Abstract
In the crystal structure of the title compound, C9H10O4S, centrosymmetrically related molecules are linked into dimers by intermolecular O—H⋯O hydrogen bonds. Unconventional C—H⋯O hydrogen-bond interactions are also present, connecting dimers into a three-dimensional network.
Related literature
For general background on the properties of the title compound and its derivatives, see: Parimalan et al. (2008 ▶); Giridhar et al. (2006 ▶). For the crystal structures of related compounds, see: Guo & Yuan (2006 ▶); Hartung et al. (2004 ▶); Hodgson & Asplund (1991 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶).
Experimental
Crystal data
C9H10O4S
M r = 214.23
Monoclinic,
a = 19.086 (7) Å
b = 4.9711 (18) Å
c = 10.724 (4) Å
β = 106.102 (6)°
V = 977.5 (6) Å3
Z = 4
Mo Kα radiation
μ = 0.32 mm−1
T = 298 (2) K
0.52 × 0.30 × 0.24 mm
Data collection
Bruker SMART APEX area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004 ▶) T min = 0.853, T max = 0.928
4462 measured reflections
1638 independent reflections
1502 reflections with I > 2σ(I)
R int = 0.019
Refinement
R[F 2 > 2σ(F 2)] = 0.048
wR(F 2) = 0.140
S = 1.11
1638 reflections
129 parameters
H-atom parameters constrained
Δρmax = 0.24 e Å−3
Δρmin = −0.43 e Å−3
Data collection: SMART (Bruker, 2002 ▶); cell refinement: SAINT (Bruker, 2002 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803660X/rz2263sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680803660X/rz2263Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O4—H4⋯O3i | 0.82 | 1.87 | 2.693 (3) | 175 |
| C3—H3⋯O2ii | 0.93 | 2.53 | 3.287 (3) | 139 |
| C1—H1B⋯O1iii | 0.96 | 2.45 | 3.365 (4) | 160 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
The authors thank Zhengjiang Natural Science Foundation for financial support (Y407240).
supplementary crystallographic information
Comment
The title compound, C9H10O4S, and its substituted derivatives have been found to possess an auxin-like activity (Parimalan et al., 2008; Giridhar et al., 2006). These compounds, which are predominantly found in fruits, can be used in the synthesis of pharmaceutical intermediates, some perfumes and non-steroidal anti-inflammatory drugs.
In the molecule of the title compound (Fig. 1), bond lengths and angles agree well with those observed in similar compounds (Guo & Yuan, 2006; Hartung et al., 2004; Hodgson & Asplund, 1991). The S═O bond lengths within the SO2Me group are not significantly different, with an average value of 1.4366 (10) Å. The average bond length for the two C—S bonds is 1.762 (3) Å. In the crystal packing, centrosymmetrically related molecules are linked into dimers by intermolecular O—H···O hydrogen bonds (Table 1) generating an eight-membered ring of graph set R22(8) (Bernstein et al., 1995). The dimers are further linked into a three-dimensional network by unconventional C—H···O hydrogen bonding interactions. The corresponding phenylacetic acid derive without the SO2Me group (Hartung et al., 2004) forms helical columns of single enantiomers linked by hydrogen bonds between the acidic proton of one molecule and the methoxy O atom of a neighbouring molecule, to give an overall racemic structure.
Experimental
1-(4-Methanesulfonyl-phenyl)-ethanone (20 mmol), morpholine (60 mmol) and elemental sulfur (40 mmol) were added in a round-bottom flask and refluxed for 2 h at 398 K. A 3N solution of NaOH (20 ml) was then added, and the reaction mixture refluxed for an additional 30 min. After cooling, the mixture was filtered and the filtrate was acidified with HCl to pH 6. The solution was again filtered off and washed with ethyl acetate. The resulting aqueous fraction was finally acidified with diluted HCl, to yield the pure product as a white solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol/water (1:1 v/v) solution.
Refinement
All H atoms were placed at calculated positions and constrained to ride on their parent atoms, with O—H = 0.82 Å, C—H = 0.93-0.97 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for hydroxy and methyl H atoms.
Figures
Fig. 1.
The molecular structure of the title compound, with the atom-labeling scheme and 50% probability displacement ellipsoids.
Crystal data
| C9H10O4S | F000 = 448 |
| Mr = 214.23 | Dx = 1.456 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 2824 reflections |
| a = 19.086 (7) Å | θ = 2.2–27.7º |
| b = 4.9711 (18) Å | µ = 0.32 mm−1 |
| c = 10.724 (4) Å | T = 298 (2) K |
| β = 106.102 (6)º | Block, colourless |
| V = 977.5 (6) Å3 | 0.52 × 0.30 × 0.24 mm |
| Z = 4 |
Data collection
| Bruker APEX area-detector diffractometer | 1638 independent reflections |
| Radiation source: fine-focus sealed tube | 1502 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.020 |
| T = 298(2) K | θmax = 25.0º |
| φ and ω scans | θmin = 1.1º |
| Absorption correction: Multi-scan(SADABS; Sheldrick, 2004) | h = −22→22 |
| Tmin = 0.853, Tmax = 0.928 | k = −5→5 |
| 4462 measured reflections | l = −11→12 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
| wR(F2) = 0.140 | w = 1/[σ2(Fo2) + (0.0848P)2 + 0.3788P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.11 | (Δ/σ)max = 0.001 |
| 1638 reflections | Δρmax = 0.24 e Å−3 |
| 129 parameters | Δρmin = −0.43 e Å−3 |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.38734 (3) | 0.64558 (12) | 1.01463 (5) | 0.0408 (3) | |
| O1 | 0.41630 (11) | 0.5716 (4) | 0.90951 (18) | 0.0609 (6) | |
| O2 | 0.36962 (11) | 0.4358 (4) | 1.09321 (19) | 0.0575 (5) | |
| O3 | 0.07977 (10) | 0.9489 (5) | 0.6087 (2) | 0.0694 (7) | |
| O4 | 0.00360 (10) | 1.2830 (5) | 0.6090 (2) | 0.0677 (6) | |
| H4 | −0.0197 | 1.2097 | 0.5418 | 0.102* | |
| C1 | 0.44823 (14) | 0.8670 (5) | 1.1176 (3) | 0.0487 (6) | |
| H1A | 0.4947 | 0.7807 | 1.1501 | 0.073* | |
| H1B | 0.4296 | 0.9159 | 1.1889 | 0.073* | |
| H1C | 0.4537 | 1.0256 | 1.0701 | 0.073* | |
| C2 | 0.30708 (12) | 0.8358 (4) | 0.9483 (2) | 0.0361 (5) | |
| C3 | 0.30404 (13) | 1.0060 (5) | 0.8448 (2) | 0.0425 (6) | |
| H3 | 0.3440 | 1.0226 | 0.8117 | 0.051* | |
| C4 | 0.24133 (14) | 1.1507 (5) | 0.7913 (2) | 0.0481 (6) | |
| H4A | 0.2393 | 1.2662 | 0.7221 | 0.058* | |
| C5 | 0.18090 (13) | 1.1260 (5) | 0.8396 (2) | 0.0434 (6) | |
| C6 | 0.18554 (13) | 0.9570 (6) | 0.9437 (3) | 0.0491 (6) | |
| H6 | 0.1458 | 0.9413 | 0.9775 | 0.059* | |
| C7 | 0.24791 (13) | 0.8111 (5) | 0.9986 (2) | 0.0457 (6) | |
| H7 | 0.2502 | 0.6975 | 1.0685 | 0.055* | |
| C8 | 0.11162 (14) | 1.2792 (6) | 0.7781 (3) | 0.0571 (7) | |
| H8A | 0.0838 | 1.2955 | 0.8410 | 0.069* | |
| H8B | 0.1244 | 1.4594 | 0.7574 | 0.069* | |
| C9 | 0.06426 (13) | 1.1525 (5) | 0.6574 (3) | 0.0451 (6) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0481 (4) | 0.0392 (4) | 0.0331 (4) | 0.0129 (2) | 0.0079 (3) | −0.0027 (2) |
| O1 | 0.0635 (11) | 0.0752 (13) | 0.0449 (11) | 0.0256 (10) | 0.0164 (9) | −0.0110 (10) |
| O2 | 0.0767 (13) | 0.0387 (10) | 0.0564 (12) | 0.0120 (9) | 0.0176 (10) | 0.0082 (8) |
| O3 | 0.0530 (11) | 0.0703 (14) | 0.0648 (13) | 0.0194 (10) | −0.0170 (9) | −0.0235 (11) |
| O4 | 0.0509 (11) | 0.0665 (13) | 0.0667 (14) | 0.0203 (10) | −0.0155 (9) | −0.0117 (11) |
| C1 | 0.0470 (13) | 0.0516 (15) | 0.0415 (14) | 0.0117 (11) | 0.0024 (11) | −0.0031 (11) |
| C2 | 0.0381 (11) | 0.0374 (12) | 0.0294 (11) | 0.0036 (9) | 0.0038 (9) | −0.0038 (9) |
| C3 | 0.0420 (12) | 0.0509 (14) | 0.0338 (13) | 0.0017 (10) | 0.0090 (10) | 0.0022 (10) |
| C4 | 0.0541 (14) | 0.0492 (15) | 0.0349 (13) | 0.0037 (11) | 0.0022 (11) | 0.0066 (10) |
| C5 | 0.0387 (12) | 0.0450 (14) | 0.0378 (13) | 0.0031 (10) | −0.0038 (10) | −0.0110 (10) |
| C6 | 0.0386 (12) | 0.0585 (15) | 0.0499 (15) | 0.0000 (11) | 0.0116 (11) | −0.0038 (13) |
| C7 | 0.0486 (13) | 0.0489 (14) | 0.0401 (14) | 0.0013 (11) | 0.0132 (11) | 0.0062 (11) |
| C8 | 0.0487 (14) | 0.0545 (16) | 0.0557 (17) | 0.0130 (13) | −0.0061 (12) | −0.0132 (13) |
| C9 | 0.0364 (12) | 0.0471 (15) | 0.0449 (14) | 0.0044 (10) | −0.0001 (10) | 0.0002 (11) |
Geometric parameters (Å, °)
| S1—O1 | 1.4342 (19) | C3—C4 | 1.378 (4) |
| S1—O2 | 1.439 (2) | C3—H3 | 0.9300 |
| S1—C1 | 1.752 (3) | C4—C5 | 1.394 (4) |
| S1—C2 | 1.773 (2) | C4—H4A | 0.9300 |
| O3—C9 | 1.212 (3) | C5—C6 | 1.380 (4) |
| O4—C9 | 1.303 (3) | C5—C8 | 1.510 (3) |
| O4—H4 | 0.8200 | C6—C7 | 1.379 (4) |
| C1—H1A | 0.9600 | C6—H6 | 0.9300 |
| C1—H1B | 0.9600 | C7—H7 | 0.9300 |
| C1—H1C | 0.9600 | C8—C9 | 1.497 (4) |
| C2—C3 | 1.384 (3) | C8—H8A | 0.9700 |
| C2—C7 | 1.386 (3) | C8—H8B | 0.9700 |
| O1—S1—O2 | 118.61 (12) | C3—C4—H4A | 119.6 |
| O1—S1—C1 | 108.87 (13) | C5—C4—H4A | 119.6 |
| O2—S1—C1 | 107.99 (13) | C6—C5—C4 | 118.7 (2) |
| O1—S1—C2 | 107.44 (11) | C6—C5—C8 | 120.8 (2) |
| O2—S1—C2 | 107.72 (12) | C4—C5—C8 | 120.5 (2) |
| C1—S1—C2 | 105.44 (11) | C7—C6—C5 | 121.3 (2) |
| C9—O4—H4 | 109.5 | C7—C6—H6 | 119.3 |
| S1—C1—H1A | 109.5 | C5—C6—H6 | 119.3 |
| S1—C1—H1B | 109.5 | C6—C7—C2 | 119.2 (2) |
| H1A—C1—H1B | 109.5 | C6—C7—H7 | 120.4 |
| S1—C1—H1C | 109.5 | C2—C7—H7 | 120.4 |
| H1A—C1—H1C | 109.5 | C9—C8—C5 | 114.3 (2) |
| H1B—C1—H1C | 109.5 | C9—C8—H8A | 108.7 |
| C3—C2—C7 | 120.6 (2) | C5—C8—H8A | 108.7 |
| C3—C2—S1 | 119.18 (17) | C9—C8—H8B | 108.7 |
| C7—C2—S1 | 120.22 (18) | C5—C8—H8B | 108.7 |
| C4—C3—C2 | 119.5 (2) | H8A—C8—H8B | 107.6 |
| C4—C3—H3 | 120.3 | O3—C9—O4 | 122.7 (2) |
| C2—C3—H3 | 120.3 | O3—C9—C8 | 124.2 (2) |
| C3—C4—C5 | 120.8 (2) | O4—C9—C8 | 113.0 (2) |
| O1—S1—C2—C3 | −35.3 (2) | C3—C4—C5—C8 | −178.3 (2) |
| O2—S1—C2—C3 | −164.15 (19) | C4—C5—C6—C7 | −1.0 (4) |
| C1—S1—C2—C3 | 80.7 (2) | C8—C5—C6—C7 | 178.4 (2) |
| O1—S1—C2—C7 | 143.9 (2) | C5—C6—C7—C2 | 0.2 (4) |
| O2—S1—C2—C7 | 15.0 (2) | C3—C2—C7—C6 | 0.5 (4) |
| C1—S1—C2—C7 | −100.1 (2) | S1—C2—C7—C6 | −178.71 (19) |
| C7—C2—C3—C4 | −0.3 (4) | C6—C5—C8—C9 | −98.9 (3) |
| S1—C2—C3—C4 | 178.84 (19) | C4—C5—C8—C9 | 80.5 (3) |
| C2—C3—C4—C5 | −0.4 (4) | C5—C8—C9—O3 | −2.1 (4) |
| C3—C4—C5—C6 | 1.1 (4) | C5—C8—C9—O4 | 177.6 (3) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O4—H4···O3i | 0.82 | 1.87 | 2.693 (3) | 175 |
| C3—H3···O2ii | 0.93 | 2.53 | 3.287 (3) | 139 |
| C1—H1B···O1iii | 0.96 | 2.45 | 3.365 (4) | 160 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) x, −y+3/2, z−1/2; (iii) x, −y+3/2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2263).
References
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
- Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Giridhar, P., Vijaya Ramu, D. & Ravishankar, G. A. (2006). Trop. Sci.43, 92-95.
- Guo, S.-R. & Yuan, Y.-Q. (2006). Acta Cryst. E62, o5707–o5708.
- Hartung, J., Špehar, K., Svoboda, I. & Fuess, H. (2004). Acta Cryst. E60, o95–o96.
- Hodgson, D. J. & Asplund, R. O. (1991). Acta Cryst. C47, 1986–1987.
- Parimalan, R., Giridhar, P. & Ravishankar, G. A. (2008). Ind. Crop. Prod.28, 122-127.
- Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803660X/rz2263sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680803660X/rz2263Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

