Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Aug 20;64(Pt 9):m1188. doi: 10.1107/S1600536808026366

Bis(2,1,3-benzoselenadiazole-κN)dichloridozinc(II)

Hoong-Kun Fun a,*, Annada C Maity b, Sibaprasad Maity b, Shyamaprosad Goswami b, Suchada Chantrapromma c,
PMCID: PMC2960704  PMID: 21201628

Abstract

In the title complex, [ZnCl2(C6H4N2Se)2], the ZnII center is tetra­coordinated by a Cl2N2 donor set in a distorted tetrahedral geometry. Some of the distortion from the ideal tetrahedral geometry might be ascribed to two agostic Z⋯H interactions The two 2,1,3-benzoselenadiazole ligands are each essentially planar and form a dihedral angle of 35.06 (9)°. An interesting feature of the crystal packing is the observation of short intermolecular contacts between Se and Se, Se and N, and N and N atoms. These arise as a result of three-center bridging of adjacent molecules into chains along the b axis. The crystal structure is stablilized by π–π inter­actions [minimum centroid–centroid distance = 3.5694 (18) Å].

Related literature

For related literature and applications of the 2,1,3-benzo­selenadiazole mol­ecule and its metal complexes, see, for example: Galet et al. (1994); Grivas (2000); Iwaoka & Tomoda (1994, 2000); Saiki et al. (1997); Zhou et al. (2005).graphic file with name e-64-m1188-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C6H4N2Se)2]

  • M r = 502.43

  • Triclinic, Inline graphic

  • a = 7.5593 (2) Å

  • b = 9.7269 (3) Å

  • c = 10.6083 (3) Å

  • α = 95.103 (1)°

  • β = 92.581 (1)°

  • γ = 101.713 (1)°

  • V = 759.15 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.76 mm−1

  • T = 297 (2) K

  • 0.48 × 0.32 × 0.30 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.141, T max = 0.236 (expected range = 0.079–0.132)

  • 17787 measured reflections

  • 4425 independent reflections

  • 3836 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.094

  • S = 1.06

  • 4425 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026366/tk2296sup1.cif

e-64-m1188-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026366/tk2296Isup2.hkl

e-64-m1188-Isup2.hkl (216.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected interatomic distances (Å).

Se1⋯Se2i 3.7002 (4)
Se1⋯N4i 2.893 (2)
Se2⋯N2ii 2.918 (2)
N2⋯N4i 2.882 (3)
Se1⋯Cl1 3.4111 (8)
Se2⋯Cl2 3.4192 (9)
Cl1⋯N1 3.293 (2)
Zn1⋯H2B 3.23
Zn1⋯H8B 3.26

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the DST [SR/S1/OC-13/2005], Government of India, for financial support. ACM and SM thank the Government of India for their fellowships. The authors also thank the Malaysian Government and Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Metal complexes of 2,1,3-benzoselenadiazole continue to attract the interest of inorganic chemists (e.g. Grivas, 2000). Organoselenium derivatives stabilized by non-bonded Se···N interactions (Galet et al., 1994); Iwaoka & Tomoda, 1994; 2000; Saiki et al., 1997) are also of interest because of their vital roles in many chemical phenomena, such as molecular recognition and molecular packing in crystal phases as well as due to their biological roles (Zhou et al., 2005). The reaction of 2,1,3-benzoselenadiazole with ZnCl2 results in the formation of the title zinc(II) complex (I).

The structure of (I) comprises a neutral ZnCl2L2 molecule (L= 2,1,3-benzoselenadiazole ligand), Fig. 1. The ZnII ion is tetra-coordinated by two Cl- ions and two N atoms derived from the L ligands. The L ligands are each essentially planar with the maximum deviation of 0.028 (2)Å being for atom N1 in one ligand and 0.044 (2) Å for the N3 atom in the other ligand. The dihedral angle between the their mean planes is 35.06 (9)°. The distorted tetrahedral geometry can be indicated by the bond angles subtended at Zn: N—Zn—N = 111.13 (9)°, Cl—Zn—Cl = 122.58 (4)°, and N—Zn—Cl in the range of 100.70 (6) - 110.81 (7)°. Some of the distortion from the ideal tetrahedral geometry might be ascribed to two agostic Zn···H interactions, Table 1.

The interesting feature of the crystal packing is the observation of short intermolecular contacts between Se and Se, Se and N, and N and N atoms (Table 1). These arise as a result of three-center bridging of adjacent molecules into chains along the b-axis, Fig. 2. The crystal is further stabilized by π–π interactions with the shortest of these being 3.5694 (18) Å for Cg(C7/C12/N4/Se2/N3)···Cg(C7–C12)i for i: -x, 2-y, -z.

Experimental

A slurry of 2,1,3-benzoselenadiazole (1 g, 5.4 mmol) and anhydrous zinc chloride (270 mg, 2.72 mmol) in dry methanol (15 ml) was heated at 343–353 K for 2 h. After completion of the reaction, the mixture was allowed to cool to room temperature and the precipitate (I) was collected by filtration. Recrystallization of (I) from 40% methanol in chloroform afforded a yellow microcrystalline solid (1.16 g, 85% yield).

Refinement

All H atoms were placed in calculated positions with C—H = 0.93 Å, and with Uiso=1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed along the c axis showing chains running along the [0 1 0] direction. Intermolecular contacts are shown as dashed lines (see Comment).

Crystal data

[ZnCl2(C6H4N2Se)2] Z = 2
Mr = 502.43 F000 = 480
Triclinic, P1 Dx = 2.198 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.5593 (2) Å Cell parameters from 4425 reflections
b = 9.7269 (3) Å θ = 1.9–30.0º
c = 10.6083 (3) Å µ = 6.76 mm1
α = 95.103 (1)º T = 297 (2) K
β = 92.581 (1)º Block, yellow
γ = 101.713 (1)º 0.48 × 0.32 × 0.30 mm
V = 759.15 (4) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4425 independent reflections
Radiation source: fine-focus sealed tube 3836 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.035
Detector resolution: 8.33 pixels mm-1 θmax = 30.0º
T = 297(2) K θmin = 1.9º
ω scans h = −10→10
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −13→13
Tmin = 0.141, Tmax = 0.236 l = −14→14
17787 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032   w = 1/[σ2(Fo2) + (0.0556P)2 + 0.3045P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094 (Δ/σ)max = 0.001
S = 1.06 Δρmax = 0.79 e Å3
4425 reflections Δρmin = −0.54 e Å3
191 parameters Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0238 (15)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.28675 (5) 0.75148 (3) 0.25160 (3) 0.04191 (10)
Se1 0.12303 (4) 0.41702 (3) 0.29459 (2) 0.04073 (9)
Se2 0.15677 (4) 1.04989 (3) 0.33867 (3) 0.04686 (10)
Cl1 0.27521 (13) 0.62664 (8) 0.06430 (7) 0.05663 (19)
Cl2 0.53270 (11) 0.90507 (8) 0.33168 (8) 0.05477 (18)
N1 0.2184 (3) 0.5929 (2) 0.3668 (2) 0.0382 (4)
N2 0.1617 (3) 0.3407 (2) 0.4366 (2) 0.0440 (5)
N3 0.0973 (3) 0.8770 (2) 0.2511 (2) 0.0423 (5)
N4 −0.0058 (3) 1.1149 (2) 0.2476 (2) 0.0439 (5)
C1 0.2687 (3) 0.5849 (3) 0.4871 (2) 0.0369 (5)
C2 0.3457 (4) 0.7016 (3) 0.5778 (3) 0.0484 (6)
H2B 0.3642 0.7937 0.5561 0.058*
C3 0.3908 (5) 0.6740 (4) 0.6958 (3) 0.0549 (7)
H3A 0.4396 0.7494 0.7558 0.066*
C4 0.3669 (4) 0.5338 (4) 0.7330 (3) 0.0529 (7)
H4B 0.4025 0.5203 0.8153 0.063*
C5 0.2933 (4) 0.4204 (3) 0.6502 (3) 0.0495 (6)
H5A 0.2780 0.3295 0.6747 0.059*
C6 0.2399 (4) 0.4432 (3) 0.5250 (2) 0.0385 (5)
C7 −0.0380 (4) 0.8768 (3) 0.1657 (2) 0.0391 (5)
C8 −0.1276 (4) 0.7592 (3) 0.0802 (3) 0.0453 (6)
H8A −0.0962 0.6717 0.0811 0.054*
C9 −0.2595 (4) 0.7790 (3) −0.0020 (3) 0.0495 (6)
H9A −0.3217 0.7025 −0.0564 0.059*
C10 −0.3070 (4) 0.9128 (4) −0.0086 (3) 0.0513 (7)
H10A −0.3962 0.9217 −0.0687 0.062*
C11 −0.2262 (4) 1.0266 (3) 0.0700 (3) 0.0448 (6)
H11A −0.2582 1.1133 0.0639 0.054*
C12 −0.0907 (4) 1.0119 (3) 0.1627 (2) 0.0393 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.05150 (19) 0.03211 (16) 0.04206 (17) 0.00843 (12) 0.00312 (13) 0.00397 (11)
Se1 0.04956 (16) 0.03208 (14) 0.03864 (14) 0.00715 (10) −0.00216 (10) −0.00116 (9)
Se2 0.05777 (18) 0.03321 (15) 0.04748 (16) 0.00941 (12) −0.00718 (12) −0.00210 (10)
Cl1 0.0774 (5) 0.0494 (4) 0.0440 (3) 0.0175 (4) 0.0075 (3) −0.0020 (3)
Cl2 0.0527 (4) 0.0431 (4) 0.0637 (4) 0.0004 (3) 0.0045 (3) 0.0012 (3)
N1 0.0460 (11) 0.0290 (9) 0.0388 (10) 0.0070 (8) 0.0016 (8) 0.0008 (8)
N2 0.0537 (13) 0.0324 (10) 0.0454 (11) 0.0082 (9) 0.0022 (10) 0.0035 (8)
N3 0.0533 (13) 0.0281 (9) 0.0442 (11) 0.0069 (9) 0.0002 (9) 0.0010 (8)
N4 0.0498 (12) 0.0323 (10) 0.0494 (12) 0.0090 (9) 0.0025 (10) 0.0020 (9)
C1 0.0375 (11) 0.0341 (11) 0.0383 (11) 0.0067 (9) 0.0021 (9) 0.0014 (9)
C2 0.0534 (15) 0.0393 (13) 0.0474 (14) 0.0017 (11) 0.0018 (12) −0.0048 (11)
C3 0.0552 (17) 0.0569 (18) 0.0453 (14) 0.0023 (14) −0.0042 (13) −0.0100 (13)
C4 0.0503 (16) 0.0693 (19) 0.0377 (13) 0.0110 (14) −0.0035 (11) 0.0038 (12)
C5 0.0568 (16) 0.0506 (15) 0.0433 (13) 0.0138 (13) 0.0006 (12) 0.0110 (12)
C6 0.0402 (12) 0.0366 (12) 0.0390 (11) 0.0084 (9) 0.0028 (9) 0.0043 (9)
C7 0.0423 (12) 0.0319 (11) 0.0413 (12) 0.0034 (9) 0.0053 (10) 0.0032 (9)
C8 0.0503 (15) 0.0334 (12) 0.0494 (14) 0.0038 (11) 0.0075 (12) −0.0019 (10)
C9 0.0450 (14) 0.0497 (15) 0.0477 (14) 0.0010 (12) 0.0041 (11) −0.0080 (12)
C10 0.0436 (14) 0.0647 (19) 0.0455 (14) 0.0127 (13) 0.0015 (11) 0.0025 (13)
C11 0.0437 (13) 0.0465 (14) 0.0464 (13) 0.0132 (11) 0.0058 (11) 0.0071 (11)
C12 0.0416 (12) 0.0340 (11) 0.0421 (12) 0.0066 (9) 0.0070 (10) 0.0032 (9)

Geometric parameters (Å, °)

Zn1—N1 2.052 (2) C3—C4 1.433 (5)
Zn1—N3 2.062 (2) C3—H3A 0.9300
Zn1—Cl2 2.2169 (8) C4—C5 1.353 (5)
Zn1—Cl1 2.2231 (8) C4—H4B 0.9300
Se1—N2 1.776 (2) C5—C6 1.420 (4)
Se1—N1 1.803 (2) C5—H5A 0.9300
Se2—N4 1.777 (2) C7—C8 1.427 (4)
Se2—N3 1.809 (2) C7—C12 1.451 (3)
N1—C1 1.328 (3) C8—C9 1.349 (4)
N2—C6 1.330 (3) C8—H8A 0.9300
N3—C7 1.335 (4) C9—C10 1.425 (4)
N4—C12 1.324 (4) C9—H9A 0.9300
C1—C2 1.428 (4) C10—C11 1.344 (4)
C1—C6 1.447 (3) C10—H10A 0.9300
C2—C3 1.347 (5) C11—C12 1.425 (4)
C2—H2B 0.9300 C11—H11A 0.9300
Se1···Se2i 3.7002 (4) Se2···Cl2 3.4192 (9)
Se1···N4i 2.893 (2) Cl1···N1 3.293 (2)
Se2···N2ii 2.918 (2) Zn1···H2B 3.23
N2···N4i 2.882 (3) Zn1···H8B 3.26
Se1···Cl1 3.4111 (8)
N1—Zn1—N3 111.13 (9) C5—C4—H4B 119.5
N1—Zn1—Cl2 110.81 (7) C3—C4—H4B 119.5
N3—Zn1—Cl2 101.44 (7) C4—C5—C6 118.6 (3)
N1—Zn1—Cl1 100.70 (6) C4—C5—H5A 120.7
N3—Zn1—Cl1 110.32 (7) C6—C5—H5A 120.7
Cl2—Zn1—Cl1 122.58 (4) N2—C6—C5 124.0 (2)
N2—Se1—N1 92.42 (10) N2—C6—C1 115.9 (2)
N4—Se2—N3 92.48 (11) C5—C6—C1 120.1 (2)
C1—N1—Se1 108.40 (16) N3—C7—C8 125.9 (2)
C1—N1—Zn1 130.93 (18) N3—C7—C12 114.2 (2)
Se1—N1—Zn1 118.64 (11) C8—C7—C12 119.9 (2)
C6—N2—Se1 108.54 (17) C9—C8—C7 117.9 (3)
C7—N3—Se2 108.30 (17) C9—C8—H8A 121.1
C7—N3—Zn1 129.73 (18) C7—C8—H8A 121.1
Se2—N3—Zn1 117.85 (13) C8—C9—C10 122.4 (3)
C12—N4—Se2 108.45 (18) C8—C9—H9A 118.8
N1—C1—C2 125.9 (2) C10—C9—H9A 118.8
N1—C1—C6 114.7 (2) C11—C10—C9 121.8 (3)
C2—C1—C6 119.4 (2) C11—C10—H10A 119.1
C3—C2—C1 118.0 (3) C9—C10—H10A 119.1
C3—C2—H2B 121.0 C10—C11—C12 118.8 (3)
C1—C2—H2B 121.0 C10—C11—H11A 120.6
C2—C3—C4 122.9 (3) C12—C11—H11A 120.6
C2—C3—H3A 118.6 N4—C12—C11 124.3 (2)
C4—C3—H3A 118.6 N4—C12—C7 116.5 (2)
C5—C4—C3 121.0 (3) C11—C12—C7 119.2 (2)
N2—Se1—N1—C1 −0.83 (19) C3—C4—C5—C6 0.0 (5)
N2—Se1—N1—Zn1 164.72 (14) Se1—N2—C6—C5 −178.8 (2)
N3—Zn1—N1—C1 −95.1 (2) Se1—N2—C6—C1 1.4 (3)
Cl2—Zn1—N1—C1 16.9 (2) C4—C5—C6—N2 −178.1 (3)
Cl1—Zn1—N1—C1 148.1 (2) C4—C5—C6—C1 1.6 (4)
N3—Zn1—N1—Se1 103.20 (13) N1—C1—C6—N2 −2.2 (3)
Cl2—Zn1—N1—Se1 −144.82 (10) C2—C1—C6—N2 177.7 (2)
Cl1—Zn1—N1—Se1 −13.67 (13) N1—C1—C6—C5 178.0 (2)
N1—Se1—N2—C6 −0.4 (2) C2—C1—C6—C5 −2.0 (4)
N4—Se2—N3—C7 −1.8 (2) Se2—N3—C7—C8 −178.1 (2)
N4—Se2—N3—Zn1 157.59 (14) Zn1—N3—C7—C8 25.8 (4)
N1—Zn1—N3—C7 −100.4 (2) Se2—N3—C7—C12 2.9 (3)
Cl2—Zn1—N3—C7 141.8 (2) Zn1—N3—C7—C12 −153.21 (19)
Cl1—Zn1—N3—C7 10.4 (3) N3—C7—C8—C9 −178.6 (3)
N1—Zn1—N3—Se2 105.33 (13) C12—C7—C8—C9 0.4 (4)
Cl2—Zn1—N3—Se2 −12.50 (13) C7—C8—C9—C10 2.1 (4)
Cl1—Zn1—N3—Se2 −143.86 (10) C8—C9—C10—C11 −2.1 (5)
N3—Se2—N4—C12 0.16 (19) C9—C10—C11—C12 −0.6 (4)
Se1—N1—C1—C2 −178.1 (2) Se2—N4—C12—C11 −177.8 (2)
Zn1—N1—C1—C2 18.7 (4) Se2—N4—C12—C7 1.5 (3)
Se1—N1—C1—C6 1.8 (3) C10—C11—C12—N4 −177.9 (3)
Zn1—N1—C1—C6 −161.37 (18) C10—C11—C12—C7 2.9 (4)
N1—C1—C2—C3 −179.3 (3) N3—C7—C12—N4 −3.1 (3)
C6—C1—C2—C3 0.8 (4) C8—C7—C12—N4 177.8 (2)
C1—C2—C3—C4 0.8 (5) N3—C7—C12—C11 176.2 (2)
C2—C3—C4—C5 −1.3 (5) C8—C7—C12—C11 −2.9 (4)

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2296).

References

  1. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Galet, V., Bernier, J.-L., Henichart, J.-P., Lesieur, D., Abadie, C., Rochette, L., Lindenbaum, A., Chalas, J., Faverie, J.-F. R., Pfeiffer, B. & Renard, P. (1994). J. Med. Chem.37, 2903–2911. [DOI] [PubMed]
  3. Grivas, S. (2000). Curr. Org. Chem., 4, 707–726.
  4. Iwaoka, M. & Tomoda, S. (1994). J. Am. Chem. Soc.116, 2557–2561.
  5. Iwaoka, M. & Tomoda, S. (2000). Top. Curr. Chem., 208, 55–80.
  6. Saiki, T., Goto, K. & Okazaki, R. (1997). Angew. Chem. Int. Ed.36, 2223–2224.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  9. Zhou, A. J., Zheng, S. L., Fang, Y. & Tong, M. L. (2005). Inorg. Chem.44, 4457–4459. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026366/tk2296sup1.cif

e-64-m1188-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026366/tk2296Isup2.hkl

e-64-m1188-Isup2.hkl (216.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES