Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jan 9;64(Pt 2):o399. doi: 10.1107/S1600536807063660

Norbornane-exo-cis-2,3-diyl 1′,2′-phenyl­ene orthocarbonate

Richard Betz a, Peter Klüfers a,*
PMCID: PMC2960339  PMID: 21201427

Abstract

The title compound (systematic name: 4,7-methano-2,2′-spirobi­[1,3-benzodioxole]), C14H14O4, is an asymmetric spiro ester of orthocarbonic acid and two diols, viz. the aromatic benzene-1,2-diol and the aliphatic vicinal norbornane-exo-cis-2,3-diol. The orthocarbonate mol­ecule is close to having non-crystallographic C s symmetry. The five-membered ring stemming from the aliphatic diol has an envelope conformation. C—O bonds including the spiro-C atom span an approximately 0.07 Å range, but are within 0.02 Å of the respective distances in a density functional theory calculation, i.e. the distance difference is not caused by packing forces. Accordingly, the crystal packing is characterized by weak C—H⋯O and C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Komatsu et al. (1992). For related compounds, see: Betz & Klüfers (2007a ,b ,c ); Betz et al. (2007). Density functional theory calculations were performed by Betz & Klüfers (2008).graphic file with name e-64-0o399-scheme1.jpg

Experimental

Crystal data

  • C14H14O4

  • M r = 246.25

  • Monoclinic, Inline graphic

  • a = 7.9125 (3) Å

  • b = 9.5545 (5) Å

  • c = 15.2813 (6) Å

  • β = 101.490 (3)°

  • V = 1132.11 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 (2) K

  • 0.30 × 0.25 × 0.16 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 8399 measured reflections

  • 2582 independent reflections

  • 1716 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.119

  • S = 1.05

  • 2582 reflections

  • 164 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003; 2006 version).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063660/lx2027sup1.cif

e-64-0o399-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063660/lx2027Isup2.hkl

e-64-0o399-Isup2.hkl (126.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

O1—C1 1.367 (2)
O2—C1 1.370 (2)
O3—C1 1.412 (2)
O4—C1 1.435 (2)

Table 2. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C9–C14 phenylene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 1.00 2.71 3.623 (2) 151
C7—H7A⋯O4i 0.99 2.76 3.663 (2) 151
C14—H14⋯O2ii 0.95 2.61 3.501 (2) 156
C14—H14⋯O4ii 0.95 2.88 3.514 (2) 125
C2—H2⋯Cgiii 1.00 2.86 3.563 (2) 128
C5—H5⋯Cgiv 1.00 2.66 3.568 (2) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank Moritz Reichvilser for professional support.

supplementary crystallographic information

Comment

The title compound was prepared in order to compare its NMR-spectroscopic data with those of related silicon compounds.

In the molecule, a central carbon atom is chelated by a phenylene-1,2-dioxy and a norbornylene-exo-cis-2,3-dioxy moiety. The C—O bond lengths differ markedly (1.37 to 1.44 Å). About the same bond-length values were computed for the isolated molecule on the B3LYP/6–31+G(d,p) level of theory thus ruling out packing forces as the origin of the bond-length differences. The five-membered chelate ring stemming from the aliphatic diol adopts an envelope conformation on the spiro center C1 (puckering parameters: Q2 = 0.1274 (16) Å, φ2 = 42.6 (7)° for the O1—C1—O2—C4—C3 ring).

Accordingly, the crystal packing is characterized by weak C—H···X interactions whose H···X distances are close to the sum of the van-der-Waals radii (vdWr). In terms of the vdWr criterion, the shortest tabulated hydrogen-bond, the C14—H14···O2 interaction, is 0.11 \&A shorter than the radii sum. The weak interactions in (I) are thus less significant than those in the related 1-(ylomethyl)cyclopentyl 1',2'-phenylene orthocarbonate, where C—H···O bonds are observed at the radii sum minus 0.35 Å (Betz & Klüfers, 2007c). Fig. 2 shows this interaction as well as the shortest C—H···π bond which has one of the norbornane-bridgehead C—H functions as the donor. The other bridgehead methylidyne function acts as a donor in a still weaker bond. Moreover, another weak C—H···O bond may be recognized with a diol-CH function as the donor (see the hydrogen bond table).

Experimental

The title compound was prepared based on a published procedure (Komatsu et al., 1992) upon reaction of norbornane-exo-cis-2,3-diol with 2,2-dichlorobenzo[1.3]dioxol in dichloromethane in the presence of pyridine. Crystals suitable for X-ray analysis were obtained after recrystallization from boiling ethyl acetate.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H distances of 0.95, 0.99 and 1.00 Å, and with Uiso(H) = 1.2Ueq(C) for all H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing viewed along [0 1 0]. Green arrows: the strongest C—H···O interaction in terms of the H···O distance (C14—H14···O2). Green dotted lines: the strongest C—H···π interaction (C5—H5—Cg, Cg is the centroid of the phenylene residue).

Crystal data

C14H14O4 F000 = 520
Mr = 246.25 Dx = 1.445 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 14429 reflections
a = 7.9125 (3) Å θ = 2.7–27.5º
b = 9.5545 (5) Å µ = 0.11 mm1
c = 15.2813 (6) Å T = 200 (2) K
β = 101.490 (3)º Block, colourless
V = 1132.11 (9) Å3 0.30 × 0.25 × 0.16 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 1716 reflections with I > 2σ(I)
Radiation source: rotating anode Rint = 0.054
Monochromator: MONTEL, graded multilayered X-ray optics θmax = 27.5º
T = 200(2) K θmin = 3.2º
CCD; rotation images; thick slices scans h = −9→10
Absorption correction: none k = −12→11
8399 measured reflections l = −19→19
2582 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 Only H-atom displacement parameters refined
wR(F2) = 0.119   w = 1/[σ2(Fo2) + (0.0569P)2 + 0.1349P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2582 reflections Δρmax = 0.21 e Å3
164 parameters Δρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.39573 (14) 0.24072 (14) 0.47478 (7) 0.0460 (3)
O2 0.51722 (14) 0.20489 (14) 0.35623 (7) 0.0463 (3)
O3 0.27667 (13) 0.34038 (12) 0.34119 (7) 0.0408 (3)
O4 0.25466 (14) 0.10405 (11) 0.35921 (8) 0.0441 (3)
C1 0.3646 (2) 0.22289 (18) 0.38424 (11) 0.0384 (4)
C2 0.67414 (19) 0.32183 (17) 0.56079 (10) 0.0333 (4)
H2 0.6161 0.3766 0.6022 0.0490 (13)*
C3 0.56971 (19) 0.20081 (17) 0.51341 (10) 0.0342 (4)
H3 0.5742 0.1165 0.5526 0.0490 (13)*
C4 0.65286 (19) 0.17354 (18) 0.43193 (10) 0.0368 (4)
H4 0.6964 0.0755 0.4305 0.0490 (13)*
C5 0.7973 (2) 0.28116 (18) 0.44257 (11) 0.0378 (4)
H5 0.8407 0.3025 0.3869 0.0490 (13)*
C6 0.9350 (2) 0.2320 (2) 0.52188 (12) 0.0458 (5)
H6A 1.0433 0.2857 0.5259 0.0490 (13)*
H6B 0.9600 0.1310 0.5171 0.0490 (13)*
C7 0.8509 (2) 0.26146 (19) 0.60315 (11) 0.0439 (4)
H7A 0.8387 0.1743 0.6364 0.0490 (13)*
H7B 0.9196 0.3298 0.6443 0.0490 (13)*
C8 0.7165 (2) 0.40464 (17) 0.48246 (10) 0.0384 (4)
H8A 0.6123 0.4412 0.4420 0.0490 (13)*
H8B 0.7995 0.4814 0.5018 0.0490 (13)*
C9 0.12113 (18) 0.29423 (16) 0.29208 (9) 0.0307 (4)
C10 0.10837 (18) 0.15188 (16) 0.30274 (9) 0.0307 (4)
C11 −0.03269 (19) 0.07732 (17) 0.26098 (10) 0.0365 (4)
H11 −0.0406 −0.0211 0.2681 0.0490 (13)*
C12 −0.16353 (19) 0.15365 (18) 0.20764 (10) 0.0367 (4)
H12 −0.2643 0.1064 0.1778 0.0490 (13)*
C13 −0.1506 (2) 0.29664 (18) 0.19700 (10) 0.0375 (4)
H13 −0.2426 0.3454 0.1600 0.0490 (13)*
C14 −0.0054 (2) 0.37112 (17) 0.23937 (10) 0.0350 (4)
H14 0.0049 0.4693 0.2320 0.0490 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0254 (6) 0.0743 (9) 0.0367 (7) 0.0025 (5) 0.0027 (5) −0.0082 (6)
O2 0.0296 (6) 0.0719 (9) 0.0354 (6) 0.0024 (6) 0.0016 (5) −0.0142 (6)
O3 0.0331 (6) 0.0367 (7) 0.0486 (7) −0.0050 (5) −0.0018 (5) −0.0036 (5)
O4 0.0333 (6) 0.0351 (7) 0.0556 (7) 0.0031 (5) −0.0107 (5) 0.0028 (5)
C1 0.0293 (9) 0.0449 (10) 0.0388 (9) 0.0000 (7) 0.0014 (7) −0.0057 (7)
C2 0.0337 (8) 0.0357 (9) 0.0301 (8) 0.0013 (7) 0.0053 (6) −0.0024 (6)
C3 0.0283 (8) 0.0362 (9) 0.0369 (8) −0.0013 (6) 0.0034 (6) 0.0023 (7)
C4 0.0305 (8) 0.0389 (9) 0.0389 (9) 0.0032 (7) 0.0016 (6) −0.0092 (7)
C5 0.0297 (8) 0.0489 (10) 0.0358 (9) −0.0022 (7) 0.0089 (6) −0.0042 (7)
C6 0.0283 (9) 0.0509 (11) 0.0552 (11) 0.0031 (7) 0.0015 (7) −0.0084 (8)
C7 0.0365 (9) 0.0506 (11) 0.0401 (10) −0.0041 (8) −0.0031 (7) 0.0004 (8)
C8 0.0419 (9) 0.0320 (9) 0.0419 (9) −0.0018 (7) 0.0096 (7) 0.0023 (7)
C9 0.0267 (8) 0.0362 (9) 0.0293 (8) −0.0017 (6) 0.0059 (6) −0.0036 (6)
C10 0.0261 (8) 0.0336 (9) 0.0315 (8) 0.0037 (6) 0.0033 (6) 0.0010 (6)
C11 0.0320 (8) 0.0335 (9) 0.0432 (9) −0.0027 (7) 0.0057 (6) −0.0007 (7)
C12 0.0261 (8) 0.0478 (11) 0.0351 (8) −0.0012 (7) 0.0030 (6) −0.0050 (7)
C13 0.0318 (8) 0.0468 (11) 0.0326 (8) 0.0083 (7) 0.0035 (6) 0.0031 (7)
C14 0.0388 (9) 0.0328 (9) 0.0346 (8) 0.0043 (7) 0.0102 (7) 0.0046 (7)

Geometric parameters (Å, °)

O1—C1 1.367 (2) C5—H5 1.0000
O1—C3 1.438 (2) C6—C7 1.547 (3)
O2—C1 1.370 (2) C6—H6A 0.9900
O2—C4 1.444 (2) C6—H6B 0.9900
O3—C9 1.380 (2) C7—H7A 0.9900
O3—C1 1.412 (2) C7—H7B 0.9900
O4—C10 1.377 (2) C8—H8A 0.9900
O4—C1 1.435 (2) C8—H8B 0.9900
C2—C3 1.518 (2) C9—C14 1.367 (2)
C2—C8 1.527 (2) C9—C10 1.376 (2)
C2—C7 1.532 (2) C10—C11 1.370 (2)
C2—H2 1.0000 C11—C12 1.390 (2)
C3—C4 1.542 (2) C11—H11 0.9500
C3—H3 1.0000 C12—C13 1.382 (2)
C4—C5 1.522 (2) C12—H12 0.9500
C4—H4 1.0000 C13—C14 1.396 (2)
C5—C8 1.526 (2) C13—H13 0.9500
C5—C6 1.533 (2) C14—H14 0.9500
C1—O1—C3 110.32 (12) C5—C6—H6A 111.1
C1—O2—C4 109.66 (12) C7—C6—H6A 111.1
C9—O3—C1 107.62 (12) C5—C6—H6B 111.1
C10—O4—C1 107.09 (12) C7—C6—H6B 111.1
O1—C1—O2 109.88 (12) H6A—C6—H6B 109.1
O1—C1—O3 110.18 (13) C2—C7—C6 103.41 (13)
O2—C1—O3 109.73 (14) C2—C7—H7A 111.1
O1—C1—O4 110.22 (14) C6—C7—H7A 111.1
O2—C1—O4 110.04 (13) C2—C7—H7B 111.1
O3—C1—O4 106.75 (11) C6—C7—H7B 111.1
C3—C2—C8 101.79 (12) H7A—C7—H7B 109.0
C3—C2—C7 106.20 (13) C5—C8—C2 95.02 (13)
C8—C2—C7 101.65 (13) C5—C8—H8A 112.7
C3—C2—H2 115.2 C2—C8—H8A 112.7
C8—C2—H2 115.2 C5—C8—H8B 112.7
C7—C2—H2 115.2 C2—C8—H8B 112.7
O1—C3—C2 112.31 (13) H8A—C8—H8B 110.2
O1—C3—C4 103.94 (12) C14—C9—C10 122.58 (14)
C2—C3—C4 103.56 (12) C14—C9—O3 128.15 (15)
O1—C3—H3 112.1 C10—C9—O3 109.27 (13)
C2—C3—H3 112.1 C11—C10—C9 122.08 (14)
C4—C3—H3 112.1 C11—C10—O4 128.66 (14)
O2—C4—C5 111.59 (13) C9—C10—O4 109.27 (12)
O2—C4—C3 104.08 (12) C10—C11—C12 116.29 (15)
C5—C4—C3 103.40 (12) C10—C11—H11 121.9
O2—C4—H4 112.4 C12—C11—H11 121.9
C5—C4—H4 112.4 C13—C12—C11 121.58 (14)
C3—C4—H4 112.4 C13—C12—H12 119.2
C4—C5—C8 101.52 (13) C11—C12—H12 119.2
C4—C5—C6 106.13 (14) C12—C13—C14 121.51 (14)
C8—C5—C6 102.10 (13) C12—C13—H13 119.2
C4—C5—H5 115.1 C14—C13—H13 119.2
C8—C5—H5 115.1 C9—C14—C13 115.96 (15)
C6—C5—H5 115.1 C9—C14—H14 122.0
C5—C6—C7 103.11 (13) C13—C14—H14 122.0
C3—O1—C1—O2 −14.26 (19) O2—C4—C5—C6 −177.46 (13)
C3—O1—C1—O3 −135.27 (13) C3—C4—C5—C6 71.25 (15)
C3—O1—C1—O4 107.18 (14) C4—C5—C6—C7 −72.05 (16)
C4—O2—C1—O1 15.22 (19) C8—C5—C6—C7 33.89 (17)
C4—O2—C1—O3 136.51 (13) C3—C2—C7—C6 70.90 (16)
C4—O2—C1—O4 −106.32 (14) C8—C2—C7—C6 −35.19 (16)
C9—O3—C1—O1 −119.98 (13) C5—C6—C7—C2 0.83 (17)
C9—O3—C1—O2 118.91 (13) C4—C5—C8—C2 54.90 (14)
C9—O3—C1—O4 −0.31 (16) C6—C5—C8—C2 −54.59 (14)
C10—O4—C1—O1 120.17 (13) C3—C2—C8—C5 −54.54 (14)
C10—O4—C1—O2 −118.49 (14) C7—C2—C8—C5 54.98 (14)
C10—O4—C1—O3 0.52 (17) C1—O3—C9—C14 −179.57 (15)
C1—O1—C3—C2 118.72 (15) C1—O3—C9—C10 −0.02 (16)
C1—O1—C3—C4 7.43 (17) C14—C9—C10—C11 0.0 (2)
C8—C2—C3—O1 −77.54 (15) O3—C9—C10—C11 −179.53 (14)
C7—C2—C3—O1 176.46 (13) C14—C9—C10—O4 179.94 (14)
C8—C2—C3—C4 33.98 (15) O3—C9—C10—O4 0.36 (17)
C7—C2—C3—C4 −72.02 (14) C1—O4—C10—C11 179.34 (16)
C1—O2—C4—C5 −120.76 (14) C1—O4—C10—C9 −0.54 (17)
C1—O2—C4—C3 −9.90 (17) C9—C10—C11—C12 −0.6 (2)
O1—C3—C4—O2 1.48 (16) O4—C10—C11—C12 179.57 (14)
C2—C3—C4—O2 −116.04 (13) C10—C11—C12—C13 0.5 (2)
O1—C3—C4—C5 118.21 (13) C11—C12—C13—C14 0.0 (2)
C2—C3—C4—C5 0.68 (15) C10—C9—C14—C13 0.5 (2)
O2—C4—C5—C8 76.19 (15) O3—C9—C14—C13 179.99 (14)
C3—C4—C5—C8 −35.11 (15) C12—C13—C14—C9 −0.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O4i 1.00 2.71 3.623 (2) 151
C7—H7A···O4i 0.99 2.76 3.663 (2) 151
C14—H14···O2ii 0.95 2.61 3.501 (2) 156
C14—H14···O4ii 0.95 2.88 3.514 (2) 125
C2—H2···Cgiii 1.00 2.86 3.563 (2) 128
C5—H5···Cgiv 1.00 2.66 3.568 (2) 152

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x−1/2, −y−1/2, z−1/2; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2027).

References

  1. Betz, R., Jahn, N. & Klüfers, P. (2007). Acta Cryst. E63, o4152.
  2. Betz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o3933.
  3. Betz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4132.
  4. Betz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o4300.
  5. Betz, R. & Klüfers, P. (2008). Unpublished results.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Komatsu, S., Takata, T. & Endo, T. (1992). Macromolecules, 25, 7286–7293.
  8. Nonius (2004). COLLECT Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063660/lx2027sup1.cif

e-64-0o399-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063660/lx2027Isup2.hkl

e-64-0o399-Isup2.hkl (126.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES