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Early in infection, human immunodeficiency virus type 1 (HIV-1) generally uses the CCR5 chemokine
receptor (along with CD4) for cellular entry. In many HIV-1-infected individuals, viral genotypic changes arise
that allow the virus to use CXCR4 (either in addition to CCR5 or alone) as an entry coreceptor. This switch
has been associated with an acceleration of both CD3� T-cell decline and progression to AIDS. While it is well
known that the V3 loop of gp120 largely determines coreceptor usage and that positively charged residues in
V3 play an important role, the process of genetic change in V3 leading to altered coreceptor usage is not well
understood. Further, the methods for biological phenotyping of virus for research or clinical purposes are
laborious, depend on sample availability, and present biosafety concerns, so reliable methods for sequence-
based “virtual phenotyping” are desirable. We introduce a simple bioinformatic method of scoring V3 amino
acid sequences that reliably predicts CXCR4 usage (sensitivity, 84%; specificity, 96%). This score (as deter-
mined on the basis of position-specific scoring matrices [PSSM]) can be interpreted as revealing a propensity
to use CXCR4 as follows: known R5 viruses had low scores, R5X4 viruses had intermediate scores, and X4
viruses had high scores. Application of the PSSM scoring method to reconstructed virus phylogenies of 11
longitudinally sampled individuals revealed that the development of X4 viruses was generally gradual and
involved the accumulation of multiple amino acid changes in V3. We found that X4 viruses were lost in two
ways: by the dying off of an established X4 lineage or by mutation back to low-scoring V3 loops.

Early studies of the biological properties of human immu-
nodeficiency virus type 1 (HIV-1) found that virus isolates
could be placed into as few as two phenotypic categories (de-
fined in vitro as either non-syncytium-inducing [NSI] or syncy-
tium-inducing [SI]) in certain CD4� T-cell lines. These phe-
notypes were often found to be associated with differences in
growth properties and cytopathicity on peripheral blood mono-
nuclear cells (PBMC) (1, 14, 46) and in cellular host range (3,
48). Ultimately, the difference between the NSI and SI pheno-
types was shown to be due largely to the differential use of
chemokine receptors as coreceptors for viral entry: NSI viruses
predominantly use CCR5, while SI viruses can use CCR5 and
CXCR4 or CXCR4 exclusively (2, 29, 31, 52, 54). Results
determined on the basis of SI phenotype and/or coreceptor
usage typing showed that although HIV-1 present at primary
infections used the CCR5 coreceptor (R5 virus) �90% of the
time (63, 67, 68), a substantial proportion of individuals even-
tually developed virus that used the CXCR4 coreceptor (X4
virus). These X4/SI viruses are associated with accelerated
CD4 decline and more rapid progression of HIV-1 disease (8,
28, 33, 43, 47). Little is known about the mechanisms by which

these viruses come to predominate among the HIV-1 strains
present in an infected person. For example, it is not known
whether X4 emergence is a primary pathogenic event or is
secondary to some other event, i.e., whether the virus itself
causes accelerated disease progression or whether another
event causes the acceleration and perhaps also leads to X4
outgrowth. Another important unanswered question is
whether X4 viruses arise multiple times during the course of
disease and, if so, why they do not become dominant whenever
they emerge. There is also uncertainty about the frequency
with which phenotype transition occurs. Phenotypic studies
suggest that 50 to 60% of progressing subjects acquire X4/SI
virus (26, 57, 58), but the results of a detailed longitudinal
genotypic study have indicated the occurrence, sometimes
transient, of at least one of four X4-associated mutations in
nine of nine individuals (50).

Coreceptor usage of a particular virus is established by func-
tional assays (growth on MT2 cells [28] or infection of indica-
tor cell lines [64]). These assays are limited, however, in that
results are generally reported only as positive or negative and
provide no insight into the sequence of mutations responsible
for the phenotype switch—information which may further clar-
ify the role of X4 viruses in pathogenesis, as we discuss below.
Certain mutations, particularly in the V3 loop of env (5–7, 15,
16, 22, 23, 51), are strongly associated with syncytium induction
and CXCR4 usage; in particular, basic amino acids at V3
positions 11 and 25 (amino acid coordinates 306 and 322 [Gen-
Bank accession no. K03455] in standard reference HXB2) very
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frequently distinguish primary X4 from R5 viruses (9, 15, 16,
21, 42, 66), with positions 24 and 27 implicated in some cases
(10, 37). However, while evolutionary studies of the R5-X4
transition have been undertaken (30, 38, 61, 62), the actual
mutational pathway or pathways by which R5 viruses that es-
tablish infections in vivo evolve into X4 viruses (i.e., the spe-
cific evolutionary sequence of mutations required) has been
largely unexplored. It is not clear whether the appearance of
basic amino acids at sites 11 and 25 is sufficient or even nec-
essary in most cases in vivo to lead to the outgrowth of X4 virus
or whether, instead, a more gradual process of mutation accu-
mulation takes place. If mutant accumulation does occur in a
more gradual process, this may provide an opportunity for
both early detection and arrest of X4 development. Viruses
that can use both coreceptors (R5X4 viruses) are known to
arise around the time of R5-to-X4 transition (2, 8, 38, 61), but
their evolutionary role in that transition is not certain. The
answers to questions of in vivo evolution cannot be approached
by phenotypic assays alone, and analyses based on the appear-
ance of positively charged mutations at V3 sites 11 and 25 have
led to incomplete and sometimes ambiguous conclusions re-
garding the transition process (35).

The V3 loop is highly variable within and between individ-
uals, and bioinformatic approaches suggest that many changes
not yet examined virologically are likely to influence corecep-
tor usage (21, 24, 42). To gain a broader understanding of the
mutations that contribute to X4 phenotype and of the tempo-
ral sequence in which they occur, we used position-specific
scoring matrices (PSSM) (19, 20) to analyze V3 sequences.
PSSM are used to detect nonrandom distributions of amino
acids at adjacent sites associated with empirically determined
groupings of sequences. They are frequently used to search
DNA or protein sequences for particular motifs, e.g., transcrip-
tional regulatory sites (55), coiled-coil domains (32), major
histocompatibility complex class I binding sites (41), and oth-
ers. A PSSM uses background genetic variation as a baseline
comparison, or “null model,” to facilitate comparison of the
residues of a sequence fragment to those of a group of aligned
sequences known to have the desired property. The compari-
son leads to a score that can be interpreted as indicating the
likelihood that the sequence fragment has the property of
interest. In our study, the empirical groupings consist of V3
loop sequences associated with X4 (or SI) virus and R5 (or
NSI) viruses. Using the PSSM as described below, a sequence
can be assigned a score: the higher the score, the more closely
the sequence resembles those of known X4 viruses.

We used the PSSM score for two purposes. First, we devel-
oped a PSSM-based phenotype predictor usable for all V3
sequences. We explored the statistical properties of this pre-
dictor and showed that it outperforms simple methods that
categorize sequences on the basis of the presence of basic
amino acids at sites 11 or 25. We validated the predictor with
two sets of V3 sequences from phenotyped viruses different
from those used to produce the PSSM matrix. Second, we
showed that the score can serve as a measure of the transition
from R5 to X4 phenotype.

Since the PSSM score can act as a continuous indicator of
X4 evolution, we used it to identify common temporal patterns
among 11 serially sampled individuals. By scoring recon-
structed ancestors of the sampled virus for each subject, we

demonstrated that the progression from low-scoring (R5-like)
to high-scoring (X4-like) viruses was generally gradual but that
the loss of putative X4 virus at the later stages of infection can
occur in two different ways.

MATERIALS AND METHODS

PSSM. A “training set” of V3 amino acid sequences from viruses of known
phenotype was used to generate a matrix of likelihood ratio scores for each site
in the sequence. The site-specific scores reflect the difference in abundance of a
particular amino acid at a particular site in the X4 or SI group of sequences
compared to that seen with the R5 or NSI group of sequences. To score a given
V3 sequence, the log likelihood ratio was calculated for each site; then, the ratios
for all sites were added to obtain the final score. In general, the higher the score,
the more similar the given V3 sequence is to an average actual X4 sequence.

Let fij(X4) be the frequency of amino acid i (� 1 to 20) at V3 site j in a set of
known X4 sequences and fij(R5) be the corresponding quantity in a set of known
R5 sequences. Formally, then, the PSSM M � (mij) is defined by

mij � ln�fij�X4�

fij�R5�� (1)

and the PSSM score z for a V3 loop sequence s is given by

z � �
j�1

l msj, j (2)

where sj is the jth amino acid of s and l is the length of the sequence in amino
acids.

Note that in the above formulation, likelihood ratios for amino acids i that
never appear at site j in the R5 data set are undefined. To correct for this in
practice, we use a standard pseudo-count procedure in the matrices which
amounts to initializing every amino acid at one count at every site and then
counting actual representations of each amino acid in the data set (19). That is,
we replace fij as defined above with

f̃ij �
nij � 1
n � 20 (3)

where nij is the number of times amino acid i appears at site j in the data set and
n is the total number of sequences in the data set.

This method requires that all sequences be of identical lengths. Most training
sequences were 35 amino acids long. There were 44 length variants (ranging from
34 to 38 amino acids) in the training data. Gaps were inserted as necessary to
align homologous residues; insertions were removed and only the remaining
amino acids were scored. Gaps were considered to contribute a value of 0 to the
PSSM score of a sequence. The performance of the prediction method on
sequences with length variation is examined below.

Data sets. To develop the motif scoring matrices, we used HIV-1 clade B V3
loop sequences obtained from biologically cloned viruses whose MT2 tropism (SI
or NSI) or coreceptor usage (CCR5, CXCR4, or dual usage) had been deter-
mined. We used the sequence sets described by Resch et al. (42); these are
referred to below as the SI/NSI set (for which only MT2 tropism was assayed)
and the X4/R5 set (for which coreceptor usage was assayed). Dual coreceptor
usage was also noted for sequences in the X4/R5 set. The SI/NSI set contained
70 SI and 187 NSI sequences from 107 subjects; the X4/R5 set contained 17 X4,
168 R5, and 28 dual-tropic sequences from 177 subjects. Unless specifically
mentioned otherwise below, the dual-usage viruses were grouped with the X4
class.

To test the validity of the phenotype prediction method developed using the
scoring system, we analyzed a separate set of 175 V3 sequences of known
phenotype. This set consisted of biologically cloned viral isolates (from four men
who have sex with men) collected in the Amsterdam Cohort Study (ACS) (12)
and obtained over multiple timepoints before, during, and after an observed
coreceptor usage switch (61). Virus was sampled every 3 months for between 4
and 6 years after seroconversion.

We then used the PSSM to reanalyze sequence data obtained at multiple
timepoints from 11 subjects in the Multicenter AIDS Cohort Study (MACS)
(25), 9 subjects from the study of Shankarappa et al. (50) and 2 individuals with
newly obtained sequence data. All 11 were men who have sex with men and had
enrolled prior to HIV infection in an ongoing longitudinal study of HIV disease.
Sampling occurred every 6 months over the entire course of infection, extending
6 to 14 years.
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Phenotype prediction. The designing of a phenotype predictor on the basis of
a PSSM score requires two points to be considered. First, given a PSSM gener-
ated from known sequences, one must choose a threshold score above which the
virus is predicted to use CXCR4 (and possibly CCR5) and below which it is
predicted to use CCR5 exclusively. The choice of this threshold or cutoff value
ideally will jointly maximize the specificity and sensitivity of the predictor.

Second, the issue of choosing a cutoff value score is complicated by the fact
that the scoring matrix is dependent on a sample of all possible V3 loops and
their associated phenotypes. If the loops in this sample were to differ in size or
in sequence, the matrix values would also differ and so would the score assigned
to any given sequence. To estimate the extent of this sampling variability, we
used a bootstrapping procedure (34) in which many matrices were calculated on
the basis of subsamples of the original training data set. These matrices were
used to score each sequence in the set, generating an estimated distribution of
scores for each sequence. This variability in the scores can be taken into account
in the design of a prediction method and can be used to perform statistical tests
of the method’s effectiveness. The cross-validation analyses (see below) also
provide a measure of sampling variability.

Choice of cutoff value. For each matrix calculated, we identified the cutoff
score that when applied to the training data set maximized the association
coefficient; we refer to this score as the optimal cutoff value for the given matrix.
The coefficient is given by

� � � �ad � bc�2

�a � b��c � d��a � c��b � d�
(4)

where a represents the number of true positives (i.e., X4 or SI variant scores
higher than the cutoff value), b represents false positives (R5 or NSI scores
higher than the cutoff value), c represents false negatives (X4 or SI scores lower
than the cutoff value), and d represents true negatives (R5 or NSI scores lower
than the cutoff value). This quantity runs from zero (when the PSSM score is
indiscriminate with respect to phenotype) to unity (when the score perfectly
divides the sequences into phenotype classes).

Analysis of sampling variability. To estimate the variability in scores and
optimal cutoff values induced by the effects of sequence sampling on the PSSM
matrix, we performed bootstrapping as follows. For a given sample size, X4 and
R5 sequences were randomly drawn with replacement from the data set under
analysis in proportions equal to those observed for the entire data set. Using this
sample, a PSSM was constructed as described above. With this matrix, a score
was calculated for each sequence in the training data set. For this set of sequence
scores, an optimal cutoff value was calculated. Sampling, matrix construction,
and scoring were performed 100 times, generating a distribution of scores,
optimal cutoff values, and association coefficients for each sample size. To ex-
amine the effect of increasing numbers of samples on the efficiency of the
predictors, we adjusted the sample sizes from 25 to the size of the data sets in
increments of 25.

We analyzed PSSM constructed using both the SI/NSI set and the X4/R5 set.
Matrices were applied to the entire training set. Previous analyses of these data
sets (21, 42) used randomly selected subsets of data in which (at most) one
sequence from any single individual for each phenotype was allowed. This was
done to reduce spurious correlations between sequence and phenotype induced
by the evolutionary dependence of sequences within individuals. However, be-
cause the sequences were numerous and also were chosen such that each V3 loop
amino acid sequence was unique, we reasoned that using the entire set of
sequences to form the scoring matrix would be justified and would lead to better
R5/X4 discrimination. That is, since every sequence was unique, some indepen-
dent evolution occurred in those sequences coming from single subjects, and
since the sequences were numerous, it is likely that mutations not influencing
phenotype would arise at approximately the same rates for either phenotype and
consequently have no influence (on average) on the overall score. One possible
caveat is that if a few patients were to contribute many sequences, the evolu-
tionary dependence among those sequences would lead to artifactually high
levels of predictor performance. This issue is partially mitigated by the unique-
ness of all the V3 sequences; we also note that no patient accounted for more
that 4.6% of the sequences in the SI/NSI set or more than 2.9% of those in the
X4/R5 data set. We tested the hypothesis that the use of the entire data set would
lead to better performance by using the bootstrap method described above,
generating bootstrapped sequence sets derived either from unique subjects or
from the entire set and comparing the resulting distributions of the association
coefficient as a measure of predictor efficiency. We also performed a similar
comparison using cross-validation analysis (see below).

Cross-validation. The bootstrap analysis gives an idea of the effect of sequence
sampling on the variability in the performance of the PSSM. However, since the

matrices in this analysis are reapplied to the set of sequences that was sampled
to derive those matrices, the performance measures are likely to be inflated.
Also, the positive predictive value (PPV; i.e., the fraction of predicted CXCR4-
using virus that actually use CXCR4, given the X4 prevalence in the infected
population) of the test, as applied to the training set, may be inflated relative to
that expected when the test is applied to new clinical sequences, since the
prevalence of X4 virus in infected individuals at large is probably lower than the
�20% representation in the training set. To address these issues, we performed
a cross-validation analysis.

N-fold cross-validation (for examples in an HIV sequence analysis context, see
references 40 and 45) of the PSSM method was performed as follows. For each
iterate, the X4R5 data set was randomly partitioned into N subsets. The choice
of N is discussed below. For each subset i, the remaining subsets 1,. . ., i–1,
i�1,. . ., N were pooled and used to develop a PSSM. This PSSM was used to
score the sequences in subset i, and the quality measures (association coefficient,
PPV, sensitivity, and specificity) associated with the optimal cutoff value for that
matrix and subset were recorded. Thus, N sets of quality measures were gener-
ated for each partition. For each iterate, the average of the values of each
measure over the N values was reported. 100 iterations yielded a distribution of
average quality measures for each set of parameters. To provide a comparison
with the 11/25 rule, we generated distributions of average quality measures by
partitioning the data set as described above, applying the 11/25 rule to each
subset and recording the averages for 100 partitions. We also use this analysis to
examine the modified charge rule (as suggested by Hoffman et al.) (21), in which
R or K at position 11, or K at position 25, predicts X4 virus. The distributions of
quality measures were compared using the Kruskal-Wallis test.

For a data set of given size, a small value of N (close to 2) provides the largest
validation set but the smallest training set and a large value of N (approaching
the size of the data set) focuses a large training set on a smaller validation
sample. In the former case, prediction reliability may suffer; in the latter, small
samples may increase variability in the quality scores. In the investigation of
sensitivity and specificity with the entire data set, we performed cross-validation
studies for a range of N values and found that variability was minimized and that
quality measures peaked around N � 10 (data not shown). We report N � 10
results here.

For the cross-validation study of X4 PPV, we wished to examine PPV over a
range of prevalence fractions that we believe spans the actual X4 prevalence in
the infected population. We chose the values for N so that at the lowest preva-
lence, the validation set would consist of a single X4 (or R5X4) V3 loop and a
number of R5 V3 loops. For each iterate, the X4/R5X4 and R5 sets were each
randomly divided into N groups. To guarantee a constant prevalence level, the
validation set for each group was created by sampling a given number of X4 and
R5 sequences with replacement from the ith group and the remaining groups
were pooled to create the scoring matrix. To examine a minimum X4 prevalence
of �2% according to this scheme, we required a partition size of N � 4 for the
X4/R5 data and N � 5 for the SI/NSI data.

Design of the composite predictor. Because sampling leads to variability in
scores for a given sequence, the optimal cutoff value for a matrix used to define
the predictor is also inherently variable. Sequences that have intermediate scores
are essentially randomly assigned an X4 or an R5 prediction according to the
optimal cutoff value calculated for a particular training set. To reduce this
ambiguity, we designed a predictor as follows. First, on the basis of performance
considerations (described in Results), we chose to score sequences using the
matrix calculated for the entire X4/R5 data set. We assigned an X4 prediction to
any score higher than the 95th-percentile of optimal cutoff values, i.e., any
sequence that scored higher than the optimal cutoff values for 95 of 100 boot-
strap-generated matrices. Similarly, we assigned an R5 prediction to any score
lower than the fifth percentile of optimal cutoff values. These two values are
referred to as the X4 and R5 cutoff values, respectively. The unassigned, inter-
mediate scores were then assigned a prediction based solely on whether they
possessed basic amino acid residues at either site 11 or site 25. We refer to this
predictor as the composite predictor.

Comparison with charge-based methods. The 11/25 method, in which a se-
quence is predicted to be X4 when it harbors arginine or lysine at V3 site 11 or
25, is a widely used method for sequence-based prediction of phenotype (15, 21,
39, 50). Hoffman et al. (21) also suggested the use of a modified 11/25 method in
which arginine at position 25 is disregarded in prediction. We compared PSSM
with an optimal cutoff value to these methods using cross-validation and evalu-
ated the composite predictor by applying all methods to the SI/NSI and ACS data
sets and calculating the reliability (i.e., the proportion of correctly predicted
sequences out of all predicted to be X4/SI), specificity (the proportion of actual
R5/NSI correctly predicted), and sensitivity (the proportion of actual X4/SI
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correctly predicted) of each method. The cross-validation procedure allowed us
to compare the methods statistically.

External validation. To examine the performance of the method with data not
used in the matrix formulation, we applied the composite predictor to the ACS
data set. We report reliability, sensitivity, and specificity for both the charge-
based and X4/R5-based composite methods. We also report quality measures for
the composite method as applied to the SI/NSI data set. Although the two
classifications do not exactly overlap, this is one way to uniformly compare the
methods (since the charge-based methods do not distinguish between the two
classifications).

In silico mutagenesis of training sequences. To examine whether changes at
sites 11 and 25 alone could substantially shift the PSSM score distribution of our
sample population and thus lead to appreciable changes in the predicted phe-
notypes, we sequentially and singly changed sites 11 and 25 to arginine and lysine
in the R5/NSI data, changed these sites to consensus (R5/NSI) residues in the
X4/SI data, and recalculated the score distributions.

Comparison of score distributions between coreceptor usage classes. We cal-
culated the score means and distributions for separate R5, R5X4, and X4 groups
of V3 sequences in the X4/R5 and ACS data sets. Statistical comparisons of the
distributions were performed using the Tukey-Kramer method as implemented
in the program JMP (SAS, Cary, N.C.).

Viral gene sequencing. Viral populations from subjects 4 and 10 (44) were
sampled and sequenced using previously described protocols (50). For subject 8
from the Shankarrappa et al. (50) study, we included sequences from nine
biologically cloned and phenotyped virus isolates sampled from PBMC at two
timepoints: 0.29 years after seroconversion, at which time only NSI or R5 virus
had been observed, and 5.45 years after seroconversion, the time of the first visit
at which SI/X4 virus had been observed. Isolation and phenotyping was per-
formed as described elsewhere (62).

Phylogenetic reconstruction and ancestral V3 loop estimation. We used data
from subjects 1, 2, 3, 5, 6, 7, 8, 9, and 11 (previously obtained by Shankarappa et
al.) (50) and additional sequences we derived from subjects 4 and 10 and from
biologically cloned viral isolates from subject 8 to generate phylogenetic trees of
env C2V5 sequences. Sequence editing and contig assembly were performed
using Sequencher software, version 3 (Gene Codes Corporation, Inc., Ann Ar-
bor, Mich.). Sequences were aligned using CLUSTALW (59) and then manually
edited. Phylogenetic analyses were performed using PAUP*, version 4.0b10 (56).
Phylogenetic trees were inferred by first estimating a neighbor-joining tree using
maximum likelihood distances and then swapping branches on this tree under
maximum likelihood using the subtree pruning and regrafting algorithm for
subjects 1, 2, 3, 5, 6, 7, 8, 9, and 11 and the nearest-neighbor interchange
algorithm for subjects 4 and 10 (56). Models of sequence evolution were esti-
mated under maximum likelihood using the general time-reversible model of
substitution with unequal base frequencies and among-site rate heterogeneity
(56). We used these trees as a basis for reconstructing putative ancestral V3 loop
sequences at each internal node. The PSSM score for each putative ancestor was
calculated. To visualize the evolutionary change of score within the phylogeny,
we used routines written in PERL and Mathematica (Wolfram Research, Cham-
paign, Ill.) to apply colors to branches and nodes that reflected the scores of the
predicted ancestors they represented.

Supplementary material. Supplementary figures accompanying this work can
be accessed at the URL http://ubik.microbiol.washington.edu/HIV/Jensen2003.

Nucleotide sequence accession numbers. The sequences discussed in this work
can be found in GenBank under accession numbers AF137629 to AF138163,
AF138166 to AF138263, AF138305 to AF138703, AF204402 to AF204670,
AY348333 to AY348528, AY348532 to AY348544, and AY449806 to AY450257.

RESULTS

Phenotype prediction. We used bootstrap estimates of sam-
pling variability in predictor performance as well as cross-
validation analysis to answer the following questions. (i) Would
a larger number of training sequences be likely to substantially
improve performance in predicting R5/NSI and X4/SI pheno-
type? (ii) Would the inclusion of multiple sequences from the
same patient improve performance? (iii) What cutoff values
should be used for the X4 and R5 cutoff values in the com-
posite predictor (see Materials and Methods)? (iv) How does
PSSM performance compare to that of charge rules, particu-
larly in light of the relative rarity of X4 viruses?

Figure 1 shows the results of the use of the association
coefficient to summarize the bootstrap variability analysis for
PSSM derived from the X4/R5 training data set and applied to
X4/R5 data (Fig. 1A) and SI/NSI data (Fig. 1B) as a measure

FIG. 1. Bootstrap analysis of R5/X4 data set PSSM. Error bars
delineate the 5th and 95th percentiles of the bootstrapped distribution
for the association coefficient. The numbers of sequences sampled to
produce matrices are indicated on the X axis. Diamonds represent
results for sequences guaranteed to be sampled from a different sub-
ject; squares represent results for sequences sampled from all data.
(A) Matrices produced by sampling X4/R5 data (X4/R5 matrices)
applied to X4/R5 data; (B) X4/R5 matrices applied to SI/NSI data;
(C) optimal cutoff value distribution for X4/R5 matrices (generated by
sampling the entire X4/R5 data set [213 sequences]) applied to the
combined data set. The boxes under the X axis indicate quartiles; error
bars indicate 5th and 95th percentiles, chosen as the R5 and X4 cutoff
values, respectively, for the composite predictor.
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of prediction performance. Similar general patterns were seen
when PSSM derived from the SI/NSI training data set were
used (see supplementary Fig. S1). With respect to whether
increasing the number of training sequences would improve
performance (question i), we found that the response of the
mean association coefficient to increasing sample sizes became
relatively flat after the sample size reached about 100 se-
quences for the SI/NSI data set, though the variability contin-
ued to decrease as more sequences were added (Fig. 1B). The
mean association continued to climb as sequences for the
R5/X4 data set were added, but the variability remained con-
stant and large. The results depicted in the graphs suggest that
(at least with the present X4:R5 proportion) substantial im-
provement in the performance of the PSSM method would
require the addition of a relatively large number of sequences
(�100) to the training sets. The addition of X4 sequences
alone (to bring their numbers in line with the R5 sequences)
might lead to greater improvement in the accuracy of results
than that suggested by the foregoing analysis (see below).

With respect to whether we are justified in including multi-
ple sequences from the same individual (question ii), we found
that the mean association was slightly better when all the
sequences are used than when only single sequences of either
phenotype from any given individual were used, although the
discrimination ability were not significantly different in either
case (Fig. 1A and B). Cross-validation also indicates that spec-
ificity and sensitivity are significantly higher, and variation is
reduced, when all the data are included (Fig. 2; for the differ-
ence between the results for all data versus that for unique
distributions, p � 0.0005 [Kruskal-Wallis test]). Recall that in
this procedure, the portion of the data set being evaluated is

not used to train the prediction method. Figure 1C addresses
the question of appropriate cutoff values (question iii). For the
PSSM derived from the entire X4/R5 data set, the 95th-per-
centile optimal cutoff value (X4 cutoff value) was 	2.88 and
the 5th-percentile optimal cutoff value (R5 cutoff value) was
	6.96. That is, the value for any V3 scoring higher than the X4
cutoff value would exceed the optimal cutoff value for 95% of
PSSM matrices generated by sampling and the value for any
V3 scoring lower than the R5 cutoff value would be lower than
the optimal cutoff value for 95% of PSSM matrices. In this
sense, such V3 sequences have significantly high or low scores
(relatively independent of the sequence sample used to create
the PSSM) and should be predicted X4 or R5, respectively.

The cross-validation results for the present data (Fig. 2)
suggest how the PSSM method with optimal cutoff value and
the charge-based method (including the 11/25 charge rule and
the modified 11/25 rule [in which K only at site 25 predicts X4])
compare as general approaches. When all data were used in
unaltered form (�20% R5X4 or X4, �80% R5), the levels of
both median specificity and sensitivity were significantly higher
for the PSSM method than for the standard rule (p �� 10	5).
The modified 11/25 rule method was significantly less sensitive
than the two other methods but was significantly more specific.
The medians and ranges for these values (sensitivity median,
0.51; sensitivity range, 0.50 to 0.54; specificity median, 0.95;
specificity range, 0.95 to 0.95) were comparable to those found
using a similar analysis of Hoffman et al. (21) (sensitivity me-
dian, 0.49; sensitivity range, 0.45 to 0.52; specificity median,
0.95; specificity range, 0.95 to 0.95).

Effects of varying X4 prevalence. We chose the range of X4
prevalence (proportion of infected individuals having X4 virus)
on the basis of the following observations. The standing natural
prevalence (in the absence of therapy) can be crudely esti-
mated with a simple model: suppose that HIV prevalence in a
population is stable; this approximates the situation in Europe
and the United States. Then, according to the model presented
in the Appendix, the equilibrium X4 prevalence is 
/(
 � �x)
where 
 is the rate of conversion from R5 to X4 virus per R5
individual per year and �x is the death rate of individuals
harboring X4 virus per year. According to Koot et al. (27), if SI
virus is considered equivalent to X4 virus, 
 is 4.6%/year for
individuals with CD4� counts of �500/�l and 8.0%/year for
those with counts of �500/�l. The diagnosed rate of AIDS in
the X4 category is estimated to be 38.8%/year (36). If we
approximated the death rate with the AIDS rate, since X4
lineages harbored by very ill individuals are likely to be dead in
the epidemiological sense (see comment in Appendix) the
steady-state natural prevalence of X4 would be between 10.6
and 17.1%. These estimates suggest the upper limit of preva-
lence that would be observed in cohorts of patients who are not
on therapy and have declining CD4� T-cell counts. Harrigan et
al. have recently used the PSSM method described here to
analyze baseline V3 consensus sequences (P. R. Harrigan,
W. W. Y. Dong, B. Yip, Z. L. Brumme, B. Wynhovenm, N.
Hoffman, R. Swanstrom, T. Mo, M. A. Jensen, J. I. Mullins,
R. S. Hogg, and J. Montaner, Abstr. 2nd Int. AIDS Soc. Conf.
HIV Pathogenesis and Treatment, Paris, France, abstr. 143,
2003) of 1,107 persons starting suppressive antiretroviral ther-
apy (interquartile CD4� counts, 130 to 420). Of these persons,
111 were predicted by the composite method to harbor X4

FIG. 2. Cross-validation comparison (using the X4/R5 data set) of
PSSM and charge-based methods. The partition size was 10 (see text
for a description of the method). All data, all sequences employed in
the PSSM analysis; Unique, single X4 and R5 sequences chosen from
patients in PSSM analysis; 11/25, 11/25 method; 11/25 mod, modified
charge method; Sens, sensitivity (with respect to X4 prediction); Spec,
specificity. Error bars are at points 1.5 times the interquartile range
from the box; outliers are shown as open circles.

13380 JENSEN ET AL. J. VIROL.



virus; thus, a rough estimate of actual prevalence would be 111

 89% reliability/1,107 � 8.9%. The result of this calculation
corroborates the lower of the estimates given above. This
group represents the population most relevant to a possible
diagnostic test.

On the basis of these considerations, we examined PSSM
predictive value for X4 prevalences from �2 to �10%. Cross-
validation results for PPV are shown in Fig. 3. The variance is
large and suggests again that more sequence and phenotype
data might improve the method. However, the PSSM distribu-
tions were significantly higher than those from the charge-
based methods at prevalences approaching the natural preva-
lence for both the X4/R5 and SI/NSI data sets (Kruskal-Wallis
P � 0.001; 7.4% prevalence and above in the X4/R5 set and
4.0% and above in SI/NSI set). PSSM did particularly well at
predicting SI virus at low levels of prevalence. The improve-
ment in X4 prediction was apparently due to an increase in
overall specificity as more X4 sequences are added, while im-
provement in SI prediction was due to increasing sensitivity
(supplementary Fig. S2).

These results also suggest that the most efficient way to
improve the PSSM, in terms of expanding the training set,
would be to add more X4 sequences.

PSSM for subsequent analyses. Since using all the se-
quences improved the statistical performance of the predictor,
we chose to use all sequences in a training set to derive the
PSSM. On the basis of the optimal cutoff value, the X4/R5-
derived matrix gave 83% reliability (PPV given the prevalence
in the data set in unaltered form) with the X4/R5 data and 89%
reliability with the SI/NSI data and the SI/NSI-derived matrix
gave 96% reliability with the SI/NSI data but only 61% reli-
ability with the X4/R5 data. Sensitivity and specificity results
were similar. Since this matrix performed better on the alter-
native data set and was based entirely on sequences of biolog-
ical clones of experimentally determined phenotype rather
than on samples of bulk viral isolates, we used the X4/R5
matrix as the basis of the composite predictor in the following
analyses. Further, scores of dual-usage (R5X4) viruses can be
considered separately from those of X4 and R5 viruses (both
matrices appear in supplementary Fig. S1). X4 and R5 cutoff
values for the composite predictor are shown in Fig. 1C. (The
composite predictor uses the 11/25 predictor for sequences
which score between the X4 and R5 cutoff values [see Mate-
rials and Methods]). The frequency distribution of scores for
the entire training set is shown in Fig. 4.

We compared the performance of the composite X4/R5-
based predictor to that of the 11/25 predictor for the SI/NSI
training set (see Materials and Methods) and the ACS data
(Table 1). The composite predictor (determined on the basis of
the X4/R5 data set) had intermediate sensitivity (84%; 11
samples miscalled SI out of 70 samples) and comparable spec-
ificity (96%; 7 miscalled NSI out of 187) to those seen with the
11/25 rule for the SI/NSI test set. The reliability (89%) for this
set was lower than that of the other two methods. This does not
contradict the cross-validation results, as those analyses con-
sidered PSSM performance within data sets of like virological
data. We do not know whether the miscalls were due to incor-
rect classification by the method or to the possibility that SI
phenotype of the given virus did not match its coreceptor
usage. For example, bulk isolates were used in some of the
SI/NSI assays. Such an isolate might contain mostly R5 virus
and yield an R5 V3 consensus sequence, but a small amount of
X4 virus in the isolate would infect the MT2 cell line and lead
to a positive SI assay. Length variants in the complete training
set were also considered in a separate analysis, since in the
simple way we handled gaps and insertions (i.e., gaps contrib-
uted a value of 0 to the score), some information contributed
to the score by the PSSM was lost at the gaps. However, the
results in Table 1 show that the use of this method allowed the
classification of these length variants as well as that of the typical
sequence. The reliability was better for this subset than for the
entire set, which suggests that deviation from the typical 35-ami-
no-acid length is frequently associated with CXCR4 usage. Both
prediction methods performed well with the ACS validation set.

Basic residues at sites 11 and 25 are strongly associated with
an X4/SI phenotype in subject-derived virus, as demonstrated
by the good performance of the charge-based predictors de-
scribed above. However, it does not necessarily follow that
positively charged mutations at those sites induce that pheno-
type in all sequence backgrounds or that mutations to un-
charged residues at those sites in X4 viruses cause a reversion
to the R5/NSI phenotype. Figure 5A shows the impact of
single-residue basic mutations at sites 11 and 25 on the distri-

FIG. 3. Cross-validation comparison (with various X4 or SI preva-
lence values) of PSSM and charge-based methods. (A) X4/R5 data set;
(B) SI/NSI data set. PPV, PPV with respect to X4; Prevalence, percent
X4 sequences in the validation subsets; 11/25, 11/25 method; 11/25
mod, modified charge method. Error bars are at points 1.5 times the
interquartile range from the box; outliers are shown as open circles.
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bution of PSSM scores of known R5/NSI V3 loops. Depending
upon the mutation, the composite predictor assigned between
8.2 and 38.1% of mutated sequences to the X4 class; the
baseline false-positive assignment was 1.7% (Fig. 5A). We also
note that 25K had a stronger effect on scores than 25R, cor-
roborating the effect noted by Hoffman et al. (21) that moti-
vated the modified 11/25 rule. Thus, many (but not the major-
ity) of the mutated sequences were likely to be X4 sequences
as predicted as a result of a basic amino acid substitution at
either of these two sites. On the other hand, single-residue
reversions of 11/25 mutations to R5/NSI consensus residues in
X4/SI sequences led to the loss of about half of the originally

predicted X4 sequences (i.e., from 76% to approximately 50%
of the sequences predicted). These results together suggest
that for many V3 backgrounds, basic changes at 11 or 25 are
neither necessary nor sufficient for a phenotype switch. Mu-
tagenesis at site 11 or 25 of known R5/NSI sequences yielded
no known X4/SI sequences in our data sets. Three X4/SI-11S
mutants and four X4/SI-25D mutants were found in the known
R5/NSI data set.

If single changes at 11 or 25 do not result in a change of
coreceptor usage in many backgrounds, then the virus must
accumulate multiple V3 loop substitutions to shift from exclu-
sive use of CCR5 to exclusive use of CXCR4, assuming that the

FIG. 4. Score distributions for all training sequences. Y axis, frequency within coreceptor usage class; X4/dual/SI, sequences associated with
CXCR4 usage or syncytium induction; R5/NSI, sequences associated with pure CXCR5 usage or inability to form syncytia; 11/25�, sequences
containing basic residues at site 11 and/or 25; 11/25	, sequences not containing basic residues at these sites. Vertical lines indicate R5 and X4 cutoff
values as described in the text. Note that this is not a typical frequency histogram but is a superposition of the R5/NSI and X4/SI frequency
histograms; the total area of the bars sums to 2. (The X4/SI subset is too small relative to the R5/NSI subset to be visualized easily as part of an
ordinary histogram.) The solid fractions of mixed bars indicate sequences correctly predicted by the canonical predictor; the fractions shaded light
and dark gray were incorrectly predicted.

TABLE 1. Performance of charged-based and composite predictors

Data set n (x � r)b

Results (%) by methoda

11/25 Modified 11/25 Composite

Sens Spec Rel Sens Spec Rel Sens Spec Rel

SI/NSI 257 (70 � 187) 90 96 90 76 98 95 84 96 89
Length variants alone 44 (25 � 19) 72 100 100 72 100 100 76 95 95
ACS 175 (81 � 94) 81 99 99 81 99 99 89 100 100

a For each data set and predictor, the specificity (Spec; proportion of true X4/R5X4/SI sequences correctly predicted by method), sensitivity (Sens; proportion of true
R5/NSI sequences predicted), and reliability (Rel; proportion of predicted X4/R5X4/SI sequences actually having that phenotype) are presented. Length variants (V3
sequences not having 35 amino acids) from the combined training set are also analyzed separately.

b Results represent the total number (n) of sequences (number of CXCR4-using or SI [x] and number of pure CCR5-using or NSI [r] sequences).
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scores correlated well with biological phenotype. Dual-usage
(R5X4) and dual-tropic (T-cell line and macrophage-infecting)
viruses are thought to represent evolutionary intermediates in
this shift (18, 53). If dual-usage V3 loops tended to have in-
termediate PSSM scores, this would support the evolutionary-
intermediate hypothesis and demonstrate that the PSSM score
can serve as a continuous measure of X4 evolution.

We compared the score distributions of the different phe-
notype classes in the X4/R5 and ACS data sets. In the ACS
(Fig. 6A), the score distribution of dual-usage virus was signif-
icantly different from and intermediate to those of pure R5 and
pure X4 virus (P � 0.001, Tukey-Kramer test). The high level
of significance may have been due in part to the fact that the
174 samples were obtained from four subjects, so that the
sequences were not statistically independent. In the X4/R5
training set, the dual-usage distribution was bimodal; 6 of 22
dual sequences scored higher than 6.8 and the remainder
scored lower than 0 (Fig. 6B). The distribution excluding the
six high-scoring dual-usage results differed from the other two
distributions (P � 0.01 [Tukey-Kramer test]). Thus, while
there was appreciable overlap of the score distributions, dual-
tropic viruses had, on average, intermediate PSSM scores.

Evolutionary reconstruction of PSSM scores and the X4 phe-
notype. We generated phylogenetic reconstructions of viral se-
quences for each of the MACS subjects evaluated in the Shan-
karappa et al. study (50) and for two additional subjects
(subjects 4 and 10) (44), and estimated and scored ancestral V3
loop sequences at each node in the phylogenies. Figure 7
displays three of viral phylogenies for the 11 subjects (trees for
all subjects can be found in supplementary Fig. S3 through
S10).

The subject 8 tree (Fig. 7A) places the sequences of subject-

derived biological clones in the context of the original se-
quences. The sequences of the clones clustered with other
plasma and PBMC-derived sequences obtained from samples
taken at the corresponding clinic visits. The R5 clones of the
later visit associated with a low-scoring cluster, while the dual-
tropic clones associated with a higher-scoring cluster. The two
clusters coexisted in the viral population. The scores of the
dual-tropic clones were identical (	7.74). This result is within
the central 50% of the distribution of dual scores shown in Fig.
6, though since the score is lower than the 5% cutoff value, they

FIG. 5. Impact of V3 loop site 11 and 25 mutations on PSSM score.
The results for V3 score distributions from known R5/NSI (A) and
X4/SI (B) viruses and the same sequences with substitutions at posi-
tions 11 and 25 are shown. Boxes indicate quartiles; error bars indicate
10th and 90th percentiles. Percentages indicate the proportions of
sequences predicted by the composite predictor to be CXCR4 users.

FIG. 6. PSSM score distributions of sequences with defined core-
ceptor usage. Boxes indicate quartiles; error bars indicate 10th and
90th percentiles. R5, R5X4, and X4 indicate viruses able to enter
coreceptor-transfected indicator cell lines expressing CCR5 only, both
CCR5 and CXCR4, or CXCR4 only. (A) ACS data, sequences from
the ACS (61). (B) Low R5X4, R5X4 sequences omitting six high-
scoring outliers. Differences in jittering data in the horizontal plane
account for the visual differences in data between R5X4 and low
R5X4; the same data are represented in each. Boxes represent inter-
quartile ranges, with the interior line at the median; error bars are
placed at the 10th and 90th percentiles.
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were predicted by the composite predictor to be R5. However,
these sequences contained a basic mutation at site 11 and a
three-residue insertion N terminal of the V3 crown. This find-
ing, together with the results predicted on the basis of the
length variants mentioned above, suggests that the 11/25 pre-
dictor is better for V3 loops longer than 35 amino acids. The
fact that these clones are dual tropic suggests that the associ-
ated clade at the top of the tree is able to use CXCR4.

The subject 7 and subject 1 trees (Figs. 7B and C) exemplify
two evolutionary patterns of high-scoring, putative X4 viruses.
In subject 7 (and subject 3) (see supplementary Fig. S4), mul-

tiple divergent lineages coexisted over much of the infection,
only one of which evolved high-scoring virus. Near the end of
infection, the high-scoring lineage died out, leaving preexisting
low-scoring viruses behind. For subject 1 (and for two lineages
in subject 2 [supplementary Fig. S3]), high-scoring viruses
evolved as an intermediate evolutionary stage. The coloration
of the tree highlights the reversion of the high-scoring popu-
lation to a low-scoring one caused by further mutational
changes rather than lineage replacement. In the remaining
individuals, high-scoring viruses either did not evolve or per-
sisted to the end of the infection or follow-up.

FIG. 7. Representative phylogenetic reconstructions for subjects (Subj) 8 (A), 7 (B), and 1 (C). Colors of tip symbols indicate the years after
seroconversion each sample was obtained. Colors of nodes and branches reflect PSSM scores of the reconstructed ancestors or the sample (tip)
V3 sequences; cooler colors represent lower values and warmer colors represent higher values, as indicated by the scale. Various extreme scores
among subjects were seen, so the color scales differ among the trees. For each tree, however, light green represents a value of 	5, approximately
intermediate between the R5 and X4 cutoff values. Branches are colored according to the score of the sequence of the branch’s right-hand node.
For subject 8 (A), filled triangle symbols on the tree represent sequences obtained from biological clones derived from the given time point.
Phenotypes of these clones are indicated by the callouts. Scale bars indicate genetic distances along branches.
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Figure 8 depicts the persistence of high- and low-scoring
lineages over infections in relation to disease and therapy mile-
stones. Dual-shaded bars indicate that the sequences at that
sampling time clustered into at least two monophyletic groups,
one whose most recent common ancestor scored higher than
	5 (the approximate midpoint between the R5 and X4 cutoff
values) and another whose ancestor scored below 	5. High-
scoring lineages arose in most individuals and were frequently
in competition with separate low-scoring lineages. They per-
sisted at least 1 year but often were ultimately lost from the
viral population. Phylogenies used in this graph are available in
the supplementary material.

DISCUSSION

The role X4 viruses play in HIV pathogenesis has been
elusive on several levels. Their presence clearly increases risk
of disease progression, but not every individual who progresses

appears to acquire this phenotype (26, 28). However, genotypic
analysis has suggested that their representation had been un-
derestimated (50) in the earlier biological studies; in particular,
X4 viruses may arise but not persist. The results of the present
study indicated that not all progressors develop X4 viruses
predicted by PSSM matrices (8 of 11 did) but did confirm their
transience in some individuals (4 of 11). There are strong
genetic determinants for CXCR4 usage that evidently are not
transmitted but evolve independently in a large fraction of
untreated individuals. The repeatability of this phenomenon is
striking in itself, as it represents repeated independent evolu-
tion to the same endpoint and suggests that the coreceptor
transition might follow a common evolutionary pathway in
many cases. However, no single set of mutations appears to
lead to coreceptor switching in every genetic background.

We explored whether it would be more fruitful to suppose
that certain mutations increase the probability that a given
virus is X4, with other influences such as the larger viral genetic
background also impinging on coreceptor usage. The perfor-
mance of our PSSM-based method can be interpreted in this
light. Empirically, the more X4-associated mutations that ap-
pear in a V3 loop the higher the score and the more likely that
V3 is correctly predicted to be associated with an X4 pheno-
type. The association of intermediate scores with an interme-
diate (or at least qualitatively distinct) phenotype, dual core-
ceptor usage, make a model of independent accumulation of
mutations leading to CXCR4 usage biologically plausible. Such
a model also predicts that although certain mutations (e.g.,
mutations at sites 11 and/or 25) may have disproportionate

FIG. 8. Coexistence of high- and low-scoring lineages. Solid black
stretches indicate that sequences representing low-scoring (�	5) an-
cestors alone were present at the indicated times; two-pattern (solid
and stippled) stretches indicate the coexistence of high (�	5)- and
low-scoring lineages; stippled stretches indicate the presence of high-
scoring lineages alone. The graph was devised on the basis of infer-
ences made by inspection of reconstructed phylogenies (supplemen-
tary Fig. S3 through S10). Inverted filled triangles indicate times of first
visits at which CD4� counts were �200/�l; open triangles indicate
timepoints of CD3� T-cell inflection (accelerated decline; see refer-
ence 17); crosses indicate deaths of subjects; H indicates initiation of
suppressive antiretroviral therapy. Hatched regions indicate time pe-
riods for which sequences were not available.

FIG. 7—Continued.
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influence on coreceptor usage, such mutations are not neces-
sary for coreceptor switching (provided V3 has accumulated
enough other mutations with smaller effect). Consistent with
this, the data contain the results for a number of high-scoring
CXCR4-using viruses that did not harbor 11/25 changes (Fig.
4). Sites 24 and 27, previously implicated as contributors to the
X4 phenotype, affect the PSSM score by 0.8 and 1.1 log-odds
units (50th and 80th percentiles over all V3 sites) on average,
while 11 and 25 contribute 1.5 and 1.2 log-odds units (95th and
90th percentiles) on average. Finally, the propensity to use
CXCR4 may not lead to the actual ability to use it in particular
circumstances; conversely, certain genetic backgrounds may
support CXCR4 usage in spite of an unlikely V3. The presence
of variability in scores within each usage class supports this
risk-based model of X4 genetics.

The mutational differences reflected in PSSM score variabil-
ity may account for some of the discrepancy between the re-
sults of phenotypic and genotypic studies of the frequency of
X4 development among progressing individuals. It is unlikely,
however, that this accounts for the entire difference. Genotypic
studies have often used basic mutations as predictors of
CXCR4 usage, but our study suggests that in the absence of
other X4 mutations, these mutations do not always confer a
high propensity to use CXCR4 (Fig. 5). Subject 6 virus had the
lowest mean scores, but this individual was nevertheless the
fastest progressor in the MACS set. The results of our reanal-
ysis indicate that he was unlikely to have harbored X4 variants,
yet a previous study reported finding one X4 sequence on the
basis of the presence of a basic residue at position 24 (50). This
is consistent with the idea that X4 virus is not always required
for progression to disease (11). Two of seven V3 sequences
sampled at 5.8 years after seroconversion for subject 11 had
basic residues at site 25 and were predicted by PSSM to represent
X4; however, these viruses did not give rise to a persistent high-
scoring lineage (supplementary Fig. S10). Subject 11 was a slow
progressor (and is now being treated with highly active antiretro-
viral therapy) (Fig. 8). Of two individuals not evaluated in a
previous study (50), subject 4 was a moderate progressor and did
develop viruses predicted to be X4 and subject 10 was a nonpro-
gressor and did not develop predicted X4 viruses.

The observation that the presence of biologically pheno-
typed SI virus is strongly associated with CD3� decline and
disease progression (33) suggests that the ability to detect X4
viruses early (or to predict their evolution) has clinical prog-
nostic value. Since (as we have shown for eight individuals
developing predicted X4 virus) PSSM scores tend to rise grad-
ually, in contrast to the relatively abrupt appearance of X4
virus in the blood, as detected by biological phenotyping (28,
30), it is unlikely that X4 virus arises and outgrows R5 rapidly
via single mutations. Monitoring the average score of subject
virus (via sequencing or less costly methods) can provide ad-
vance warning of X4 outgrowth before virus is actually able to
use CXCR4, which can in turn inform prognosis or treatment
decisions. In support of this, a recently presented prospective
study of 1,107 HIV-positive individuals starting suppressive
antiretroviral therapy showed that the presence of SI viruses at
the baseline (as predicted from consensus V3 sequences by
PSSM and 11/25 methods) was an independent predictor of
rapid CD4� T-cell decline and mortality on therapy (Harrigan
et al., 2nd Int. AIDS Soc. Conf. HIV Pathogenesis and Treat-

ment). Evolutionary analysis of serially sampled viral se-
quences might allow us to identify the order in which muta-
tions occur and highlight mutations that typically occur early in
the R5-X4 transition. A preliminary analysis of the mutational
pathways inferred for the individuals we studied suggests that
basic mutations at sites 11 and 25 (as well as basic changes ap-
pearing at site 32) consistently occur early in the evolution of
high-scoring lineages. The detection of these mutations in in-
fected individuals may indicate a high X4 risk going forward, even
when X4 virus is not yet present; larger-scale longitudinal se-
quencing studies are required to answer this question definitively.

While X4 virus generally develops once and relatively grad-
ually in an individual, as previously suggested by van ’t Wout et
al. (62), our phylogenetic analyses suggest that ultimately, it
can be lost in two different ways: either by being supplanted by
a preexisting population of R5 virus or by evolutionary rever-
sion to the R5 phenotype. In the former case, R5 virus lineages
from earlier in infection persist throughout infection, while in
the latter, early R5 lineages are extinguished. This suggests
that at least two qualitatively different types of R5 virus (or
host responses to R5 virus) can occur in vivo. This idea paral-
lels early observations (1, 13, 65) and a recent study (49)
suggesting that NSI virus late-growth characteristics are differ-
ent from those of the NSI virus that tends to initiate infection.
A persistent R5 population may have evolved more efficient
binding to the CCR5 receptor, as has been shown to occur with
in vitro-passaged virus under pressure from a small-molecule
CCR5 inhibitor (60), making it better able to exploit diminish-
ing resources. Reverted X4 lineages, on the other hand, might
retain the ability to use CXCR4 despite relatively low PSSM
scores. The selective forces that lead to either of these or other
outcomes will vary with host-specific factors but may also involve
differences in the viral genetic background. By providing recon-
structed amino acid sequences for the ancestral V3 sequences
(i.e., sequences at the internal nodes of the tree) that can be
expressed and used as reagents in in vitro experiments (4), phy-
logenetic analysis allows hypotheses such as these to be tested.

The PSSM score is a simple yet reliable method for predict-
ing viral phenotypes on the basis of the amino acid sequence of
the V3 loop of env. Such determinations are made on the basis
of an additive model of CXCR4-usage propensity that ignores
length variation and possible synergistic effects that certain
residues at multiple sites in cis can have on phenotypes. Nev-
ertheless, the method is robust with respect to these shortcom-
ings (Table 1) and as a predictor of CXCR4 usage performs in
a manner comparable to that of the neural network method
(42) (sensitivity, 75%; specificity, 94%), which does incorpo-
rate synergistic effects. This suggests that amino acid residues
at particular sites in V3 contribute (mostly independently) to
coreceptor usage regardless of their particular combination in
the haplotype. The PSSM method also has the advantage of
being simpler in concept and more transparent in its assump-
tions than other methods (apart from the charged-based
method) that have been previously employed (see Jensen and
van �t Wout [24] for a review of current methods). The PSSM
score is a bioinformatic tool, complementing biological pheno-
type determination, that can express the X4 potential of a
given V3 loop sequence in a graded way and for which inter-
mediate values appear to correspond well with the evolution of
viruses within individuals. As such, it may be useful as a basis
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of sequence-based clinical assays of within-host X4 outgrowth
and could allow longitudinal study of X4 evolution and disease
in large numbers of individuals without requiring extensive
cloning of primary viral isolates.

APPENDIX

Assume that in an epidemic, all new infections are caused by R5
viruses, and all X4 viruses result from within-individual HIV evolution.
A simple model of the average yearly dynamics of X4 and R5 virus in
an epidemic is then given by the following pair of equations:

X� � X � 
R � �xX (5)

R� � R � vS � �rR (6)

where X is the number of X4-harboring individuals, R is the number of
R5-harboring individuals, S is the number of susceptibles, all averaged
per year, the primed variables are the corresponding number in the
following year, v is the population rate of infection, 
 is the rate of
conversion from R5 to X4 virus within an individual per year, and �x
and �r are the rates of death in X4- and R5-harboring individuals,
respectively.

Assume that an epidemic is at steady-state, such that the numbers of
infected and susceptible individuals are unchanging over time at the
prevailing levels of transmission. Then S � Ŝ is unchanging, and the
steady-state number of X4-harboring individuals is found by setting X
� X� � X̂ and R � R� � R̂ in the above equations and solving. We find
that

X̂ �



�x
R̂ (7)

and the steady-state fraction of X4-harboring individuals is

X̂
X̂ � R̂

�




 � �x
(8)

In the text, since the severely ill are unlikely to be contributing to the
infection of susceptible individuals, we estimated X4 prevalence using
the AIDS rate, and not the death rate, of X4-harboring individuals.
However, when we use an estimate of X4 death rate (�x) from Kupfer
et al. (31) of 3.9%/yr, our estimate of X4 prevalence jumps to 54%.
This is within the often-quoted range of 50%-60% of individuals who
ultimately develop X4 virus, as assayed by phenotype testing, though
the subjects investigated in Kupfer et al. had a median CD4� T-cell
count of 120/�l, well below the clinical cutoff value for AIDS.

Note that all per-year estimates of rates were extrapolated assuming
a proportional decline per year. That is, when a death rate of R% over
t years is reported, then we estimated the per-year rate � as

� � 1 	 exp�ln(1 	 R)
t � (9)

rather than the simple R/t.
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