) 0.069 (2) 0.0392 (19) 0.0146 (17) −0.0108 (16) −0.0249 (17)
C11 0.058 (2) 0.069 (2) 0.058 (2) 0.0254 (18) −0.0117 (18) −0.0367 (19)
C12 0.0386 (17) 0.0500 (18) 0.0453 (19) 0.0127 (14) −0.0117 (14) −0.0123 (15)
C13 0.0337 (15) 0.0425 (16) 0.0338 (16) 0.0011 (12) −0.0088 (12) −0.0106 (13)
C14 0.0290 (14) 0.0377 (15) 0.0323 (16) 0.0005 (11) −0.0056 (11) −0.0104 (12)
C15 0.0463 (19) 0.062 (2) 0.044 (2) 0.0107 (16) −0.0222 (15) −0.0110 (16)
C16 0.0392 (17) 0.0434 (17) 0.048 (2) −0.0021 (14) −0.0039 (14) −0.0144 (14)

Geometric parameters (Å, °)

Cd1—O2 2.2191 (19) C3—C4 1.383 (4)
Cd1—N2 2.244 (3) C3—H3A 0.9300
Cd1—Cl1 2.5187 (8) C4—C5 1.381 (4)
Cd1—O1 2.529 (2) C4—H4A 0.9300
Cd1—Cl1i 2.6833 (9) C5—C6 1.379 (4)
Cd1—S1ii 2.7107 (10) C6—C7 1.380 (5)
Cl1—Cd1i 2.6833 (9) C6—H6A 0.9300
O1—C13 1.373 (3) C7—H7A 0.9300
O1—C15 1.428 (4) C8—C9 1.410 (4)
N1—C8 1.303 (4) C8—H8A 0.9300
N1—C5 1.421 (4) C9—C14 1.413 (4)
N1—H1D 0.8600 C9—C10 1.420 (4)
C1—C2 1.515 (5) C10—C11 1.352 (5)
C1—H1A 0.9600 C10—H10A 0.9300
C1—H1B 0.9600 C11—C12 1.400 (5)
C1—H1C 0.9600 C11—H11A 0.9300
S1—C16 1.629 (3) C12—C13 1.362 (4)
S1—Cd1ii 2.7107 (10) C12—H12A 0.9300
O2—C14 1.299 (3) C13—C14 1.430 (4)
C2—C7 1.376 (5) C15—H15A 0.9600
C2—C3 1.379 (5) C15—H15B 0.9600
N2—C16 1.150 (4) C15—H15C 0.9600
O2—Cd1—N2 92.93 (9) C3—C4—H4A 120.7
O2—Cd1—Cl1 155.30 (6) C6—C5—C4 120.3 (3)
N2—Cd1—Cl1 110.91 (8) C6—C5—N1 117.0 (3)
O2—Cd1—O1 67.95 (7) C4—C5—N1 122.7 (3)
N2—Cd1—O1 160.37 (10) C5—C6—C7 119.4 (3)
Cl1—Cd1—O1 88.62 (5) C5—C6—H6A 120.3
O2—Cd1—Cl1i 86.93 (6) C7—C6—H6A 120.3
N2—Cd1—Cl1i 96.98 (7) C2—C7—C6 121.8 (3)
Cl1—Cd1—Cl1i 83.92 (3) C2—C7—H7A 119.1
O1—Cd1—Cl1i 86.77 (6) C6—C7—H7A 119.1
O2—Cd1—S1ii 94.23 (6) N1—C8—C9 123.5 (3)
N2—Cd1—S1ii 93.69 (8) N1—C8—H8A 118.3
Cl1—Cd1—S1ii 90.71 (3) C9—C8—H8A 118.3
O1—Cd1—S1ii 83.73 (6) C8—C9—C14 120.8 (2)
Cl1i—Cd1—S1ii 169.20 (3) C8—C9—C10 118.9 (3)
Cd1—Cl1—Cd1i 96.08 (3) C14—C9—C10 120.3 (3)
C13—O1—C15 118.3 (2) C11—C10—C9 119.9 (3)
C13—O1—Cd1 113.42 (16) C11—C10—H10A 120.0
C15—O1—Cd1 126.96 (18) C9—C10—H10A 120.0
C8—N1—C5 127.9 (3) C10—C11—C12 121.0 (3)
C8—N1—H1D 116.1 C10—C11—H11A 119.5
C5—N1—H1D 116.1 C12—C11—H11A 119.5
C2—C1—H1A 109.5 C13—C12—C11 120.5 (3)
C2—C1—H1B 109.5 C13—C12—H12A 119.7
H1A—C1—H1B 109.5 C11—C12—H12A 119.7
C2—C1—H1C 109.5 C12—C13—O1 125.2 (3)
H1A—C1—H1C 109.5 C12—C13—C14 121.0 (3)
H1B—C1—H1C 109.5 O1—C13—C14 113.9 (2)
C16—S1—Cd1ii 100.35 (12) O2—C14—C9 121.3 (3)
C14—O2—Cd1 123.29 (18) O2—C14—C13 121.4 (3)
C7—C2—C3 117.5 (3) C9—C14—C13 117.3 (2)
C7—C2—C1 121.8 (4) O1—C15—H15A 109.5
C3—C2—C1 120.7 (4) O1—C15—H15B 109.5
C16—N2—Cd1 160.6 (3) H15A—C15—H15B 109.5
C2—C3—C4 122.3 (3) O1—C15—H15C 109.5
C2—C3—H3A 118.8 H15A—C15—H15C 109.5
C4—C3—H3A 118.8 H15B—C15—H15C 109.5
C5—C4—C3 118.6 (3) N2—C16—S1 178.1 (3)
C5—C4—H4A 120.7
O2—Cd1—Cl1—Cd1i −68.87 (15) C8—N1—C5—C6 177.7 (3)
N2—Cd1—Cl1—Cd1i 95.17 (8) C8—N1—C5—C4 −2.6 (5)
O1—Cd1—Cl1—Cd1i −86.90 (6) C4—C5—C6—C7 2.1 (5)
Cl1i—Cd1—Cl1—Cd1i 0.0 N1—C5—C6—C7 −178.2 (3)
S1ii—Cd1—Cl1—Cd1i −170.61 (3) C3—C2—C7—C6 −0.9 (6)
O2—Cd1—O1—C13 −2.23 (18) C1—C2—C7—C6 179.6 (3)
N2—Cd1—O1—C13 −16.0 (4) C5—C6—C7—C2 −0.7 (6)
Cl1—Cd1—O1—C13 169.75 (19) C5—N1—C8—C9 −179.5 (3)
Cl1i—Cd1—O1—C13 85.76 (19) N1—C8—C9—C14 −0.1 (5)
S1ii—Cd1—O1—C13 −99.38 (19) N1—C8—C9—C10 −179.3 (3)
O2—Cd1—O1—C15 −169.0 (3) C8—C9—C10—C11 179.4 (3)
N2—Cd1—O1—C15 177.2 (3) C14—C9—C10—C11 0.2 (5)
Cl1—Cd1—O1—C15 3.0 (2) C9—C10—C11—C12 1.0 (6)
Cl1i—Cd1—O1—C15 −81.0 (2) C10—C11—C12—C13 −0.8 (6)
S1ii—Cd1—O1—C15 93.8 (2) C11—C12—C13—O1 −178.9 (3)
N2—Cd1—O2—C14 177.8 (2) C11—C12—C13—C14 −0.6 (5)
Cl1—Cd1—O2—C14 −17.1 (3) C15—O1—C13—C12 −11.6 (5)
O1—Cd1—O2—C14 2.4 (2) Cd1—O1—C13—C12 −179.6 (3)
Cl1i—Cd1—O2—C14 −85.3 (2) C15—O1—C13—C14 169.9 (3)
S1ii—Cd1—O2—C14 83.9 (2) Cd1—O1—C13—C14 1.9 (3)
O2—Cd1—N2—C16 −59.5 (9) Cd1—O2—C14—C9 177.4 (2)
Cl1—Cd1—N2—C16 127.1 (9) Cd1—O2—C14—C13 −2.4 (4)
O1—Cd1—N2—C16 −46.8 (10) C8—C9—C14—O2 −0.5 (4)
Cl1i—Cd1—N2—C16 −146.8 (9) C10—C9—C14—O2 178.7 (3)
S1ii—Cd1—N2—C16 34.9 (9) C8—C9—C14—C13 179.3 (3)
C7—C2—C3—C4 1.3 (5) C10—C9—C14—C13 −1.4 (4)
C1—C2—C3—C4 −179.2 (3) C12—C13—C14—O2 −178.5 (3)
C2—C3—C4—C5 0.1 (5) O1—C13—C14—O2 0.0 (4)
C3—C4—C5—C6 −1.8 (5) C12—C13—C14—C9 1.7 (4)
C3—C4—C5—N1 178.5 (3) O1—C13—C14—C9 −179.8 (3)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2146).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ding, B., Yi, L., Wang, Y., Cheng, P., Liao, D. Z., Yan, S. P., Jiang, Z. H., Song, H. B. & Wang, H. G. (2006). Dalton Trans. pp. 665–675. [DOI] [PubMed]
  3. Mondal, A., Mostafa, G., Ghosh, A., Laskar, I. R. & Chaudhuri, N. R. (1999). J. Chem. Soc. Dalton Trans. pp. 9–10.
  4. Sen, S., Talukder, P., Dey, S. K., Mitra, S., Rosair, G., Hughes, D. L., Yap, G. P. A., Pilet, G., Gramlich, V. & Matsushita, T. (2006). Dalton Trans. pp. 1758–1767. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Suh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177.
  8. Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). Inorg. Chem.43, 33–43. [DOI] [PubMed]
  9. Yu, Y. Y., Zhao, G. L. & Wen, Y. H. (2007). Chin. J. Struct. Chem.26, 1395–1402.
  10. Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267–m268.
  11. Zhou, Y.-H. & Zhao, G.-L. (2007). Acta Cryst. E63, m43–m44.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038099/ez2146sup1.cif

e-64-m1593-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038099/ez2146Isup2.hkl

e-64-m1593-Isup2.hkl (190KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES