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Murine gammaherpesvirus 68 (MHV68 [also known as YHV-68]) is distinguished by its ability to replicate
to high titers in cultured cells, making it an excellent candidate for studying gammaherpesvirus virion
composition. Extracellular MHV68 virions were isolated, and abundant virion-associated proteins were iden-
tified by mass spectrometry. Five nucleocapsid protein homologues, the tegument protein homologue encoded
by open reading frame (ORF) 75¢, and envelope glycoproteins B and H were detected. In addition, gene
products from MHV68 ORF20, ORF24, ORF28, ORF45, ORF48, and ORF52 were identified in association with
virions, suggesting that these gammaherpesvirus genes are involved in the early phase of infection or virion

assembly and egress.

The herpesvirus virion is composed of an icosahedral nu-
cleocapsid surrounded by a proteinacious layer of tegument,
which in turn is enclosed by a glycoprotein-containing lipid
envelope (50). The structure and protein composition of the
nucleocapsid have been shown to be conserved among the
three subfamilies (a—, B—, and y—) of herpesviruses (11, 14,
62-64, 72, 74). The icosahedral nucleocapsid contains at least
four integral structural proteins (the major capsid protein,
triplex-1 protein, triplex-2 protein, and small capsid protein)
surrounding a core of viral DNA (11, 14, 27, 42, 56, 62, 72, 76).
The other components of the virion, the envelope and the
tegument in particular, are less well understood (38). The
envelope contains viral glycoproteins critical for virion binding,
entry, and signaling upon infection of a host cell (4, 15, 26, 34,
55, 67). The tegument is the electron-dense component of the
virion surrounding the capsid and interacting with the enve-
lope (14, 38, 75). While the tegument component of alphaher-
pesviruses and betaherpesviruses is known to contain a number
of gene products involved in assembly and egress of infectious
virus (38) or modulation of the host cell environment upon
initial infection (10, 13, 21, 25, 30, 40), little is known about the
protein composition of the gammaherpesvirus tegument nor
about the functions of gammaherpesvirus tegument proteins
immediately after infection of the cell.

Study of the functions of tegument proteins in the two hu-
man gammaherpesviruses, Epstein-Barr virus (EBV) and Ka-
posi’s sarcoma-associated herpesvirus (KSHV), is hampered
by the lack of cell culture systems capable of supporting pro-

* Corresponding author. Mailing address: Department of Molecular
and Medical Pharmacology, University of California at Los Angeles,
Los Angeles, CA 90095. Phone: (310) 794-5557. Fax: (310) 794-5123.
E-mail: rsun@mednet.ucla.edu.

ductive replication of these viruses. However, murine gamma-
herpesvirus 68 (MHV68, or YHV-68) is not constrained in this
manner, replicating to high titers in conventional tissue culture
systems. MHV68 is a model for studying de novo gammaher-
pesvirus infection and pathogenesis (16, 20, 36, 66, 73). The
virus is found in wild murid rodents and is capable of infecting
laboratory strains of mice (8, 39, 48). MHV68 establishes pro-
ductive infection in lung epithelia and a latent infection in
splenocytes, macrophages, dendritic cells, and lung epithelial
cells (23, 48, 57, 61, 69).

The MHV68S virion exhibits morphological similarity to the
virion organization of other gammaherpesviruses (35, 48, 59).
The viral genome encodes canonical capsid, tegument, and
glycoprotein homologues found in gammaherpesviruses (66).
The transcriptome of predicted MHV68 genes has been stud-
ied (3, 20, 36); however, the proteins encoded by most of these
genes have not yet been identified in infected cells or in asso-
ciation with virions. In addition, the functional roles of con-
served gammaherpesvirus virion proteins can be addressed by
mutagenesis of the corresponding viral genes (2). These fea-
tures make MHV68 an excellent model for studying gamma-
herpesvirus virion structure, composition, and assembly. How-
ever, these studies cannot proceed without a systematic
identification of the viral proteins associated with virion parti-
cles. Therefore, we set out to identify and characterize proteins
associated with the MHV68 virion.

Purification of extracellular MHV68. To obtain extracellular
MHYV-68 virions, 293T or NIH 3T3 cells were infected with
wild-type MHV68 at a multiplicity of infection of 0.1. Super-
natants were collected when cultures exhibited 90% cytopathic
effect and were cleared of large cellular debris twice by cen-
trifugation (1,000 X g, 15 min, 4°C). Extracellular virus was
pelleted by ultracentrifugation through a 5% sucrose cushion
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Purification Step Viral Titer
Extracellular 2.3£0.2X 107 pfu
Fraction 5 ~103pfu
Fraction 7 1.8£0.2X 108 pfu
Fraction 9 3.3£0.3X 108 pfu
D

FIG. 1. Purification of extracellular MHV68. (A) Nucleic acids ex-
tracted from MHV68 sucrose gradient fractions. Extracellular virus
was purified by 5 to 55% sucrose density gradient ultracentrifugation.
Numbers shown on top of the panel are fractions collected from top
(1) to bottom (13) of the gradient. Nucleic acids were extracted and
electrophoretically separated in a 0.75% agarose—Tris-acetate-EDTA
gel. (B) Southern blot analysis of extracellular virus. DNA shown in
panel A was transferred to a positively charged nylon membrane and
probed with random-primed [a**P]dCTP-labeled virus-specific probe
(a 760-bp PCR product of ORF67). + is intact viral genomic DNA.
(C) Infectivity of sucrose gradient-purified virus. BHK cell monolayers
infected with fractions 5, 7, or 9 were incubated in methylcellulose
overlay medium at 37°C in 5% CO, for 5 days, and numbers of PFU
were calculated. Plaque assays were performed twice. (D) Electron
cryomicrograph of MHV68 virions and enveloped capsid particles.
MHV68 particles from fraction 9 were embedded in vitreous ice and
recorded at 100 kV on a JEOL JEM1200 electron cryomicroscope at
magnification X30,000 at a dosage of 6 electrons/angstrom?. A repre-
sentative image is shown, with putative virions (with DNA) indicated
by an arrow (| ) and noninfectious enveloped particles (no DNA)
indicated by an arrowhead (>). Bar, 100 nm.

(65,000 X g, 1 h, 4°C). The pellet was resuspended in 50 mM
Tris (pH 7.5)-5 mM MnCl, and digested with 0.03 U of DNase
I (Invitrogen)/ul at 37°C for 30 min. Virus was then purified by
5 to 55% discontinuous sucrose density gradient ultracentrif-
ugation (25,000 X g, 4.5 h, 4°C) in an SW41Ti rotor (Beck-
man). Thirteen fractions were isolated from top to bottom of
the sucrose gradient. Three fractions (fractions 5, 7, and 9)
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contained visible bands of material. Nucleic acids extracted
from the gradient fractions (Fig. 1A) were tested for viral DNA
by Southern blotting with a PCR-generated probe to ORF67 in
the MHV-68 genome (Fig. 1B). Fractions 5 through 13 con-
tained elevated signals. Fractions 7 and 9 contained the highest
concentrations of viral DNA and were examined for the pres-
ence of infectious virus by plaque assay (Fig. 1C). Extracellular
virus input of 2.3 X 10”7 = 0.2 X 107 PFU showed an approx-
imately twofold loss of infectivity during purification. Fraction
7 contained on average 1.8 X 10° + 0.2 X 10° PFU, fraction 9
contained 3.3 X 10° = 0.3 X 10° PFU, while fraction 5 con-
tained approximately 10> PFU of infectious virus. An aggre-
gated pellet at the bottom of the ultracentrifuge tube con-
tained 8.0 X 10° = 2.4 X 10° PFU. These results are similar for
virus isolated from both NIH 3T3-infected and 293T-infected
cell media (data not shown). Infectivity was directly propor-
tional to viral DNA content in fractions 5, 7, and 9. This
indicates that extracellular virus is concentrated in fractions 7
and 9. Fractions 5, 7, and 9 were pelleted for further study of
virus particle and protein content.

MHYV68 virion morphology. Extracellular MHV68 particle
morphology was studied by electron cryomicroscopy, which
reveals the intact forms of the viral particles by transmission
projection without staining or dehydration (14, 63, 75). Two
predominant morphologies of particles are present in fractions
7 and 9 (Fig. 1D). Enveloped icosahedral capsids devoid of
visible viral DNA and containing only a low-density tegument
region (i.e., noninfectious enveloped particles) were present
with denser enveloped, tegumented nucleocapsids with char-
acteristic herpesvirus virion morphology (14, 50, 75), including
the “fingerprint” pattern of close-packed double-stranded
DNA (9, 74). While these particles were present in approxi-
mately equal ratios in fraction 7, fraction 9 contained predom-
inantly virions. A small number of heterogeneous particles
were also present, including naked capsids, which most likely
resulted from the loss of the viral envelope from virions or
noninfectious enveloped particles during purification. The ex-
istence of two or more kinds of enveloped extracellular parti-
cles has been documented for other herpesviruses, including
human cytomegalovirus, herpes simplex virus type 1 (HSV-1),
and pseudorabies virus (5, 29, 37).

Virion-associated fractions contain MHV68 virion proteins.
Proteins in fractions 7 and 9 were examined for the presence of
MHV-68 structural protein homologues and envelope glycop-
roteins. Proteins were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed
by Western blotting, using polyclonal antisera raised in rabbits
against bacterially expressed ORF26 (triplex-2/capsid protein
homologue) (66), ORF65/M9 (small capsid protein homo-
logue) (42, 66), or virion-associated glycoprotein-150, a prod-
uct of the M7 gene (59). ORF26, ORF65, and gp150 antigens
were found in both fractions (Fig. 2A) at molecular masses of
39, 26, and 130 to 150 kDa, respectively. The presence of
MHV68 capsid antigens and virion-associated glycoprotein is
in accordance with the electron cryomicroscopy observation
revealing enveloped viral particles in both fractions 7 and 9
(Fig. 1D). In contrast, fraction 5 showed only minimal levels of
the three antigens (data not shown). No signal was detected
upon reprobing the blot with monoclonal antibody against
actin (Sigma), excluding copurification of the abundant 42-kDa
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FIG. 2. Fractions 7 and 9 contain virion antigens. (A) Western blot
using polyclonal antiserum raised in rabbits against bacterially ex-
pressed and purified viral capsid proteins (ORF26, middle panel, and
ORFG65, lower panel) and envelope protein (gpl50, upper panel).
(B) Proteins from fraction 9 are separated on SDS-8% (left) or 15%
(right) PAGE and stained with SYPRO-Ruby (Molecular Probes).
Bands were excised, digested in sequence-grade modified trypsin, and
analyzed by liquid chromatography with tandem mass spectrometry.
Proteins matching the MHV68 proteome (A) correspond to Table 2
from high to low apparent molecular weight (mw); cellular protein
matches and unidentified bands are not marked.

cellular form of this protein with the virion-associated fractions
(not shown).

Identification of abundant virion-associated proteins by
mass spectrometry. Abundant MHV6S proteins were further
analyzed in the virion-associated fractions by mass spectrom-
etry. Fraction 9, which contains high levels of viral DNA, virion
antigens, and infectious virus, was selected for proteomic anal-
ysis. Bands containing proteins were excised individually from
a denaturing SDS-polyacrylamide gel (Fig. 2B) and digested
in-gel with sequence-grade modified trypsin (Promega), and
peptides were extracted for analysis by micro-liquid chroma-
tography with tandem mass spectrometry (LCMSMS) using an
ion-trap mass spectrometer (LCQ-DECA; ThermoFinnegan,
San Jose, Calif.) (54, 70). Fragment ionization was performed
on abundant peptides in each sample. LCMSMS-generated
peptide mass and sequence tag data were collected using Ex-
calibur software and then matched to the predicted MHV68
proteome using the program Sequest (Table 1). Of 23 promi-
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nent protein bands excised from the gel (Fig. 2B), 14 contained
peptides positively identifying proteins in the viral genome
(Table 2). Proteins predicted to be structural components of
the gammaherpesvirus capsid, tegument, and envelope as well
as several putative novel virion-associated proteins were
identified.

Homologues of capsid proteins. Five protein homologues to
the capsid proteins of other gammaherpesviruses were identi-
fied (1, 42, 66), including ORF26 (triplex-2/capsid), ORF62
(triplex-1/DNA maturation/capsid), ORF25 (major capsid pro-
tein), ORF65/M9 (small capsid protein), and ORF29 (DNA
packaging protein). Capsid proteins were detected in protein
bands approximately corresponding to the predicted molecular
masses of the polypeptides. For example, the major capsid
protein encoded by ORF25 (predicted mass, 153.2 kDa) was
found at approximately 160 kDa. Detection of peptides match-
ing the major gammaherpesvirus capsid protein homologues
by LCMSMS and detection of capsid proteins by Western
blotting at similar molecular masses, confirmed for ORF26
(detected at 39 kDa) and ORF65 (detected at 26 kDa) in Fig.
2A, validated the efficacy of mass spectrometry for identifying
other proteins associated with the MHV68 virion.

Tegument protein homologue. One tegument protein homo-
logue was identified in the virion-associated fraction. Peptides
matching ORF75¢c, one of three KSHV ORF75/FGARAT ho-
mologues in the MHV68 genome (51, 66), were detected in a
band close to the predicted mass of the full-length protein
(145.7 kDa). ORF75¢ possibly represents the most abundantly
packaged full-length ORF75 homologue in the MHV68 virion,
since ORF75c is the most highly expressed of the three ORF75
homologues in MHV68 (20). A herpesvirus saimiri ORF75
homologue, the gene 75/EILF1 protein, is a virion protein (12).

Homologues of envelope proteins. The MHV68 genome also
encodes a number of genes highly homologous to conserved
gammaherpesvirus glycoprotein genes thought to be associated
with the virion envelope (1, 6, 41, 43, 58, 66). These include
ORFS8 (glycoprotein B) and ORF22 (glycoprotein H). A band
excised from the SDS-polyacrylamide gel at approximately 88
kDa showed peptide matches to ORF8. KSHV gB is a virion
envelope-associated protein (6) implicated in integrin-recep-
tor-mediated signaling during virus entry (4). Previous study of
MHV68 virions did not detect glycoprotein B as a virion-
associated protein (58), although notably, the purification pro-
tocols used in this study and the previous study contain signif-
icant differences. Peptides matching ORF22 (glycoprotein H)
were detected at a molecular mass of 105 kDa. Glycoprotein H
is a virion-associated glycoprotein present in HSV-1 virions
and is essential for infectivity (24, 26). The identification of
putative MHV68 tegument and envelope homologues in the
virion-associated fraction demonstrates that some proteins lo-
calized to these virion compartments exist in sufficient quantity
to detect and identify by LCMSMS.

Novel virion-associated proteins. Several predicted MHV68
gene products identified as virion-associated proteins have not
been previously identified in the virions of gammaherpesvi-
ruses. These include ORF20, ORF24, ORF28, and ORF48
(Table 2). In addition, two unannotated proteins whose homo-
logues have been suggested to be virion-associated proteins in
other gammaherpesviruses, ORF45 (77) and ORF52 (53),
were identified. ORF20, containing a predicted N-terminal
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TABLE 2. Proteomic identification of MHV-68 virion-associated proteins®

Mass Predicted

e( )l(ff)s Z’ ;j Accg(s:mn pg}%ﬁit Predicted function (rﬁl]gs;) pggiigis Most confident peptide”

160 NP_044863  ORF25  Major capsid protein 1532 7 738-752/VSFYIGDELYDNQER

130 NP_044915  ORF75¢ Tegument/FGARAT 145.7 6 831-843/LTLAGTIFQQISK

105 NP_044860  ORF22  Glycoprotein H 82.9 3 374-382/FLSGVQIER
88 NP_044848  ORFS8 Glycoprotein B 96.6 4 638-661/TVELYSSTERKLASSVFDIESMFR
80 NP_044866 ORF29 DNA packaging 73.9 3 300-339/NTKCIYHKNKTITFQSKTHTMSDDVLIACVMTCYVMTTNK
48 NP_044882 ORF45  IRF7-binding homologue 224 4 1-9/MDPFKKPVR
45 NP_044858  ORF20  Fusion protein 28.3 2 111-144/VEGSNQLRDSAKALAVLAPVGTDPCRVTAHLIFK
42 NP_044900 ORF62  Triplex-1 (capsid) 42.7 8 247-266/LPVEQFMDFETTNTFHYTGR
39 NP_044864 ORF26  Triplex-2 (capsid) 33.4 2 152-166/ILMYNLYSNLLAAER
39 NP_044885 ORF48  Unknown 37.9 6 307-332/RLVAMVLGQNHSWLDGFLTDTIVTGK
38 NP_044862 ORF24  Unknown 82.9 4 104-133/IDTCTYVPVIYSFEQTDAHYDGMGPGKLR
28 NP_044882 ORF45  IRF7-binding homologue 22.4 3 190-199/TPAPISGNGK
26 NP_044889  ORF52  Unknown 14.8 2 79-95/AVTEQELTSLLQSLTLR
26 NP_044903 ORF65  Small capsid protein 19.9 4 30-51/DSIGKDPEEAPVPLLLHTCAVR
22 NP_044889  ORF52  Unknown 14.8 16 79-95/AVTEQELTSLLQSLTLR
22 NP_044903 ORF65  Small capsid protein 19.9 4 30-51/DSIGKDPEEAPVPLLLHTCAVR
15 NP_597855 ORF28  Unknown 8.5 3 59-72/AQIMGLPAQALLSR

“ For each band excised (at approximately the molecular mass listed) and digested, peptide masses and sequence data are matched to the predicted MHV68 proteome
using Sequest. Summary table of matches: NCBI accession number, predicted MHV68 gene product, function, and molecular mass. The number of matching peptides

and sequence of best matching peptide to predicted gene product are shown.
b Position/sequence.

domain homologous to HSV UL24 gene products (1), was
detected at approximately 45 kDa by SDS-PAGE. Mutation of
the HSV-1 UL24 gene impairs viral replication in tissue culture
and in the mouse eye (31), and the HSV-2 UL24 protein is
packaged into the HSV-2 virion (28). ORF24 encodes an un-
characterized gene product, detected in the virion-associated
fraction at 38 kDa. ORF24 encodes a protein with a C-terminal
domain with significant homology (36% identity) to the human
cytomegalovirus (HCMV) ULS7 protein family, whose func-
tion is unknown (1). ORF28 encodes a predicted 8.5-kDa gene
product containing a transmembrane domain, which was de-
tected at approximately 15 kDa in the virion-associated frac-
tion. The ORF28 protein is uncharacterized. A transcript in
the intergenic region between ORF27 and ORF29 of the
MHV68 genome is reported to be expressed with late kinetics
and is suggested to encode ORF28 (3). Peptides matching
ORF45 were found at approximately 48 and 28 kDa in fraction
9 virions. The ORF45 gene is expressed as an early-late viral
transcript, and the ORF45 protein is observed as a doublet at
approximately 48 and 51 kDa in infected cells (32). Peptides at
approximately 39 kDa matched to ORF48, encoding a 37.9-
kDa polypeptide of unknown function. KSHV ORF48 is ex-
pressed as an immediate-early transcript (79), encoding a pro-
tein with 23% sequence identity to the predicted MHV68
ORF48 protein (66) and 19% identity to the hypothetical EBV
BRREF2 protein (51). Peptides matching the primary gene
product encoded by ORF52 were found at 26 and 22 kDa.
ORF52 is a highly expressed late transcript suggested to en-
code a virion protein (3, 20). ORF52 encodes a protein with
unknown function, homologous to KSHV ORF52 (28% iden-
tity) and EBV BLRF2 (40% identity) (66). BLRF2 putatively
encodes the p21 protein component of the EBV viral capsid
antigen complex and is detected in EBV virions at 21 and 23
kDa (53). The identification of predicted viral proteins associ-
ated with the MHVG68 virion indicates that these proteins may
be involved in virion morphogenesis, structure, or function
during initial infection of the cell.

In order to examine the possibility of cellular proteins asso-

ciating with MHV68 virion fractions, LCMSMS peptide data
not positively identified by matching against the predicted
MHV68 proteome was used to search a database of mamma-
lian proteins using the program Sonar MS/MS (22). Six pep-
tides matched five cellular protein sequences with expectation
values (e) of <0.035, and in two cases they were consistent with
work on other herpesviruses. One peptide from approximately
40 kDa matched annexin I, and one matched annexin II. An-
nexin II has been reported to be associated with purified
HCMYV particles and to bind glycoprotein B (46, 47, 71). Two
peptides matching a cytoplasmic -actin homologue
(CAA27369) were identified at 28 kDa in fraction 9 virions. It
has been suggested that an immunologically distinct form of
cytoplasmic actin is packaged into the HCMYV virion (7). How-
ever, similar to the case with the HCMV-associated actin,
commercially available monoclonal antibody to cytoplasmic
actin (Sigma) does not recognize a protein at 28 kDa in
MHV68 virions (not shown). Two more cellular proteins were
identified by one match apiece: the hypothetical protein similar
to BR-1 (NP_062810) at 44 kDa and the endomembrane pro-
tein MP70 (NP_542123) at 40 kDa. Mass spectrometry data for
the remaining bands was of insufficient quality for positive
identification. This does not preclude the existence of other
viral or cellular components of the MHVG68 virion. The pres-
ence of host cell proteins associated with MHV68 virions may
provide insight into the pathway of virion egress, though the
functional roles of these proteins, if any, are speculative.
ORF4S5 is a virion-associated protein. The gene product of
MHV68 ORF45 was selected for further analysis as a putative
virion-associated protein. We have previously identified
MHV68 ORF45 as a gene important for viral replication. In-
hibition of MHV68 ORF45 by RNA interference leads to a
drastic reduction in the expression of lytic viral proteins and
reduced production of virus progeny (32). We sought to study
the association of ORF45 with MHV6S virions. Polyclonal
antisera raised in rabbits against the full-length ORF45 gene
product expressed in Escherichia coli detected a polypeptide in
the virion-associated fractions at approximately 48 kDa on a



13430 NOTES
Detergt.
mw S P \%
130 - | bon #ow | 0-gplS0
48 -- “ ‘ n o-ORF45
38 - ‘ “ a-ORF26

FIG. 3. ORF45 is a novel virion-associated protein partly resistant
to detergent (Detergt.) treatment. Virions (lane V, approximately
2,000 PFU, fraction 9) were incubated with Triton X-100 (2%) and
SDS (0.1%) for 30 min at 37°C and pelleted in a tabletop centrifuge at
23°C, 20,000 X g for 25 min. The supernatant (S) and pellet (P) were
removed, denatured in Laemmli buffer, and separated on an SDS-15%
polyacrylamide gel. Western blots were incubated with polyclonal an-
tisera to recombinant viral proteins: glycoprotein 150 (upper panel),
ORF45 (middle panel), and ORF26 (lower panel). mw, molecular
weight.

Western blot (Fig. 3, lane V). This molecular weight range
corresponds to one molecular weight (48,000) at which ORF45
is found by mass spectrometry analysis. Next, the sensitivity of
virion-associated ORF45 to detergent was examined. Virions
(2,000 PFU) from fraction 9 were treated with 2% Triton
X-100, 0.01% SDS, and 22.5 mM EDTA at 37°C for 30 min,
followed by 10 s of sonication and centrifugation (21,000 X g,
25 min, 23°C). Supernatant (detergent-sensitive) and pellet
(detergent-resistant) phases were collected for analysis by
Western blotting (Fig. 3, lanes S and P). The efficacy of this
technique was demonstrated by solubilization of envelope pro-
tein (gp150) but not capsid protein (ORF26). ORF45 protein
is partially solubilized, appearing in both detergent-sensitive
and detergent-resistant phases. This observation can be recon-
ciled by the hypothesis that an ORF45 gene product is pack-
aged into the virion tegument. Partial sensitivity of the gene
product to detergent implies that the ORF45 protein is bound
to the capsid but less strongly than an integral capsid protein
like ORF26. ORF45 is not as sensitive to detergent as envelope
glycoprotein (gp150), which is almost completely removed by
the detergent treatment. Thus, ORF45 may be associated with
both the capsid and envelope as a component of the tegument.
It has been recently suggested that KSHV ORF45 protein is a
tegument protein (77). KSHV ORF45 protein has 33% se-
quence identity to MHV68 ORF45 protein and has been re-
ported to interfere with interferon regulatory factor 7-medi-
ated signaling (78), suggesting that the protein plays a role in
modulation of innate immunity in infected cells. Experiments
are under way to study the functional role of MHV68 ORF45
as a component of the virion.

The apparent molecular mass distribution and relative abun-
dances of virion-associated polypeptides found in MHV68
(Fig. 2B) resembled that characterized in other gammaherpes-
viruses, including EBV (18, 19), herpesvirus saimiri (33),
KSHYV (42, 68), alcelaphine herpesviruses 1 and 2 (52), and
murine herpesvirus 72 (49). The existence of glycoproteins
with a high apparent mass and capsid proteins, particularly the
major capsid protein, were observed in a number of these
studies (6, 18, 19, 33, 42, 49, 68). However, the amino acid

J. VIROL.

sequences of most of the virion proteins were not defined for
these gammaherpesviruses. Using LCMSMS, we have identi-
fied a number of these proteins in MHV6S, including homo-
logues of capsid, tegument, and envelope proteins encoded in
other gammaherpesvirus genomes (1, 6, 12, 42, 45, 51, 66).
These include the structural components of the nucleocapsid
identified in KSHV, the ORF29 packaging protein homologue,
the putative tegument protein encoded by ORF75c, and gly-
coproteins B and H. We have also identified four proteins not
previously predicted to be associated with gammaherpesvirus
virions (ORF20, ORF24, ORF28, and ORF48), three of which
have not been annotated. We also detected ORF52 protein, a
homologue of a putative EBV virion protein of unknown func-
tion, and ORF45 protein in association with MHV68 virions.
The identification of conserved MHV68 proteins previously
not reported to be associated with the gammaherpesvirus
virion, as well as cellular proteins, indicates possible functions
of these proteins during the early stages of infection or in
virion maturation and egress. In addition, the determinants of
tissue tropism and the decision of whether to pursue a latent or
lytic course of infection are not well understood. MHV6S is
capable of infecting a number of tissues in the mouse, includ-
ing lymphocytes, lung and intestinal epithelial cells, vascular
endothelial cells, and several cell types in the brain (17, 44, 48,
60, 61, 65). Identification of virion components, particularly
tegument and envelope proteins which may modulate the in-
tracellular environment early in infection, is an essential step
for understanding gammaherpesvirus pathogenesis in vivo. De-
termining the functional roles of these proteins in MHV68
infection awaits future studies.
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