Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 4;64(Pt 2):m295. doi: 10.1107/S1600536807068146

Di-μ-thio­cyanato-κ4 N:N-bis­({2,4-di­bromo-6-[2-(methyl­amino)ethyl­imino­meth­yl]­phenol­ato-κ3 N,N′,O}nickel(II))

Hong-Wei Lin a,*
PMCID: PMC2960283  PMID: 21201272

Abstract

The title complex, [Ni2(C11H11Br2N2O)2(NCS)2], is a thio­cyanate-bridged dinuclear nickel(II) complex. The asymmetric unit contains two molecules. Both Ni atoms in each molecule have a square-pyramidal coordination geometry, and each center is bound by one O and two N atoms of one Schiff base ligand and by one N atom of a bridging thio­cyanate ligand, which define the basal planes. N atoms from the bridging thio­cyanate ligands occupy the apical positions.

Related literature

For related literature, see: Arıcı et al. (2005); Hebbachi & Benali-Cherif (2005); Henkel & Krebs (2004); Salmon et al. (2005); Sarı et al. (2006); Tshuva & Lippard (2004); Weston (2005).graphic file with name e-64-0m295-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C10H11Br2N2O)2(NCS)2]

  • M r = 451.82

  • Monoclinic, Inline graphic

  • a = 9.2040 (18) Å

  • b = 19.833 (4) Å

  • c = 16.319 (3) Å

  • β = 100.71 (3)°

  • V = 2927.0 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.92 mm−1

  • T = 293 (2) K

  • 0.43 × 0.40 × 0.38 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.155, T max = 0.178 (expected range = 0.063–0.072)

  • 25095 measured reflections

  • 6938 independent reflections

  • 2858 reflections with I > 2σ(I)

  • R int = 0.139

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.150

  • S = 0.94

  • 6938 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.77 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068146/rn2034sup1.cif

e-64-0m295-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068146/rn2034Isup2.hkl

e-64-0m295-Isup2.hkl (339.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.91 2.48 3.269 (9) 146
N5—H5A⋯O1i 0.91 2.15 3.012 (9) 158
N5—H5A⋯Br2i 0.91 2.86 3.500 (7) 129

Symmetry code: (i) Inline graphic.

Acknowledgments

The author acknowledges Huaihua University for a research grant.

supplementary crystallographic information

Comment

The design of multidentate ligands and their metallosupramolecular chemistry are of great interest (Henkel & Krebs, 2004; Tshuva & Lippard, 2004; Weston, 2005). Schiff base ligands readily lead to the formation of diverse complexes with most metal ions (Arıcı et al., 2005; Salmon et al., 2005; Hebbachi & Benali-Cherif, 2005; Sarı et al., 2006).

The two Ni centers in the title dinuclear nickel(II) complex are doubly-bridged by thiocyanato ligands. Both Ni atoms are five-coordinate and have square pyramidal geometry but both thiocyanate bridges are asymmetric where the distances are 2.643 (8) and 1.973 (8)Å for Ni1···N6 and Ni1—N3 respectively and 2.589 (8) and 1.978 (7)Å for Ni2···N3 and Ni2—N6 respectively. The Ni···Ni distance is 3.268 (3) Å.

Experimental

3,5-Dibromosalicylaldehyde (1.0 mmol, 280.0 mg), N-methylethane-1,2-diamine (1.0 mmol, 74.0 mg), NH4NCS (1.0 mmol, 76.0 mg), and Ni(NO3)2.6H2O (1.0 mmol, 290.8 mg) were dissolved in a 50 ml me thanol solution. The mixture was stirred at reflux for half an hour to give a green solution. After keeping the solution in air for 15 days to allow slow evaporation, green block-like crystals were formed.

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, N—H distances of 0.91 Å, and with Uiso(H) values set to 1.2Ueq(C,N) and 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.

Crystal data

[Ni2(C10H11Br2N2O)2(NCS)2] F000 = 1760
Mr = 451.82 Dx = 2.051 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
a = 9.2040 (18) Å Cell parameters from 1344 reflections
b = 19.833 (4) Å θ = 2.4–24.5º
c = 16.319 (3) Å µ = 6.92 mm1
β = 100.71 (3)º T = 293 (2) K
V = 2927.0 (10) Å3 Block, green
Z = 8 0.43 × 0.40 × 0.38 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 6938 independent reflections
Radiation source: fine-focus sealed tube 2858 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.139
T = 293(2) K θmax = 28.3º
ω scans θmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 2000) h = −12→12
Tmin = 0.155, Tmax = 0.178 k = −25→25
25095 measured reflections l = −21→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.151   w = 1/[σ2(Fo2) + (0.0506P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94 (Δ/σ)max < 0.001
6938 reflections Δρmax = 0.65 e Å3
345 parameters Δρmin = −0.77 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.59997 (12) 0.01132 (5) 0.24264 (7) 0.0378 (3)
Ni2 0.61799 (12) 0.12004 (5) 0.77631 (7) 0.0349 (3)
Br1 0.41051 (12) 0.33151 (5) 0.43009 (7) 0.0685 (4)
Br2 0.31619 (12) 0.05315 (5) 0.46208 (6) 0.0564 (3)
Br3 0.36394 (13) 0.17932 (5) 1.00163 (7) 0.0669 (4)
Br4 0.37706 (12) 0.45174 (5) 0.90757 (7) 0.0644 (3)
S1 0.8160 (4) −0.18127 (14) 0.37004 (19) 0.0779 (10)
S2 0.8415 (4) −0.07194 (15) 0.8944 (2) 0.0851 (10)
O1 0.4903 (6) 0.0452 (3) 0.3223 (4) 0.0440 (16)
O2 0.5198 (6) 0.1600 (3) 0.8571 (3) 0.0468 (16)
N1 0.6349 (8) 0.1003 (3) 0.2016 (4) 0.045 (2)
N2 0.6704 (8) −0.0212 (4) 0.1394 (4) 0.050 (2)
H2A 0.6074 −0.0543 0.1164 0.060*
N3 0.6368 (8) −0.0765 (4) 0.2996 (5) 0.049 (2)
N4 0.6322 (8) 0.2040 (3) 0.7179 (5) 0.047 (2)
N5 0.6960 (8) 0.0799 (3) 0.6800 (4) 0.0449 (19)
H5A 0.6473 0.0404 0.6660 0.054*
N6 0.6537 (9) 0.0353 (4) 0.8409 (5) 0.049 (2)
C1 0.5295 (10) 0.1639 (4) 0.3041 (5) 0.041 (2)
C2 0.4755 (10) 0.1078 (4) 0.3426 (5) 0.041 (2)
C3 0.3982 (9) 0.1240 (4) 0.4082 (5) 0.040 (2)
C4 0.3789 (10) 0.1898 (4) 0.4331 (6) 0.047 (2)
H4 0.3275 0.1986 0.4759 0.056*
C5 0.4366 (10) 0.2416 (4) 0.3938 (6) 0.045 (2)
C6 0.5112 (10) 0.2302 (4) 0.3303 (6) 0.052 (3)
H6 0.5497 0.2662 0.3046 0.062*
C7 0.6038 (10) 0.1557 (4) 0.2333 (6) 0.048 (3)
H7 0.6311 0.1950 0.2088 0.057*
C8 0.7089 (11) 0.0998 (5) 0.1295 (6) 0.057 (3)
H8A 0.8153 0.0975 0.1475 0.068*
H8B 0.6848 0.1403 0.0963 0.068*
C9 0.6515 (11) 0.0371 (5) 0.0789 (6) 0.060 (3)
H9A 0.5482 0.0426 0.0537 0.072*
H9B 0.7076 0.0293 0.0351 0.072*
C10 0.7144 (10) −0.1202 (5) 0.3285 (6) 0.045 (2)
C11 0.5255 (9) 0.2750 (4) 0.8123 (6) 0.041 (2)
C12 0.4913 (9) 0.2237 (4) 0.8649 (5) 0.037 (2)
C13 0.4210 (10) 0.2452 (4) 0.9302 (5) 0.045 (2)
C14 0.3902 (10) 0.3114 (4) 0.9432 (6) 0.048 (3)
H14 0.3449 0.3234 0.9875 0.057*
C15 0.4267 (9) 0.3604 (4) 0.8902 (6) 0.043 (2)
C16 0.4953 (10) 0.3435 (4) 0.8254 (6) 0.047 (2)
H16 0.5216 0.3766 0.7906 0.057*
C17 0.5928 (10) 0.2625 (5) 0.7395 (6) 0.052 (3)
H17 0.6081 0.2992 0.7066 0.062*
C18 0.6914 (11) 0.1982 (4) 0.6398 (6) 0.059 (3)
H18A 0.7973 0.2059 0.6502 0.071*
H18B 0.6442 0.2305 0.5987 0.071*
C19 0.6558 (11) 0.1265 (4) 0.6100 (6) 0.056 (3)
H19A 0.5510 0.1226 0.5872 0.067*
H19B 0.7103 0.1153 0.5664 0.067*
C20 0.8556 (10) 0.0652 (5) 0.6983 (6) 0.061 (3)
H20A 0.8725 0.0239 0.7293 0.091*
H20B 0.9068 0.1014 0.7305 0.091*
H20C 0.8914 0.0607 0.6469 0.091*
C21 0.7334 (10) −0.0092 (5) 0.8631 (6) 0.044 (2)
C22 0.8217 (10) −0.0497 (5) 0.1533 (6) 0.071 (3)
H22A 0.8432 −0.0657 0.1013 0.107*
H22B 0.8283 −0.0865 0.1921 0.107*
H22C 0.8917 −0.0154 0.1755 0.107*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0465 (8) 0.0318 (6) 0.0374 (7) 0.0009 (5) 0.0140 (6) 0.0000 (5)
Ni2 0.0449 (7) 0.0264 (6) 0.0357 (7) 0.0005 (5) 0.0140 (6) −0.0007 (5)
Br1 0.0776 (8) 0.0362 (6) 0.0944 (9) 0.0020 (5) 0.0229 (7) −0.0143 (6)
Br2 0.0783 (8) 0.0426 (6) 0.0560 (7) −0.0078 (5) 0.0329 (6) −0.0048 (5)
Br3 0.0927 (9) 0.0551 (7) 0.0637 (7) 0.0114 (6) 0.0426 (7) 0.0071 (6)
Br4 0.0686 (8) 0.0395 (6) 0.0873 (9) 0.0079 (5) 0.0202 (7) −0.0125 (6)
S1 0.101 (2) 0.0635 (19) 0.069 (2) 0.0369 (18) 0.0174 (19) 0.0090 (16)
S2 0.088 (2) 0.068 (2) 0.106 (3) 0.0307 (18) 0.034 (2) 0.0328 (19)
O1 0.056 (4) 0.031 (3) 0.048 (4) −0.004 (3) 0.017 (3) −0.003 (3)
O2 0.063 (4) 0.037 (4) 0.046 (4) 0.005 (3) 0.023 (3) 0.001 (3)
N1 0.059 (5) 0.036 (4) 0.043 (5) 0.003 (4) 0.015 (4) −0.001 (4)
N2 0.051 (5) 0.047 (5) 0.053 (5) 0.008 (4) 0.014 (4) −0.003 (4)
N3 0.053 (6) 0.034 (4) 0.058 (6) 0.003 (4) 0.009 (4) −0.006 (4)
N4 0.066 (6) 0.032 (4) 0.050 (5) −0.007 (4) 0.027 (4) 0.001 (4)
N5 0.052 (5) 0.043 (5) 0.043 (5) −0.003 (4) 0.018 (4) −0.002 (4)
N6 0.064 (6) 0.038 (5) 0.044 (5) 0.003 (4) 0.012 (4) 0.008 (4)
C1 0.047 (6) 0.035 (5) 0.041 (6) −0.004 (4) 0.006 (5) −0.005 (4)
C2 0.045 (6) 0.042 (6) 0.032 (6) −0.002 (5) −0.003 (5) 0.001 (4)
C3 0.048 (6) 0.029 (5) 0.043 (6) −0.007 (4) 0.009 (5) 0.005 (4)
C4 0.048 (6) 0.043 (6) 0.049 (6) 0.005 (5) 0.008 (5) −0.006 (5)
C5 0.051 (6) 0.029 (5) 0.052 (7) 0.014 (5) −0.001 (5) 0.005 (5)
C6 0.052 (7) 0.038 (6) 0.064 (7) −0.007 (5) 0.004 (6) 0.002 (5)
C7 0.056 (7) 0.039 (6) 0.048 (7) −0.001 (5) 0.010 (5) 0.002 (5)
C8 0.073 (8) 0.055 (6) 0.049 (7) −0.002 (5) 0.031 (6) 0.008 (5)
C9 0.077 (8) 0.058 (7) 0.047 (7) −0.006 (6) 0.015 (6) 0.008 (6)
C10 0.040 (6) 0.053 (6) 0.043 (6) −0.009 (5) 0.012 (5) −0.007 (5)
C11 0.038 (6) 0.033 (5) 0.052 (6) −0.004 (4) 0.007 (5) −0.011 (5)
C12 0.040 (6) 0.034 (5) 0.035 (6) −0.008 (4) −0.001 (5) 0.000 (4)
C13 0.054 (6) 0.046 (6) 0.036 (6) 0.007 (5) 0.014 (5) 0.003 (4)
C14 0.065 (7) 0.038 (6) 0.044 (6) 0.001 (5) 0.019 (5) −0.012 (5)
C15 0.033 (6) 0.039 (5) 0.057 (7) 0.006 (4) 0.009 (5) −0.018 (5)
C16 0.056 (7) 0.032 (5) 0.052 (7) 0.000 (5) 0.007 (5) 0.005 (5)
C17 0.072 (7) 0.040 (6) 0.046 (6) 0.001 (5) 0.017 (6) 0.012 (5)
C18 0.086 (8) 0.044 (6) 0.055 (7) −0.007 (5) 0.032 (6) −0.003 (5)
C19 0.069 (7) 0.045 (6) 0.059 (7) −0.006 (5) 0.025 (6) 0.003 (5)
C20 0.055 (7) 0.063 (7) 0.070 (8) −0.003 (6) 0.025 (6) −0.017 (6)
C21 0.046 (6) 0.046 (6) 0.039 (6) −0.008 (5) 0.010 (5) 0.005 (5)
C22 0.056 (7) 0.078 (8) 0.089 (9) 0.018 (6) 0.040 (7) 0.002 (7)

Geometric parameters (Å, °)

Ni1—O1 1.911 (6) C2—C3 1.428 (11)
Ni1—N1 1.934 (7) C3—C4 1.388 (11)
Ni1—N2 2.019 (7) C4—C5 1.370 (11)
Ni1—N3 1.973 (8) C4—H4 0.9300
Ni1—N6i 2.643 (8) C5—C6 1.365 (12)
Ni2—O2 1.904 (5) C6—H6 0.9300
Ni2—N3i 2.589 (8) C7—H7 0.9300
Ni2—N4 1.935 (7) C8—C9 1.532 (12)
Ni2—N6 1.978 (7) C8—H8A 0.9700
Ni2—N5 2.010 (7) C8—H8B 0.9700
Br1—C5 1.907 (8) C9—H9A 0.9700
Br2—C3 1.888 (8) C9—H9B 0.9700
Br3—C13 1.889 (9) C11—C12 1.404 (11)
Br4—C15 1.902 (8) C11—C16 1.410 (11)
S1—C10 1.602 (10) C11—C17 1.460 (12)
S2—C21 1.617 (10) C12—C13 1.412 (11)
O1—C2 1.299 (9) C13—C14 1.369 (11)
O2—C12 1.301 (9) C14—C15 1.383 (11)
N1—C7 1.270 (10) C14—H14 0.9300
N1—C8 1.466 (10) C15—C16 1.372 (11)
N2—C22 1.481 (10) C16—H16 0.9300
N2—C9 1.509 (10) C17—H17 0.9300
N2—H2A 0.9100 C18—C19 1.519 (11)
N3—C10 1.166 (10) C18—H18A 0.9700
N4—C17 1.283 (10) C18—H18B 0.9700
N4—C18 1.481 (10) C19—H19A 0.9700
N5—C19 1.462 (10) C19—H19B 0.9700
N5—C20 1.472 (10) C20—H20A 0.9600
N5—H5A 0.9100 C20—H20B 0.9600
N6—C21 1.161 (10) C20—H20C 0.9600
C1—C6 1.403 (11) C22—H22A 0.9600
C1—C2 1.412 (11) C22—H22B 0.9600
C1—C7 1.457 (11) C22—H22C 0.9600
O1—Ni1—N1 93.3 (3) N1—C7—H7 116.8
O1—Ni1—N3 93.2 (3) C1—C7—H7 116.8
N1—Ni1—N3 160.5 (3) N1—C8—C9 105.8 (7)
O1—Ni1—N2 166.4 (3) N1—C8—H8A 110.6
N1—Ni1—N2 84.4 (3) C9—C8—H8A 110.6
N3—Ni1—N2 93.3 (3) N1—C8—H8B 110.6
O1—Ni1—N6i 86.9 (3) C9—C8—H8B 110.6
N1—Ni1—N6i 109.2 (3) H8A—C8—H8B 108.7
N2—Ni1—N6i 81.3 (3) N2—C9—C8 106.5 (8)
N3—Ni1—N6i 89.5 (3) N2—C9—H9A 110.4
O2—Ni2—N4 93.9 (3) C8—C9—H9A 110.4
O2—Ni2—N6 92.2 (3) N2—C9—H9B 110.4
N4—Ni2—N6 166.8 (3) C8—C9—H9B 110.4
O2—Ni2—N5 172.3 (3) H9A—C9—H9B 108.6
N4—Ni2—N5 83.6 (3) N3—C10—S1 177.8 (9)
N6—Ni2—N5 91.8 (3) C12—C11—C16 122.2 (8)
O2—Ni2—N3i 88.0 (3) C12—C11—C17 123.5 (8)
N4—Ni2—N3i 101.0 (3) C16—C11—C17 114.4 (8)
N5—Ni2—N3i 85.2 (3) O2—C12—C11 124.9 (8)
N6—Ni2—N3i 91.0 (3) O2—C12—C13 119.7 (8)
C2—O1—Ni1 127.1 (6) C11—C12—C13 115.4 (8)
C12—O2—Ni2 127.0 (5) C14—C13—C12 123.0 (8)
C7—N1—C8 120.3 (8) C14—C13—Br3 118.6 (7)
C7—N1—Ni1 125.8 (6) C12—C13—Br3 118.4 (6)
C8—N1—Ni1 113.8 (6) C13—C14—C15 119.7 (8)
C22—N2—C9 112.5 (7) C13—C14—H14 120.1
C22—N2—Ni1 115.6 (6) C15—C14—H14 120.1
C9—N2—Ni1 106.6 (5) C16—C15—C14 120.7 (8)
C22—N2—H2A 107.2 C16—C15—Br4 120.4 (7)
C9—N2—H2A 107.2 C14—C15—Br4 118.9 (6)
Ni1—N2—H2A 107.2 C15—C16—C11 119.0 (8)
C10—N3—Ni1 152.4 (7) C15—C16—H16 120.5
C17—N4—C18 118.3 (7) C11—C16—H16 120.5
C17—N4—Ni2 126.4 (6) N4—C17—C11 124.1 (8)
C18—N4—Ni2 115.2 (6) N4—C17—H17 117.9
C19—N5—C20 112.4 (7) C11—C17—H17 117.9
C19—N5—Ni2 106.6 (5) N4—C18—C19 104.9 (7)
C20—N5—Ni2 114.1 (6) N4—C18—H18A 110.8
C19—N5—H5A 107.9 C19—C18—H18A 110.8
C20—N5—H5A 107.9 N4—C18—H18B 110.8
Ni2—N5—H5A 107.9 C19—C18—H18B 110.8
C21—N6—Ni2 147.6 (7) H18A—C18—H18B 108.9
C6—C1—C2 122.1 (8) N5—C19—C18 109.5 (8)
C6—C1—C7 116.5 (8) N5—C19—H19A 109.8
C2—C1—C7 121.4 (8) C18—C19—H19A 109.8
O1—C2—C1 125.3 (8) N5—C19—H19B 109.8
O1—C2—C3 119.8 (8) C18—C19—H19B 109.8
C1—C2—C3 115.0 (8) H19A—C19—H19B 108.2
C4—C3—C2 122.7 (8) N5—C20—H20A 109.5
C4—C3—Br2 118.6 (7) N5—C20—H20B 109.5
C2—C3—Br2 118.7 (6) H20A—C20—H20B 109.5
C5—C4—C3 119.1 (8) N5—C20—H20C 109.5
C5—C4—H4 120.4 H20A—C20—H20C 109.5
C3—C4—H4 120.4 H20B—C20—H20C 109.5
C6—C5—C4 121.6 (8) N6—C21—S2 178.9 (9)
C6—C5—Br1 120.1 (7) N2—C22—H22A 109.5
C4—C5—Br1 118.3 (7) N2—C22—H22B 109.5
C5—C6—C1 119.5 (9) H22A—C22—H22B 109.5
C5—C6—H6 120.2 N2—C22—H22C 109.5
C1—C6—H6 120.2 H22A—C22—H22C 109.5
N1—C7—C1 126.3 (8) H22B—C22—H22C 109.5

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O2i 0.91 2.48 3.269 (9) 146
N5—H5A···O1i 0.91 2.15 3.012 (9) 158
N5—H5A···Br2i 0.91 2.86 3.500 (7) 129

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2034).

References

  1. Arıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919–m921.
  2. Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188–m1190.
  4. Henkel, G. & Krebs, B. (2004). Chem. Rev.104, 801–824. [DOI] [PubMed]
  5. Salmon, L., Thuéry, P. & Ephritikhine, M. (2005). Acta Cryst. E61, m2607–m2609.
  6. Sarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563–m565. [DOI] [PubMed]
  7. Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev.104, 987–1012. [DOI] [PubMed]
  8. Weston, J. (2005). Chem. Rev.105, 2151–2174. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068146/rn2034sup1.cif

e-64-0m295-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068146/rn2034Isup2.hkl

e-64-0m295-Isup2.hkl (339.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES