Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 23;64(Pt 5):m689–m690. doi: 10.1107/S1600536808010647

Bis­(2-amino-6-methyl­pyridinium) tetra­bromido­cuprate(II)

Rawhi H Al-Far a,*, Basem Fares Ali b, Salim F Haddad c
PMCID: PMC2961314  PMID: 21202225

Abstract

In the crystal structure of the title compound, (C6H9N2)2[CuBr4], the geometry around the Cu atom is inter­mediate between tetra­hedral (Td) and square planar (D4h). Each [CuBr4]2− anion is connected non-symmetrically to four surrounding cations through N—H⋯X (pyridine and amine proton) hydrogen bonds, forming chains of the ladder-type running parallel to the crystallographic b axis. These layers are further connected by means of offset face-to-face inter­actions (parallel to the a axis), giving a three-dimensional network. Cation π–π stacking [centroid separations of 3.69 (9) and 3.71 (1) Å] and Br⋯aryl inter­actions [3.72 (2) and 4.04 (6) Å] are present in the crystal structure. There are no inter­molecular Br⋯Br inter­actions.

Related literature

For related literature, see: Al-Far & Ali (2007a ,b ); Ali & Al-Far (2007, 2008); Allen et al. (1987, 1997); Desiraju & Steiner (1999); Dolling et al. (2001); Haddad et al. (2006); Hunter (1994); Panunto et al. (1987); Raithby et al. (2000); Robinson et al. (2000); Luque et al. (2001).graphic file with name e-64-0m689-scheme1.jpg

Experimental

Crystal data

  • (C6H9N2)2[CuBr4]

  • M r = 601.45

  • Triclinic, Inline graphic

  • a = 7.9238 (9) Å

  • b = 8.2521 (11) Å

  • c = 15.2916 (18) Å

  • α = 78.472 (11)°

  • β = 82.839 (10)°

  • γ = 89.947 (14)°

  • V = 971.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.35 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Bruker, 1996)T min = 0.199, T max = 0.392

  • 4381 measured reflections

  • 3567 independent reflections

  • 2018 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.153

  • S = 1.00

  • 3567 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010647/at2561sup1.cif

e-64-0m689-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010647/at2561Isup2.hkl

e-64-0m689-Isup2.hkl (174.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Br1—Cu1 2.3848 (14)
Cu1—Br2 2.3575 (16)
Cu1—Br4 2.3713 (14)
Cu1—Br3 2.3765 (16)
Br2—Cu1—Br4 101.27 (6)
Br2—Cu1—Br3 132.23 (7)
Br4—Cu1—Br3 100.99 (6)
Br2—Cu1—Br1 98.36 (6)
Br4—Cu1—Br1 129.74 (7)
Br3—Cu1—Br1 98.93 (6)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br3i 0.86 2.47 3.324 (7) 172
N8—H8⋯Br1 0.86 2.52 3.367 (8) 170
N9—H9B⋯Br4ii 0.86 2.64 3.487 (10) 168
N2—H2B⋯Br2iii 0.86 2.73 3.547 (9) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Al al-Bayt University and Al-Balqa’a Applied University are thanked for financial support.

supplementary crystallographic information

Comment

Non-covalent interactions play an important role in organizing structural units in both natural and artificial systems. They exercise important effects on the organization and properties of many materials in areas such as biology (Hunter 1994; Desiraju & Steiner 1999), crystal engineering (see for example: Allen et al.,1997; Dolling et al., 2001) and material science (Panunto et al., 1987; Robinson et al., 2000). The interactions governing the crystal organization are expected to affect the packing and then the specific properties of solids. In connection with ongoing studies (Ali & Al-Far, 2008; Ali & Al-Far, 2007; Al-Far & Ali, 2007a,b) of the structural aspects of halo-metal anion salts, we herein report the crystal structure of title compound (I) along with its crystal supramolecularity.

The asymmetric unit in (I) contains one anion and two cations (Fig. 1). The Cu—Br distances are similar, but Cu—Br2 that is engaged in longest hydrogen bonding is shorter than the others (Table 2). The Cu—Br bond distances fall in the range of bond distances reported previously for compounds containing Cu—Br anions (Luque et al., 2001; Raithby et al., 2000; Haddad et al., 2006). The bond angles are present in two distinguished sets. The first contains four angles in the range 98.36 (6) - 101.27 (6)° which are much lower than the other set which contains two angles 129.74 (7) and 132.23 (7)°. Accordingly the geometry of CuBr42- anion is an intermediate between regular tetrahedral (Td) and square planar (D4h) (Table 2).

The cation bond lengths and angles are within expected range (Allen et al. 1987), with the cations (type A contains N1 and type B contains N8) being of course planar.

In the structure (Fig. 2), each anion is connected nonsymmetrically to four cations interacting via N—H···Br and HN—H···Br hydrogen bonding, Table 3, forming chains of the ladder type run approximately parallel to the crystallographic b-axis. The cations type A represnt the rungs while both cations type B and anions represent the rails of a ladder (Fig. 3).

There are no Br···Br interactions were observed (shortest being 4.6651 (17) Å). Cations π···π stacking (in a-ditrection) is observed, with significant ones being X1A···X1A [2 - x, 2 - y, 2 - z] and X1B···X1B [- x, 1 - y, 1 - z] of 3.69 (9) and 3.71 (1), respectively. Also Br···aryl interactions present by the unusually short Br(1) [-x, 2 - y, 1 - z]···X1B contact of 3.72 (2) Å and the longer Br(3)···X1A of 4.04 (6) Å contact.

Experimental

To a warm solution of 2-amino-6-methylpyridine (2 mmol) dissolved in 10 ml absolute ethanol acidified with 3 ml 60% HBr, CuBr2 (1 mmol) dissolved in 10 ml absolute ethanol was added. The resulting solution was then treated with 2 ml of Br2 (l). The mixture was refluxed for 2 h. The mixture was then allowed to stand and evaporate slowly at room temperature. In two days time, block blue crystals were formed and filtered (yield, 86.5%). A single-crystal suitable for diffraction measurements were chosen and used for data collection.

Refinement

H atoms bound to carbon and nitrogen were placed at idealized positions [C—H = 0.93 and 0.96 Å and N—H = 0.86 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 or 1.5 Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

A view of the asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Anion···cation intermolecular interactions between one anion and four surrounding cations. N—H···Br—Cu intermolecular interactions are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding omitted for clarity.

Fig. 3.

Fig. 3.

A packing diagram of (I), shows chains of the ladder type run approximately parallel to the crystallographic b-axis. Hydrogen atoms omitted for clarity.

Crystal data

(C6H9N2)2[CuBr4] Z = 2
Mr = 601.45 F000 = 574
Triclinic, P1 Dx = 2.056 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.9238 (9) Å Cell parameters from 298 reflections
b = 8.2521 (11) Å θ = 2.2–27.5º
c = 15.2916 (18) Å µ = 9.35 mm1
α = 78.472 (11)º T = 293 (2) K
β = 82.839 (10)º Block, blue
γ = 89.947 (14)º 0.20 × 0.15 × 0.10 mm
V = 971.8 (2) Å3

Data collection

Bruker P4 diffractometer 3567 independent reflections
Radiation source: fine-focus sealed tube 2018 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.053
Detector resolution: 3 pixels mm-1 θmax = 25.5º
T = 293(2) K θmin = 2.5º
ω scans h = −9→1
Absorption correction: ψ scan(PROGRAM; REF (YEAR) k = −9→9
Tmin = 0.199, Tmax = 0.392 l = −18→18
4381 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058 H-atom parameters constrained
wR(F2) = 0.153   w = 1/[σ2(Fo2) + (0.0724P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
3567 reflections Δρmax = 0.57 e Å3
190 parameters Δρmin = −0.65 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.18757 (14) 0.94944 (11) 0.69574 (7) 0.0597 (3)
Cu1 0.32354 (14) 0.69646 (13) 0.74711 (8) 0.0442 (3)
N1 0.6876 (10) 1.0718 (9) 1.0416 (6) 0.052 (2)
H1 0.6292 1.1120 1.0832 0.062*
Br2 0.08231 (15) 0.54289 (13) 0.82710 (9) 0.0745 (4)
N2 0.6864 (13) 0.8282 (10) 1.1440 (6) 0.074 (3)
H2A 0.6268 0.8750 1.1825 0.089*
H2B 0.7143 0.7266 1.1591 0.089*
C2 0.7347 (13) 0.9116 (12) 1.0624 (7) 0.052 (3)
Br3 0.56567 (13) 0.80573 (15) 0.79499 (8) 0.0679 (4)
C3 0.8257 (13) 0.8462 (13) 0.9938 (8) 0.060 (3)
H3 0.8594 0.7368 1.0049 0.072*
Br4 0.45192 (14) 0.50445 (13) 0.66438 (8) 0.0650 (4)
C4 0.8653 (14) 0.9439 (17) 0.9100 (8) 0.073 (4)
H4 0.9239 0.9006 0.8636 0.087*
C5 0.8171 (15) 1.1093 (15) 0.8947 (7) 0.070 (3)
H5 0.8487 1.1761 0.8384 0.084*
C6 0.7270 (14) 1.1742 (12) 0.9585 (7) 0.058 (3)
C7 0.6683 (17) 1.3493 (13) 0.9503 (9) 0.089 (4)
H7C 0.7028 1.4097 0.8902 0.134*
H7B 0.7180 1.4007 0.9923 0.134*
H7A 0.5465 1.3491 0.9630 0.134*
N8 0.0896 (10) 0.7845 (9) 0.5235 (5) 0.049 (2)
H8 0.1279 0.8242 0.5653 0.059*
C9 −0.0722 (12) 0.7230 (11) 0.5402 (7) 0.049 (2)
N9 −0.1600 (12) 0.7226 (11) 0.6204 (7) 0.080 (3)
H9A −0.1137 0.7608 0.6603 0.095*
H9B −0.2629 0.6841 0.6322 0.095*
C10 −0.1360 (13) 0.6650 (11) 0.4711 (8) 0.057 (3)
H10 −0.2473 0.6239 0.4788 0.068*
C11 −0.0343 (14) 0.6690 (12) 0.3923 (8) 0.057 (3)
H11 −0.0771 0.6302 0.3461 0.069*
C12 0.1301 (15) 0.7289 (12) 0.3794 (7) 0.062 (3)
H12 0.1968 0.7290 0.3249 0.074*
C13 0.1985 (13) 0.7888 (11) 0.4451 (7) 0.052 (3)
C14 0.3706 (14) 0.8601 (14) 0.4410 (8) 0.075 (3)
H14A 0.3823 0.8923 0.4969 0.112*
H14B 0.3878 0.9553 0.3929 0.112*
H14C 0.4538 0.7792 0.4306 0.112*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0758 (8) 0.0456 (6) 0.0583 (7) 0.0137 (5) −0.0121 (6) −0.0101 (5)
Cu1 0.0410 (7) 0.0451 (6) 0.0453 (7) 0.0029 (5) 0.0001 (5) −0.0096 (5)
N1 0.049 (5) 0.058 (5) 0.050 (6) −0.003 (4) 0.005 (4) −0.023 (4)
Br2 0.0557 (7) 0.0607 (7) 0.0916 (10) −0.0022 (5) 0.0223 (7) 0.0021 (6)
N2 0.116 (9) 0.060 (5) 0.045 (6) 0.010 (5) −0.009 (6) −0.003 (5)
C2 0.067 (7) 0.050 (6) 0.046 (7) 0.015 (5) −0.013 (6) −0.018 (5)
Br3 0.0443 (6) 0.1028 (9) 0.0670 (8) −0.0010 (6) −0.0037 (6) −0.0441 (7)
C3 0.052 (7) 0.067 (7) 0.071 (9) 0.000 (5) −0.013 (6) −0.034 (7)
Br4 0.0553 (7) 0.0640 (7) 0.0793 (9) 0.0006 (5) 0.0101 (6) −0.0345 (6)
C4 0.050 (7) 0.125 (11) 0.061 (9) 0.010 (7) −0.010 (6) −0.060 (8)
C5 0.076 (8) 0.100 (9) 0.035 (7) 0.001 (7) −0.010 (6) −0.013 (6)
C6 0.063 (7) 0.063 (6) 0.044 (7) −0.002 (5) −0.010 (6) −0.003 (5)
C7 0.091 (10) 0.069 (8) 0.098 (11) 0.009 (7) 0.000 (8) 0.001 (7)
N8 0.050 (5) 0.055 (5) 0.045 (5) 0.008 (4) −0.009 (4) −0.014 (4)
C9 0.037 (6) 0.049 (5) 0.059 (7) 0.009 (4) −0.002 (5) −0.010 (5)
N9 0.058 (6) 0.108 (8) 0.080 (8) −0.007 (5) 0.009 (6) −0.048 (6)
C10 0.048 (6) 0.053 (6) 0.069 (8) 0.010 (5) −0.020 (6) −0.001 (6)
C11 0.057 (7) 0.070 (7) 0.049 (7) 0.007 (6) −0.022 (6) −0.011 (5)
C12 0.079 (9) 0.070 (7) 0.035 (6) 0.017 (6) −0.005 (6) −0.005 (5)
C13 0.055 (6) 0.042 (5) 0.053 (7) 0.003 (5) 0.002 (6) 0.001 (5)
C14 0.050 (7) 0.091 (8) 0.075 (9) −0.006 (6) 0.008 (6) −0.006 (7)

Geometric parameters (Å, °)

Br1—Cu1 2.3848 (14) C7—H7B 0.9600
Cu1—Br2 2.3575 (16) C7—H7A 0.9600
Cu1—Br4 2.3713 (14) N8—C9 1.355 (12)
Cu1—Br3 2.3765 (16) N8—C13 1.382 (12)
N1—C2 1.360 (11) N8—H8 0.8600
N1—C6 1.377 (13) C9—N9 1.331 (13)
N1—H1 0.8600 C9—C10 1.391 (14)
N2—C2 1.310 (13) N9—H9A 0.8600
N2—H2A 0.8600 N9—H9B 0.8600
N2—H2B 0.8600 C10—C11 1.359 (14)
C2—C3 1.396 (13) C10—H10 0.9300
C3—C4 1.371 (16) C11—C12 1.370 (15)
C3—H3 0.9300 C11—H11 0.9300
C4—C5 1.399 (15) C12—C13 1.371 (14)
C4—H4 0.9300 C12—H12 0.9300
C5—C6 1.335 (14) C13—C14 1.475 (14)
C5—H5 0.9300 C14—H14A 0.9600
C6—C7 1.504 (13) C14—H14B 0.9600
C7—H7C 0.9600 C14—H14C 0.9600
Br2—Cu1—Br4 101.27 (6) C6—C7—H7A 109.5
Br2—Cu1—Br3 132.23 (7) H7C—C7—H7A 109.5
Br4—Cu1—Br3 100.99 (6) H7B—C7—H7A 109.5
Br2—Cu1—Br1 98.36 (6) C9—N8—C13 125.5 (9)
Br4—Cu1—Br1 129.74 (7) C9—N8—H8 117.2
Br3—Cu1—Br1 98.93 (6) C13—N8—H8 117.2
C2—N1—C6 124.6 (8) N9—C9—N8 118.6 (10)
C2—N1—H1 117.7 N9—C9—C10 124.3 (10)
C6—N1—H1 117.7 N8—C9—C10 117.1 (9)
C2—N2—H2A 120.0 C9—N9—H9A 120.0
C2—N2—H2B 120.0 C9—N9—H9B 120.0
H2A—N2—H2B 120.0 H9A—N9—H9B 120.0
N2—C2—N1 117.9 (9) C11—C10—C9 119.4 (10)
N2—C2—C3 124.8 (9) C11—C10—H10 120.3
N1—C2—C3 117.3 (10) C9—C10—H10 120.3
C4—C3—C2 119.8 (10) C10—C11—C12 121.3 (10)
C4—C3—H3 120.1 C10—C11—H11 119.4
C2—C3—H3 120.1 C12—C11—H11 119.4
C3—C4—C5 119.5 (10) C11—C12—C13 121.6 (10)
C3—C4—H4 120.3 C11—C12—H12 119.2
C5—C4—H4 120.3 C13—C12—H12 119.2
C6—C5—C4 122.0 (11) C12—C13—N8 115.1 (10)
C6—C5—H5 119.0 C12—C13—C14 128.1 (11)
C4—C5—H5 119.0 N8—C13—C14 116.8 (10)
C5—C6—N1 116.8 (10) C13—C14—H14A 109.5
C5—C6—C7 126.9 (11) C13—C14—H14B 109.5
N1—C6—C7 116.3 (9) H14A—C14—H14B 109.5
C6—C7—H7C 109.5 C13—C14—H14C 109.5
C6—C7—H7B 109.5 H14A—C14—H14C 109.5
H7C—C7—H7B 109.5 H14B—C14—H14C 109.5
C6—N1—C2—N2 −179.2 (10) C13—N8—C9—N9 177.8 (9)
C6—N1—C2—C3 −1.6 (15) C13—N8—C9—C10 −2.5 (13)
N2—C2—C3—C4 178.1 (11) N9—C9—C10—C11 −179.0 (10)
N1—C2—C3—C4 0.7 (15) N8—C9—C10—C11 1.4 (13)
C2—C3—C4—C5 1.4 (16) C9—C10—C11—C12 0.1 (15)
C3—C4—C5—C6 −2.8 (17) C10—C11—C12—C13 −0.6 (16)
C4—C5—C6—N1 1.9 (17) C11—C12—C13—N8 −0.3 (14)
C4—C5—C6—C7 179.9 (11) C11—C12—C13—C14 −178.6 (10)
C2—N1—C6—C5 0.3 (16) C9—N8—C13—C12 2.0 (14)
C2—N1—C6—C7 −177.9 (9) C9—N8—C13—C14 −179.5 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···Br3i 0.86 2.47 3.324 (7) 172
N8—H8···Br1 0.86 2.52 3.367 (8) 170
N9—H9B···Br4ii 0.86 2.64 3.487 (10) 168
N2—H2B···Br2iii 0.86 2.73 3.547 (9) 158

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2561).

References

  1. Al-Far, R. & Ali, B. F. (2007a). Acta Cryst. C63, m137–m139. [DOI] [PubMed]
  2. Al-Far, R. & Ali, B. F. (2007b). J. Chem. Crystallogr 37, 333–341.
  3. Ali, B. F. & Al-Far, R. (2007). Acta Cryst. C63, m451–m453. [DOI] [PubMed]
  4. Ali, B. F. & Al-Far, R. (2008). J. Chem. Crystallogr In the press.
  5. Allen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc.119, 3477–3480.
  6. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  7. Bruker (1996). XSCANS Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond Oxford University Press.
  9. Dolling, B., Gillon, A. L., Orpen, A. G., Starbuck, J. & Wang, X.-M. (2001). Chem. Commun. pp. 567–568.
  10. Haddad, S. F., AlDaamen, M. A. & Willett, R. D. (2006). Inorg. Chim. Acta, 359, 424–432.
  11. Hunter, C. A. (1994). Chem. Soc. Rev.2, 101–109.
  12. Luque, A., Sertucha, J., Castillo, O. & Román, P. (2001). New J. Chem.25, 1208–1214.
  13. Panunto, T. W., Urbanczyk-Lipkowska, Z., Johnson, R. & Etter, M. C. (1987). J. Am. Chem. Soc.109, 7786–7797.
  14. Raithby, P. R., Shields, G. P., Allen, F. H. & Motherwell, W. D. S. (2000). Acta Cryst. B56, 444–454. [DOI] [PubMed]
  15. Robinson, J. M. A., Philp, D., Harris, K. D. M. & Kariuki, B. M. (2000). New J. Chem.10, 799–806.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010647/at2561sup1.cif

e-64-0m689-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010647/at2561Isup2.hkl

e-64-0m689-Isup2.hkl (174.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES