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Abstract

Metabolic and vascular factors have been invoked in the
pathogenesis of diabetic neuropathy but their interrela-
tionships are poorly understood. Both aldose reductase
inhibitors and vasodilators improve nerve conduction
velocity, blood flow, and (Na',K+)-ATPase activity in the
streptozotocin diabetic rat, implying a metabolic-vascu-
lar interaction. NADPH is an obligate cofactor for both
aldose reductase and nitric oxide synthase such that acti-
vation of aldose reductase by hyperglycemia could limit
nitric oxide synthesis by cofactor competition, producing
vasoconstriction, ischemia, and slowing of nerve conduc-
tion. In accordance with this construct, N-nitro-L-argi-
nine methyl ester, a competitive inhibitor of nitric oxide
synthase reversed the increased nerve conduction veloc-
ity afforded by aldose reductase inhibitor treatment in
the acutely diabetic rat without affecting the attendant
correction of nerve sorbitol and myo-inositol. With pro-
longed administration, N-nitro-L-arginine methyl ester
fully reproduced the nerve conduction slowing and
(Na',K+)-ATPase impairment characteristic of diabetes.
Thus the aldose reductase-inhibitor-sensitive component
of conduction slowing and the reduced (Na+,K+)-ATPase
activity in the diabetic rat may reflect in part impaired
nitric oxide activity, thus comprising a dual metabolic-
ischemic pathogenesis. (J. Clin. Invest. 1994. 94:853-
859.) Key words: diabetic neuropathy * microvascular
complications * diabetic complications * peripheral neu-
ropathy * nitric oxide synthase inhibition

Introduction

Both metabolic (1-3) and vascular (4-7) defects have been
implicated in the pathogenesis of diabetic neuropathy, but the
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interrelationships among them are poorly understood. In the
diabetic rat, metabolism of excess glucose to sorbitol by aldose
reductase (AR2)' and then to fructose by sorbitol dehydrogenase
(SDH) has been associated with reciprocal depletion of myo-
inositol (MI) and other intracellular organic osmolytes (8), al-
tered phosphoinositide metabolism, and reduced (Na+,K+)-AT-
Pase activity in nerve; these metabolic derangements, alone or
in concert, have been invoked in the aldose reductase inhibitor
(ARI)-sensitive slowing of nerve conduction velocity (NCV) in
acute experimental (1, 9) and (by analogy) human diabetes (2,
10). Because AR2 and SDH are NADPH:NADP+ and
NAD+:NADH coupled, respectively, glucose-induced flux
through these enzymes is associated with increased oxidative
stress (secondary to diminished NADPH-dependent reduction
of glutathione) (11) and a putative state of "pseudohypoxia"
(manifested by a shift in the lactate/pyruvate ratio) (12). Endo-
neurial blood flow is also diminished shortly after the induction
of diabetes in the rat, and vasodilator treatment or pharmaco-
logic adrenergic sympathectomy increases endoneurial blood
flow and NCV, implicating neural ischemia as well in the early
and reversible slowing of NCV (5-7, 13). Moreover, ARI treat-
ment, which restores nerve osmolyte levels (1-3, 8) and NCV
(1, 2, 8, 13), also corrects decreased endoneurial blood flow
(13) and impaired "endothelium-dependent" aortic relaxation
(thought to be nitric oxide-[NO]-mediated) in chronically strep-
tozotocin-diabetic (STZ-D) rats (14). Indeed several studies
now suggest that microvascular disregulation in diabetes may
primarily involve the "endothelial-dependent" NO-mediated
component (15-18). Finally, NO synthase (NOS) inhibition
reproduces the glucose-induced decrease (19) in (Na+,K+)-
ATPase activity in isolated rabbit aortic rings in vitro (20).
These observations together provide the framework for a poten-
tial novel metabolic-vascular pathogenetic matrix for diabetic
neuropathy involving AR2, NO, and (Na+,K+)-ATPase.

The present studies were therefore undertaken to identify a
potential role for AR2-related defects in NO synthesis or action
in the pathogenesis of the reduced NCV and/or nerve (Na+,K+)-
ATPase activity in the STZ-D rat model. These studies assessed
the ability of a specific NOS inhibitor, N-nitro-L-arginine methyl
ester (L-NAME), an arginine analog that competes for the en-

1. Abbreviations used in this paper: AGE, advanced glycosylation end-
products; AR2, aldose reductase; ARI, aldose reductase inhibitor; D,
diabetic; L-NAME, N-nitro-L-arginine methyl ester; MI, myo-inositol;
NCV, nerve conduction velocity; ND, nondiabetic; NO, nitric oxide;
NOS, nitric oxide synthase; SPB, systolic blood pressure; SDH, sorbitol
dehydrogenase; STZ-D, streptozotocin-diabetic.
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Table L Comparison of Body Weight and Plasma Glucose in Rats at the Start of the Study and the Conclusion at 21 Days

ND ND:L-NAME D D:L-NAME D:ARI D:L-NAME + ARI
(n = 15) (n = 7) (n = 12) (n = 16) (n = 11) (n = 11)

Baseline weight (g) 274±10 244±6 254±7 261±7 254±6 245±7
Day 21 weight (g) 379±10 345±7 271±14* 270±12* 269±11* 269±8*
Day 2 glucose (mmoIl) 6.6±0.4 7.1±0.2 25.6±1.6* 25.4±1.3* 25.1±1.7* 25.6±1.4*
Day 21 glucose (mmolIl) 8.2±0.4 7.4±0.4 28.9±1.3* 27.8±1.4* 24.9±1.0* 25.6±1.6*

Data given as mean±SE. * P < 0.01 vs control and control + L-NAME. (ND) Nondiabetic control; (ND:L-NAME) nondiabetic L-NAME-treated;
(D) diabetic; (D:L-NAME) diabetic L-NAME-treated; (D:ARI) diabetic ARI-treated; (D:L-NAME + ARI) diabetic L-NAME-plus ARI-treated.

zyme's substrate binding site (21-24), and effectively inhibits
both constitutive and the inducible NOS (21-24), to block the
salutary effect of ARI treatment on NCV in the STZ-D rat, and
to reproduce the slowed NCV of STZ-D in nondiabetic rats. L-
NAME was able to prevent the beneficial effects of an ARI on
NCV despite correction of nerve sorbitol and MI levels. L-
NAME also slowed NCV in nondiabetic rats, though only after
prolonged administration, with an attendant reduction in
(Na',K+)-ATPase activity. These results are consistent with the
hypothesis that the ARI-sensitive component of NCV slowing
in STZ-D rats is mediated in part by defects in NO, perhaps
through competition between AR2 and NOS for NADPH, and
may involve NO-related perturbations in endoneurial blood flow
and/or nerve (Na+,K+)-ATPase.

Methods

Experimental design. Cesarean-delivered, barrier-sustained male albino
Wistar rats weighing 200-300 g were maintained in individual air-
filtered metabolic cages and given access to water and a standard syn-
thetic diet (MI content 0.011% wt/wt) (ICN Biomedicals, Cleveland,
OH) (25). Rats were acclimatized to their new environment for 1 wk
before the start of the study. After an overnight fast, the rats were
rendered diabetic by i.p. injection of STZ (60 mg/kg) (Upjohn, Kalama-
zoo, MI) in 0.2 ml of 10 mM citrate buffer, pH 5.5 (25). STZ-D was
defined by a nonfasting tail-vein plasma glucose > 16.7 mM 48 h after
STZ injection and at the end of the study (Beckman glucose analyzer
II; Beckman Instruments, Fullerton, CA). After initial confirmation of
diabetes, STZ-D and noninjected control rats were randomly distributed
into the following experimental groups for the remainder of the 3-wk
study: untreated nondiabetic rats (ND); nondiabetic rats given water
containing 2.74 mM L-NAME (ND:L-NAME); untreated STZ-D rats
(D); STZ-D rats given water containing 2.74 mM L-NAME (D:L-
NAME); STZ-D rats given the ARI sorbinil (20 mg/kg by daily gavage
in distilled water) (D:ARI); STZ-D rats given sorbinil plus water with
2.74 mM L-NAME (D:L-NAME + ARI); STZ-D rats given a 1% MI
(wt/wt) diet and drinking water with 2.74 mM L-NAME (D:L-NAME
+ MI). To compare the chronic effects ofNOS inhibition in nondiabetic
rats with the chronic effects of STZ-D, nondiabetic rats were given 2.74
mM L-NAME for 3 mos (ND:L-NAME-chronic) and compared with
untreated age-matched nondiabetic (ND-chronic) and 3 mos STZ-D (D-
chronic) rats. All end-point measurements were performed by investiga-
tors unaware of treatment group assignments. Unless otherwise speci-
fied, all reagents were obtained from Sigma Chemical Co. (St. Louis,
MO) and were of the highest purity available.

Measurement of NCV. Animals were lightly anesthetized by i.p.
injection of 30-40 mg/kg pentobarbitol sodium. The body temperature
was monitored using a rectal probe and maintained at 37°C with a
warming pad. Sciatic-tibial NCV was determined noninvasively by stim-
ulating proximally at the sciatic notch and distally at the ankle via
bipolar electrodes with supramaximal stimulation (26). The proximal

and distal latencies of the compound muscle action potentials, recorded
via bipolar electrodes from the first interosseous muscle of the hindpaw,
were measured from the stimulus artifact to the onset of the negative
M-wave deflection, subtracted, and divided into the distance between
the stimulating and recording electrodes giving a value for NCV
in m/s.

Measurement of systolic blood pressure. Systolic blood pressure
(SBP) was measured by the indirect tail-cuff technique (27) on days 0
and day 21. Rats were prewarmed with a heating pad for 3 min before
10-20 measurements were taken 30 s apart with a Programmed Electro-
sphygmomanometer (model PE-300; Narco BioSystems, Austin, TX)
precalibrated with a mercury manometer, and recorded on a model 7D
polygraph (Grass Instrument Co., Quincy, MA). SBP was defined as
the mean of the last five recordings. This method was previously vali-
dated by simultaneous intra-carotid recording (27).

Measurement of sciatic nerve glucose, MI, sorbitol, and fructose.
The left and right sciatic nerves were rapidly surgically exposed from
the vertebral exit to the common peroneal bifurcation, excised, cleaned
of adherent muscle and loose epineurial connective tissue, and immedi-
ately frozen in liquid nitrogen for subsequent determination of nerve
osmolyte levels (25, 26, 28). Sciatic nerve MI, sorbitol, and fructose
were determined by gas chromatography of aldonitrile acetate deriva-
tives of lyophilized aliquots of deproteinized homogenates (2.0 ml 5%
wt/vol trichloroacetic acid) of sciatic nerve containing 10 jg a-D-methyl
mannopyranoside as an internal standard (25, 26, 28). A Varian 3700
gas-liquid chromatograph was equipped with a 30 m X 0.25 mm inner
diameter SP-2100 fused silica capillary column with a 0.25 ,sm film
thickness, a single flame ionization detector, a 8100 autosampler, and
a Star Workstation Integrator (Varian Instruments, Sunnyvale, CA). The
He carrier gas flow was 0.6 m/min with split ratio of 15:1, and the
column temperature was held for 2 min at 175°C and increased at 3°C/
min to 270°C and held. Standard curves were generated daily, and
recoveries routinely exceeded 95%.

(Na+K+)-ATPase assay. Composite and ouabain-sensitive ATPase
activities were measured in crude homogenates of nerve and expressed
as /.mol ADP formed/gm wet wt/h by a previously described spectro-
photometric enzymatic method (9). Nerve tissue was homogenized at
4°C in 2 ml of a 0.2 M sucrose-0.02 M Tris-HCl buffer, pH 7.5, with
a Polytron homogenizer for at least five periods not exceeding 15 s
each, then centrifuged at 100 g for 10 min at 4°C. The reaction was
started by the addition of 20 /1 of supernatant to 1.0-ml x 1.0-cm
disposable cuvettes containing (final concentration) 100 mM NaCl, 10
mM KCl, 2.5 mM MgCl2, 2 mM ethylene-glycol-bis(beta-aminoethyl-
ether)-N,N'-tetraacetic acid, 1 mM Tris-ATP, 1 mM 3-(cyclohexylamm-
onium)-phosphoenolpyruvate, 30 mM imidazole-HCl buffer, pH 7.3,
0.15 mM NADH, 50 ug lactate dehydrogenase, and 30 .sg pyruvate
kinase with or without 1.0 mM ouabain. After a 30-min stabilization
period, the linear rate of oxidation of NADH was monitored at 340 nm.
Ouabain-sensitive ATPase activity was previously shown to be identical
to (Na+,K+)-stimulated ATPase activity in nerve homogenates by this
method (9). Data are means±SE. Differences among groups were de-
tected by ANOVA, and significance at the 0.05 level tested by the
Student-Newman-Keuls test.
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Figure 1. Change in SBP in response to 21 d of L-NAME treatment
(2.74 mM/i in drinking water). SBP was measured by the indirect tail-
cuff technique. The mean of five measurements was used to estimate
SBP. No differences in SBP among treatment groups were observed at
baseline. Data are shown as the means±SE. In A, * P < 0.01 vs. all
non-L-NAME treated groups. B depicts an additional experiment exam-
ining the effects of a 1% MI diet plus L-NAME treatment in STZ-D
rats (tP < 0.01 vs non-L-NAME treated groups).

Results

Baseline body wts were similar in all the experimental groups
(Table I), but attained body wts were 21-29% lower in D vs
ND groups, and unaffected by L-NAMiE or sorbinil. Untreated
D and ND rats exhibited 14-16% increases in SBP after 21 d.
As expected (21, 24, 27, 29), L-NAME increased SBP vs rele-
vant controls from 27% in ND to 44% in D:ARI rats, with
none of the SBP differences among L-NAME groups attaining
statistical significance (Fig. 1).

Effect of diabetes, ARI, and L-NAME on nerve glucose,
fructose, sorbitol, and MI. Nerve glucose was increased 2.8-
3.4-fold in D rats, with no significant differences among D
groups (Table II). Nerve fructose was increased 6.5- and 4.6-
fold, respectively, in D and D:L-NAME rats vs their ND con-
trols, and lowered by 60-62% (P < 0.01) by ARI (Table TI).
Nerve sorbitol was increased 6.5- and 6-fold, respectively, in

Table II. 21 Day Sciatic Nerve Osmolyte Changes in Response to
Diabetes, L-NAME and the Aldose Reductase Inhibitor Sorbinil

Group Glucose Fructose Sorbitol MI

ND 4.6±0.5 2.1±0.4 0.4±0.0 3.4±0.3
ND:L-NAME 4.6±0.7 1.6±0.3 0.3±0.0 3.4±0.3
D 15.0±2.0* 13.6±2.9* 2.6±0.4* 2.2±0.2*
D:L-NAME 12.8±1.4* 9.7±1.6* 2.4±0.2* 2.4±0.2*
D:ARI 13.3±1.2* 5.5±1.0' 1.3±0.2*§ 3.2±0.311
D:L-NAME
+ ARI 15.5±3.3* 5.2±0.4' 0.8±0.2§ 3.2±0.311

Osmolyte levels given as nmollmg protein. Data shown as mean±SEM.
* P < 0.01; tP < 0.05 vs control; IP < 0.01; 11 P < 0.05 vs
diabetic.
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Figure 2. The effect of L-NAME on sciatic NCV in ND and STZ-D
(D) rats, and its ability to block the effects of the ARI sorbinil (20 mg/
kg by gavage) (A) or reverse the effects of a 1% MI diet (B). Animals
were lightly anesthetized with i.p. pentobarbitol sodium and NCV was
measured noninvasively in the left sciatic tibial conducting system. Data
are shown as means±SE. A, * P < 0.01 vs ND, tp < 0.05 vs other
STZ-D groups. B, tp < 0.05 vs D, P = ns vs ND.

D and D:L-NAME rats respectively and reduced by 50-69%
(P < 0.01) by ARI (Table TI). ARI corrected nerve MI in D
rats to 94% of the ND level, and L-NAME had no effect on
nerve osmolytes in D or ND rats (Table IT).

Effect of diabetes, ARI, 1% dietary MI, and L-NAME on
NCV. 3 wk of L-NAME treatment produced a slight (7.5%) but
statistically insignificant slowing of NCV in ND rats (Fig. 2)
which was not augmented by a lOX higher L-NAME dose to
correct for higher water intake in STZ-D rats (data not shown).
Three wks of STZ-D slowed NCV by 24% (P < 0.01) (Fig.
2). L-NAME slowed NCV no further in D rats (Fig. 2). ARI
increased NCV 18.8% (P < 0.01) in D rats to a level statistically
indistinguishable from that of ND rats (Fig. 2). Despite the fact
that L-NAME had no effect on NCV in untreated D rats, L-
NAME decreased NCV in ARI-treated D rats to a level indistin-
guishable from that of untreated D rats (Fig. 2). In order to
demonstrate that the effects of L-NAME on NCV in the ARI
treated D animals were due to specific inhibition ofNO synthe-
sis the effects of the simultaneous addition of arginine (274
mM in drinking water) were examined in 10 animals. Arginine
was found to preserve NCV at levels that were indistinguishable
from the ND control animals (56.1+2.3 mIs) and prevent the
hypertensive effect of L-NAME (SBP 121±5 mmHg at 3 wk).
Dietary MI supplementation increased NCV in D rats given L-
NAME to a level indistinguishable from that of the ND controls
(55.6±1.8 m/s, n = 5), despite unabated hypertension (see pan-
els B, Figs. 1 and 2). Thus, in contrast to its potent anti-ARI
effect, L-NAME did not block the beneficial effect of dietary
MI on NCV in D rats (9).

Effects ofchronic (3 mos) L-NAME on NCVand nerve MI in
ND rats. 3 mos of L-NAME treatment (ND:L-NAME-chronic)
decreased NCV 17% (P < 0.01) to levels indistinguishable
from rats with 3 mo of STZ-D (D-chronic) (Fig. 3). The L-
NAME-induced increase in SBP after 3 mos (165±3 mmHg)
was not significantly different from that after 3 wk L-NAME
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Figure 3. Effect of chronic (3 mos) L-NAME treatment on sciatic NCV
in the ND rat. Data are shown as means±SE. * P < 0.01 vs untreated
ND.

treatment. Nerve MI levels in ND:L-NAME-chronic rats were
19% lower than in untreated ND rats, but this change was
statistically insignificant. To assess the specificity of the effect
of ARI on reduced NCV, NCV was measured in ND rats treated
for 3 mos with L-NAME + ARI (n = 4). ARI plus L-NAME
for 3 mos did not change either SBP or NCV compared with
ND animals (n = 5) treated with L-NAME alone (data not
shown).

Effects ofdiabetes and L-NAME on nerve (Na+,K+)-ATPase
activity. To assess whether NOS inhibition diminished NCV
through a (Na+,K+)-ATPase mechanism, ouabain-sensitive
ATPase activity was measured in nerve homogenates from ND-
chronic, ND:L-NAME-chronic, and D-chronic rats. Ouabain-
sensitive ATPase activity was reduced by 34% (P < 0.05) in
D-chronic rats, and even more so (44%, P < 0.05) in the ND:L-
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Figure 4. Changes in sciatic nerve ouabain-sensitive ATPase activity
after 3 mos of L-NAME treatment in ND rats vs untreated ND controls
and 3-mo STZ-D rats. Composite and ouabain-sensitive ATPase activi-
ties were measured in crude homogenates of sciatic nerve by a enzy-
matic-spectrophotometric techniques as described in Methods. Data are
shown as means±SE. * P < 0.05 vs untreated ND rats.

NAME-chronic rats despite the absence of hyperglycemia
in the latter (Fig. 4). In contrast, acute (3 wk) L-NAME treat-
ment that only marginally reduced NCV in ND:L-NAME rats
did not significantly reduce ouabain-sensitive ATPase activity
(98.4±14.2 ymol/g/h in ND:L-NAME rats vs 106.7+14.4
,4mol/g/h in ND rats, P = ns). The simultaneous treatment of
ND rats with ARI plus L-NAME resulted in a similar decrease
(P < 0.05) in (Na',K+)-ATPase activity after 3 mos when
compared with the ND:L-NAME-chronic rats (29 vs 22%, P
= ns). Therefore changes in nerve (Na',K+)-ATPase activity
induced by NOS inhibition paralleled the changes in NCV in a

time-dependent manner in ND rats.

Discussion

The seemingly divergent metabolic and vascular pathogenetic
hypotheses for experimental diabetic neuropathy are becoming
increasingly intertwined (1, 5). Early and rapidly reversible
slowing of NCV in acutely diabetic rats, traditionally ascribed
to AR2-mediated MI depletion and reduced nerve (Na',K+)-
ATPase activity (1, 2), may involve a prominent ischemic (4,
30) or ischemic-like (12) component. Endoneurial blood flow,
reduced by 3 wk of STZ-D and remaining so for 4 mos (5),
responds to treatment with ARls, vasoactive compounds such
as prostaglandin El analogues (13), and sympatholytic agents
(6) all of which also improve NCV and/or nerve (Na',K+)-
ATPase activity. Moreover increased flux of glucose through
AR2 and SDH may produce simultaneous oxidative stress (11)
and metabolic "pseudoischemia" (12). Thus, neither temporal
separation nor ARI sensitivity distinguish metabolic from vas-
cular components of NCV slowing in experimental diabetic
neuropathy.

Nitric oxide, with its increasingly appreciated functional
diversity in cell metabolism, microvascular regulation, neuro-
modulation, and diabetes provides a strong theoretical bridge
between AR2 and (Na+,K+)-ATPase and the vascular compo-
nents of early experimental diabetic neuropathy. This study
tested the hypothesis that impaired NO activity mediates the
effect of increased AR2 activity on NCV and/or nerve
(Na+,K+)-ATPase in the acutely STZ-D rat. The specific NOS
inhibitor L-NAME completely blocked the salutary effects of
a potent ARI on NCV in acute STZ-D rats, despite improvement
in sorbitol accumulation and MI depletion; L-NAME alone had
little effect on the already reduced NCV in acute STZ-D rats.
These acute effects of L-NAME were prevented by arginine
supplementation of the drinking water, consistent with its action
as a competitive inhibitor of NOS (21-24). Chronic (12 wk)
L-NAME administration to normal rats reproduced the NCV
and (Na+,K+)-ATPase defects of chronic STZ-D, and, as antici-
pated, these were unaffected by ARI. Thus the ARI-sensitive
slowing of NCV in acute STZ-D appears to be specific, and to
some extent involve NO-related ischemic and/or metabolic
(e.g., [Na+,K+]-ATPase) defects in nerve.

This conclusion raises three important issues: the metabolic
factors linking hyperglycemia and AR2 to NOS and NO; the
relative importance of vascular vs nonvascular effects of NO
and/or other vasoactive modulators on NCV slowing in STZ-
D; and the potential links between NO and nerve (Na+,K+)-
ATPase. Hyperglycemia could suppress or induce local NO
production or action by one of several hypothetical mechanisms.
Quenching of NO by hyperglycemia-induced "advanced glyco-
sylation endproducts" (AGE) has been described (31), and en-

856 Stevens et al.

601

II



hanced NO production (18) by AGE-mediated macrophage acti-
vation (32) is theoretically possible. AR2 and NOS share
NADPH as an obligate cofactor; therefore enhanced glucose
flux through AR2 could blunt NOS activity as a function of the
relative Km's of these enzymes for NADPH and their cellular
colocalization within a common glucose-accessible compart-
ment. For example, AR2 and NOS both have been identified
in vascular endothelia and autonomic ganglia (21, 33, 34); in
peripheral nerve, AR2 has been localized to the Schwann cell
cytoplasm (33), but the precise tissue compartmentalization of
nerve NOS remains to be established. Diabetes decreases com-
posite NADPH levels in some tissues such as lens (35), but not
in whole nerve when glutathione redox state is used as a surro-
gate for NADPH:NADP+ redox potential (36). Thus diabetes-
induced shifts in NADPH:NADP+ may be tissue specific and/
or highly compartmentalized. Protein kinase C activation by
glucose-induced de novo synthesis of diacylglycerol (37) could
modulate NOS by phosphorylation-dephosphorylation (38).
The increased oxidative stress of diabetes (18, 21, 39), attributed
in part to increased local NADPH consumption by AR2 (11,
35) could inactivate NO through oxygen free radical formation
(3), which could further impair vascular regulation in diabetes
through the eicosanoid pathway (see below).

Impaired endothelium-dependent vascular relaxation has
been associated with experimental (15-17) and perhaps (40)
human diabetes (41), and attributed to NO depletion (15-18,
21, 39, 40, 42, 43), NO resistance (44) and/or perturbation
of vasoconstricting and vasodilating eicosanoids (45, 46). The
blunted endothelial-dependent vasodilatory response to acetyl-
choline (15, 16, 47) in the face of an intact endothelial-indepen-
dent vasodilatory response to sodium nitroprusside (17), nitro-
glycerin (16, 18) and other NO agonists implicates defective
endothelial NO synthesis or release. This would in turn alter
basal vascular tone through reduced activation of guanylate
cyclase (17, 21,48,49) or perhaps (Na',K+)-ATPase in vascular
smooth muscle (20).

Nitric oxide deficiency might perturb NCV and nerve
(Na+,K+)-ATPase through a nonischemic mechanism, perhaps
interacting with other more well established AR2-related defects
in signal transduction (1, 47-53) involved in modulation of
(Na+,K+)-ATPase activity (1, 2, 9, 13, 54). NO may modulate
phosphoinositide turnover by unknown mechanisms (55) such
that NO deficiency might act synergistically with MI depletion
in altering phosphoinositide signal transduction and (Na+,K+)-
ATPase regulation. The replication of a glucose-induced de-
crease in rabbit aortic (Na+,K+)-ATPase activity by a NOS
inhibitor in vitro (20) supports this notion. Alternatively, the
heightened ischemic sensitivity of neural (Na+,K+)-ATPase
(56), and the lack of vascular autoregulation in nerve (30)
might predispose peripheral nerve (Na+,K+)-ATPase to NO-
related ischemia, possibly complicated by metabolic "pseudo-
hypoxia" (12).

The delayed effect of L-NAME vs STZ-D on NCV, and the
failure of L-NAME to block the effects of dietary MI on NCV
in STZ-D rats each deserve comment. Experimental diabetes
predisposes nerve fibers to ischemic insult (57), perhaps re-
flecting defective compensatory vasoregulatory mechanisms
such as the eicosanoid pathway (46). A decrease in nerve prosta-
cyclin in STZ-D has been speculated to favor vasoconstriction
and thereby slow NCV (46, 58, 59), which would explain the
salutary effects of prostaglandin El analogues on NCV (13)
possibly via nerve cyclic AMP (60) and/or (Na+,K+)-ATPase

(54). Glucose-induced metabolic "pseudohypoxia" might also
magnify NO-related ischemia in STZ-D rats, but not in L-
NAME-treated nondiabetic rats (12). Thus AR2-mediated NO
depletion might initiate a complex cascade of ischemic and
metabolic events that interact with other hyperglycemic/isch-
emic sequelae (12, 46, 61) to further compromise nerve blood
flow and metabolism and degrade NCV in a self-reinforcing
cycle. The delayed appearance of NCV slowing in L-NAME-
treated ND rats might simply reflect the absence of these other
hyperglycemic sequelae.

The failure of L-NAME to counteract the salutary effects
of MI feeding on NCV in STZ-D rats implies: (a) that ARIs
correct NCV by a mechanism at least partially independent of
MI repletion (12); (b) that MI feeding and ARI treatment correct
MI depletion in a quantitatively or qualitatively different way;
or (c) that NO itself mediates MI repletion by ARIs. Thus ARI
therapy increases endoneurial blood flow (13) which might be
prevented by L-NAME; nerve blood flow has not been well
studied after MI feeding. Treatment with an ARI might improve
(Na',K+)-ATPase function partly through a NO dependent vas-
cular or metabolic mechanism, and partly via correction of MI
and phosphoinositide metabolism (1). In contrast, MI feeding
might work solely through the latter mechanism (2). Finally,
ARI therapy and MI supplementation may restore NCV and/
or (Na',K+)-ATPase through entirely independent but parallel
mechanisms. Thus the precise relationship between AR2 activa-
tion, MI depletion and NCV slowing in diabetes may be more
complex than previously appreciated (1). In any case, the failure
of L-NAME to slow NCV in MI-treated STZ-D rats despite
persistent hypertension argues against a non-specific "neuro-
toxic" or hypertensive effect of L-NAME on NCV. (The lack
of vascular autoregulation in nerve [30] causes nerve blood
flow to fluctuate passively with blood pressure [62] such that
increments in SBP would be expected to increase rather than
decrease nerve blood flow.)

Although certain subtle complexities remain, these studies
introduce NO as a potentially important mediator of AR2 effects
on nerve (Na',K+)-ATPase and NCV in experimental diabetes.
Even if the direct effect of NO on nerve (Na',K+)-ATPase
reported in this study is not itself vascularly mediated (20), the
pivotal role of NO in microvascular regulation in general still
serves to conceptually unify the so-called "vascular" and
"metabolic" hypotheses for experimental diabetic neuropathy.
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