Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 19;64(Pt 7):o1285. doi: 10.1107/S1600536808017571

1,4-Bis(4-pyridylsulfanylmeth­yl)benzene

Suk-Hee Moon a, Ki-Min Park b,*
PMCID: PMC2961669  PMID: 21202916

Abstract

In the title compound, C18H16N2S2, a crystallographic inversion centre lies at the centre of the benzene ring, and the two terminal 4-mercaptopyridyl groups adopt an anti geometry. Each benzene ring makes a dihedral angle of 55.4 (1)° with the plane of the benzene fragment. The crystal structure is stabilized by C—H⋯π inter­actions between a benzene H atom and a pyridyl ring of a neighbouring mol­ecule. In addition, the crystal structure exhibits inter­molecular C—H⋯N inter­actions.

Related literature

For details of the preparation and related structures of 1,4-bis­(2-pyridyl-sulfanylmeth­yl)benezene derivatives, see: Atherton et al. (1999); McMorran & Steel (2003); For the structures of Co(II) and Ag (I) complexes of 1,4-bis­(2-pyridylsulfanylmeth­yl)benezene, see: Hartshorn & Steel (1998). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-o1285-scheme1.jpg

Experimental

Crystal data

  • C18H16N2S2

  • M r = 324.45

  • Monoclinic, Inline graphic

  • a = 7.145 (1) Å

  • b = 6.1667 (8) Å

  • c = 17.954 (2) Å

  • β = 90.391 (3)°

  • V = 791.03 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 298 (2) K

  • 0.35 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 4706 measured reflections

  • 1717 independent reflections

  • 893 reflections with I > 2σ(I)

  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.121

  • S = 0.96

  • 1717 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017571/lx2058sup1.cif

e-64-o1285-sup1.cif (14.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017571/lx2058Isup2.hkl

e-64-o1285-Isup2.hkl (84.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of N1/C1/C2/C3/C5 pyridyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1i 0.93 2.61 3.484 (4) 158
C8—H8⋯Cgii 0.93 2.77 3.560 (4) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–359-C00019).

supplementary crystallographic information

Comment

The reaction of α,α'-dibromo-p-xylene with 4-mercaptopyridine afforded the title compound, in which the crystallographic inversion centre lies on the centre of the benzene ring. Therefore, the asymmetric unit consists of a half of molecule and the two 4-mercaptopyridyl groups adopt an anti-geometry (Fig. 1). All bond lengths and angles show normal value (Allen et al., 1987). The dihedral angle between the plane of benzene and the terminal pyridyl ring is 55.4 (1)°, which is smaller than those of related structures (Atherton et al., 1999; Hartshorn & Steel, 1998).

The crystal packing (Fig. 2) is stabilized by C—H···π interactions between a benzene H atom and the pyridyl ring of neighbouring molecule, with a C8—H8···Cg separation of 2.77 Å (Fig. 2 and Table 1; Cg is the centroid of N1/C1/C2/C3/C5 pyridyl ring, symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by intermolecular C—H···N hydrogen bonds between a pyridyl H atom and the pyridine N atom of neighbouring molecule, with a C1—H1···N1i separation of 2.61 Å (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Experimental

The title compound was prepared by the reaction of α,α'-dibromo-p-xylene with 4-mercaptopyridine in acetonitrile according to reported methods (Atherton et al., 1999; McMorran & Steel, 2003). Single crystal suitable for X-ray analysis were obtained by evaporation of a solution of the title compound in acetonitrile.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso =1.2Ueq(C) for aromatic and 0.97 Å, Uiso = 1.2Ueq(C) for CH2 atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. [Symmetry code: (i) -x + 1, -y + 1, -z + 1]

Fig. 2.

Fig. 2.

C—H···π and C—H···N interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x-1, y+1/2, -z+3/2; (iii) -x-1, y-1/2, -z+3/2; (iv) x+2, -y+1/2, z-1/2; (v) x+2, -y+3/2, z-1/2; (vi) -x, -y, -z+1;(vii) x+1, y+1, z.]

Crystal data

C18H16N2S2 F000 = 340
Mr = 324.45 Dx = 1.362 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4706 reflections
a = 7.145 (1) Å θ = 2.3–27.0º
b = 6.1667 (8) Å µ = 0.33 mm1
c = 17.954 (2) Å T = 298 (2) K
β = 90.391 (3)º Plate, colourless
V = 791.03 (18) Å3 0.35 × 0.20 × 0.15 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 893 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.074
Monochromator: graphite θmax = 27.0º
T = 298(2) K θmin = 2.3º
φ and ω scans h = −9→7
Absorption correction: none k = −7→7
4706 measured reflections l = −21→22
1717 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.121   w = 1/[σ2(Fo2) + (0.0516P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max = 0.001
1717 reflections Δρmax = 0.32 e Å3
100 parameters Δρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.01648 (12) 0.27398 (12) 0.56971 (5) 0.0651 (3)
N1 −0.2740 (4) −0.1917 (5) 0.72963 (13) 0.0677 (8)
C1 −0.3414 (4) 0.0057 (6) 0.71296 (17) 0.0632 (9)
H1 −0.4533 0.0486 0.7346 0.076*
C2 −0.2540 (4) 0.1478 (5) 0.66562 (16) 0.0587 (8)
H2 −0.3052 0.2842 0.6570 0.070*
C3 −0.0897 (4) 0.0876 (4) 0.63081 (15) 0.0501 (7)
C4 −0.0215 (4) −0.1175 (5) 0.64684 (15) 0.0561 (8)
H4 0.0875 −0.1672 0.6245 0.067*
C5 −0.1161 (5) −0.2463 (5) 0.69596 (15) 0.0593 (8)
H5 −0.0660 −0.3822 0.7065 0.071*
C6 0.2555 (4) 0.1735 (4) 0.56468 (16) 0.0620 (9)
H6A 0.3003 0.1373 0.6143 0.074*
H6B 0.2588 0.0430 0.5345 0.074*
C7 0.3805 (4) 0.3443 (4) 0.53083 (15) 0.0493 (7)
C8 0.4517 (4) 0.3178 (4) 0.46027 (16) 0.0537 (8)
H8 0.4190 0.1961 0.4325 0.064*
C9 0.4290 (4) 0.5300 (5) 0.56966 (15) 0.0554 (8)
H9 0.3801 0.5526 0.6169 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0593 (5) 0.0556 (5) 0.0806 (6) 0.0050 (4) 0.0101 (4) 0.0205 (4)
N1 0.0699 (19) 0.0749 (19) 0.0584 (16) −0.0087 (15) 0.0095 (14) 0.0062 (14)
C1 0.051 (2) 0.079 (2) 0.059 (2) −0.0008 (18) 0.0091 (16) −0.0047 (18)
C2 0.057 (2) 0.0542 (18) 0.065 (2) 0.0081 (16) −0.0015 (16) −0.0020 (17)
C3 0.0483 (19) 0.0475 (17) 0.0546 (17) −0.0018 (14) −0.0016 (14) −0.0025 (14)
C4 0.059 (2) 0.0474 (17) 0.0616 (19) 0.0032 (15) 0.0121 (16) −0.0005 (16)
C5 0.066 (2) 0.0527 (18) 0.0595 (19) 0.0022 (17) −0.0004 (17) 0.0065 (15)
C6 0.056 (2) 0.0492 (17) 0.081 (2) 0.0074 (14) 0.0188 (17) 0.0112 (16)
C7 0.0475 (18) 0.0459 (17) 0.0546 (18) 0.0039 (13) 0.0049 (15) 0.0074 (14)
C8 0.0600 (19) 0.0493 (17) 0.0519 (18) −0.0006 (15) 0.0007 (15) −0.0040 (15)
C9 0.060 (2) 0.0618 (19) 0.0443 (17) 0.0053 (17) 0.0105 (15) 0.0009 (15)

Geometric parameters (Å, °)

S1—C3 1.764 (3) C5—H5 0.9300
S1—C6 1.820 (3) C6—C7 1.511 (4)
N1—C5 1.327 (4) C6—H6A 0.9700
N1—C1 1.342 (4) C6—H6B 0.9700
C1—C2 1.374 (4) C7—C8 1.378 (3)
C1—H1 0.9300 C7—C9 1.383 (4)
C2—C3 1.385 (4) C8—C9i 1.379 (4)
C2—H2 0.9300 C8—H8 0.9300
C3—C4 1.385 (4) C9—C8i 1.379 (4)
C4—C5 1.369 (4) C9—H9 0.9300
C4—H4 0.9300
C3—S1—C6 102.52 (13) C4—C5—H5 117.6
C5—N1—C1 115.7 (3) C7—C6—S1 109.87 (18)
N1—C1—C2 123.6 (3) C7—C6—H6A 109.7
N1—C1—H1 118.2 S1—C6—H6A 109.7
C2—C1—H1 118.2 C7—C6—H6B 109.7
C1—C2—C3 119.9 (3) S1—C6—H6B 109.7
C1—C2—H2 120.1 H6A—C6—H6B 108.2
C3—C2—H2 120.1 C8—C7—C9 117.9 (3)
C2—C3—C4 116.7 (3) C8—C7—C6 120.7 (3)
C2—C3—S1 118.4 (2) C9—C7—C6 121.4 (3)
C4—C3—S1 124.9 (2) C7—C8—C9i 120.7 (3)
C5—C4—C3 119.3 (3) C7—C8—H8 119.7
C5—C4—H4 120.4 C9i—C8—H8 119.7
C3—C4—H4 120.4 C8i—C9—C7 121.3 (3)
N1—C5—C4 124.8 (3) C8i—C9—H9 119.3
N1—C5—H5 117.6 C7—C9—H9 119.3
C5—N1—C1—C2 −1.4 (4) C3—C4—C5—N1 1.2 (5)
N1—C1—C2—C3 1.6 (5) C3—S1—C6—C7 −165.4 (2)
C1—C2—C3—C4 −0.4 (4) S1—C6—C7—C8 −109.1 (3)
C1—C2—C3—S1 179.4 (2) S1—C6—C7—C9 71.7 (3)
C6—S1—C3—C2 160.6 (2) C9—C7—C8—C9i 1.5 (5)
C6—S1—C3—C4 −19.7 (3) C6—C7—C8—C9i −177.7 (2)
C2—C3—C4—C5 −0.9 (4) C8—C7—C9—C8i −1.5 (5)
S1—C3—C4—C5 179.3 (2) C6—C7—C9—C8i 177.7 (3)
C1—N1—C5—C4 −0.1 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···N1ii 0.93 2.61 3.484 (4) 158
C8—H8···Cgiii 0.93 2.77 3.560 (4) 143

Symmetry codes: (ii) −x−1, y+1/2, −z+3/2; (iii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2058).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.
  2. Atherton, Z., Goodgame, D. M. L., Menzer, S. & Williams, D. J. (1999). Polyhedron, 18, 273–279.
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2000). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Hartshorn, C. M. & Steel, P. J. (1998). J. Chem. Soc. Dalton Trans. pp. 3935–3940.
  6. McMorran, D. A. & Steel, P. J. (2003). Tetrahedron, 59, 3701–3707.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017571/lx2058sup1.cif

e-64-o1285-sup1.cif (14.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017571/lx2058Isup2.hkl

e-64-o1285-Isup2.hkl (84.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES