Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 28;64(Pt 7):o1355. doi: 10.1107/S1600536808018795

4-Chloro-3-fluoro-2-methyl­aniline–pyrrolidine-2,5-dione (1/1)

Benjamin A Mayes a,*, Patrick McGarry a, Adel Moussa a, David J Watkin b
PMCID: PMC2961731  PMID: 21202974

Abstract

Chlorination of 3-fluoro-2-methyl­aniline with N-chloro­succinimide gave one major regioisomer whose structure was determined by X-ray crystallography. The product was found to have cocrystallized with succinimide, giving the title compound, C7H7ClFN·C4H5NO2. The crystal structure is stabilized by N—H⋯O hydrogen-bonding and π–π stacking inter­actions with a centroid–centroid distance of 3.4501 (8) Å.

Related literature

For related literature, see: Lazar et al. (2004); Marterer et al. (2003); Nickson & Roche-Dolson (1985); Shapiro et al. (2006); Tukada & Mazaki (1997); Zanka & Kubota (1999); Görbitz (1999).graphic file with name e-64-o1355-scheme1.jpg

Experimental

Crystal data

  • C7H7ClFN·C4H5NO2

  • M r = 258.68

  • Triclinic, Inline graphic

  • a = 7.3853 (2) Å

  • b = 7.4390 (2) Å

  • c = 11.5571 (4) Å

  • α = 73.1036 (13)°

  • β = 85.9336 (12)°

  • γ = 71.3703 (14)°

  • V = 575.53 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 120 K

  • 0.75 × 0.44 × 0.41 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.47, T max = 0.87

  • 16689 measured reflections

  • 2904 independent reflections

  • 2610 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.087

  • S = 0.88

  • 2904 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018795/lh2642sup1.cif

e-64-o1355-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018795/lh2642Isup2.hkl

e-64-o1355-Isup2.hkl (182KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H1⋯O16i 0.85 2.11 2.945 (2) 168
N8—H9⋯O16i 0.84 2.18 2.915 (2) 147
N8—H11⋯O17 0.88 2.17 3.030 (2) 166

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank Dr Sarah F. Jenkinson, University of Oxford, for her assistance in the preparation of the manuscript.

supplementary crystallographic information

Comment

Chlorination of anilines with N-chlorosuccinimide (NCS) can provide access to poly-substituted aromatic compounds, useful as high-value synthetic intermediates (Lazar et al., 2004; Marterer et al., 2003; Nickson & Roche-Dolson, 1985; Shapiro et al., 2006; Zanka & Kubota, 1999). In the present example, treatment of 3-fluoro-2-methylaniline with NCS in polar solvents (e.g. N,N-dimethylformamide) resulted in chlorination para to the NH2 as the primary regioisomer in 10-fold excess relative to the undesired ortho isomer.

The sample was supplied in the form of large crystalline aggregates (4 mm across) coated with perfluoropolyether oil as a preservative. A large (0.8x0.8x0.4 mm) section was cut from the mass. The material did not have a strong cleavage - the crystals just fractured erratically. Because of the risk that further cutting might totally destroy the sample, an initial X-ray data set was measured from this large sample. The results confirmed the expected structure, but also showed a co-crystallized molecule of succinimide (Tukada & Mazaki, 1997).

At the end of the initial data collection, the sample was further subdivided into an irregular block approximately 0.41x0.44x0.75 mm. Prescans showed that the further cutting of the crystal had introduced fractures, but the sample was still amenable to analysis. Because of the degraded quality of the crystal, a data set with a target redundancy of 3 (as opposed to the usual 1) was collected. This highly redundant dataset would enable corrections to be made for the poor crystal quality.

Structure solution was slightly complicated because of the unexpected succinimide, but after that refinement and the location of all hydrogen atoms was normal. The two components are shown in Fig. 1. Fig. 2 shows the plane-to-plane alternate stacking of the components, with minimum inter-planar spacing of 3.37Å - presumable π - π stacking. The columns of molecules are interconnected by N-H···O hydrogen bonds which form discreet centrosymmetric 4-component clusters (Fig. 3).

Experimental

3-Fluoro-2-methylaniline (550 mg, 4.40 mmol) was dissolved in N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA) or 1-methyl-2-pyrrolidinone (NMP) (5 ml) and cooled to 0–5°C under argon. N-Chlorosuccinimide (586 mg, 4.39 mmol) was added and the mixture was allowed to warm to room temperature over 15 h (Fig. 4). Dilution with ethyl acetate, washing with water, drying (sodium sulfate), filtration and evaporation of the solvents gave a crude oil.

Crystals were grown from isopropyl ether by seeding and storing at 4°C for two weeks. The solvent was decanted and the crystals coated with 2 drops of FOMBLIN perfluoropolyether oil.

Additional methods of characterization were recorded: m.p. 75.5–76.0°C; 1H (400 MHz, d3-MeCN): δ = 2.04 (3H, d, J 2.0 Hz, CH3), 2.62 (4H, s, CH2CH2), 4.32 (2H, br-s, NH2), 6.46 (1H, dd, J 8.6 Hz, J 0.8 Hz), 7.00 (1H, a-t, J 8.6 Hz), 8.83 (1H, br-s, NH). 13C (100 MHz, d3-MeCN): δ = 9.12, 9.18 (CH3), 30.26 (CH2CH2), 107.99, 108.19 (C-2), 111.16 (C-6), 111.34, 111.37 (C-4), 127.97, 127.98 (C-3), 147.76, 147.82 (C-5), 156.09, 158.47 (C-1), 179.33 (2 xC=O) (using crystallographic numbering).

Refinement

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.85) reflect the poor quality of the sample.

Difficulties in selecting an integration box suitable for all frames were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2.

Fig. 2.

Plane-to-plane stacking of alternate molecules parallel to the a axis.

Fig. 3.

Fig. 3.

The hydrogen bonds (dotted lines) in the π -π stacks.

Fig. 4.

Fig. 4.

Synthetic scheme.

Crystal data

C7H7ClFN·C4H5NO2 Z = 2
Mr = 258.68 F000 = 268
Triclinic, P1 Dx = 1.493 Mg m3
a = 7.3853 (2) Å Mo Kα radiation λ = 0.71073 Å
b = 7.4390 (2) Å Cell parameters from 2870 reflections
c = 11.5571 (4) Å θ = 5–29º
α = 73.1036 (13)º µ = 0.34 mm1
β = 85.9336 (12)º T = 120 K
γ = 71.3703 (14)º Plate, colourless
V = 575.53 (3) Å3 0.75 × 0.44 × 0.41 mm

Data collection

Nonius KappaCCD diffractometer 2610 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.033
T = 120 K θmax = 28.7º
ω scans θmin = 5.4º
Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −9→9
Tmin = 0.47, Tmax = 0.87 k = −10→9
16689 measured reflections l = −15→15
2904 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032   Method = Modified Sheldrick w = 1/[σ2(F2) + (0.05P)2 + 0.35P], where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.087 (Δ/σ)max = 0.001
S = 0.88 Δρmax = 0.38 e Å3
2904 reflections Δρmin = −0.37 e Å3
154 parameters Extinction correction: None
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C11 0.94307 (16) 0.30918 (17) 0.66142 (11) 0.0207
N12 0.99166 (15) 0.16670 (15) 0.59934 (9) 0.0223
C13 1.10284 (16) −0.01507 (17) 0.66627 (11) 0.0205
C14 1.14595 (16) −0.00013 (17) 0.78815 (10) 0.0204
C15 1.04097 (16) 0.21516 (17) 0.78494 (11) 0.0211
O16 1.15499 (13) −0.16202 (13) 0.62979 (8) 0.0275
O17 0.83954 (13) 0.47656 (13) 0.62086 (8) 0.0280
H141 1.2797 −0.0325 0.7987 0.0245*
H142 1.0987 −0.0916 0.8511 0.0240*
H151 1.1221 0.2859 0.7939 0.0258*
H152 0.9471 0.2271 0.8474 0.0263*
H1 0.9510 0.1824 0.5287 0.0265*
C1 0.34402 (16) 0.96277 (18) 0.14329 (10) 0.0201
C2 0.28607 (16) 1.11710 (17) 0.19551 (11) 0.0207
C3 0.34232 (16) 1.08204 (17) 0.31427 (11) 0.0217
C4 0.45586 (16) 0.89539 (17) 0.37673 (10) 0.0210
C5 0.51642 (16) 0.74038 (17) 0.32214 (10) 0.0188
C6 0.45694 (16) 0.77380 (17) 0.20237 (10) 0.0194
C7 0.51289 (19) 0.60873 (19) 0.14308 (12) 0.0269
N8 0.63360 (16) 0.55949 (16) 0.38422 (10) 0.0277
Cl9 0.14163 (4) 1.34735 (4) 0.11329 (3) 0.0293
F10 0.28435 (11) 0.99849 (12) 0.02806 (6) 0.0291
H31 0.3012 1.1851 0.3475 0.0277*
H41 0.4953 0.8705 0.4581 0.0257*
H71 0.6503 0.5518 0.1414 0.0420*
H72 0.4641 0.5027 0.1863 0.0416*
H73 0.4639 0.6536 0.0618 0.0429*
H9 0.6698 0.4664 0.3519 0.0324*
H11 0.6736 0.5392 0.4585 0.0317*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C11 0.0199 (5) 0.0202 (5) 0.0235 (6) −0.0059 (4) 0.0007 (4) −0.0088 (4)
N12 0.0264 (5) 0.0201 (5) 0.0187 (5) −0.0024 (4) −0.0048 (4) −0.0072 (4)
C13 0.0196 (5) 0.0201 (5) 0.0209 (5) −0.0039 (4) −0.0013 (4) −0.0064 (4)
C14 0.0196 (5) 0.0216 (5) 0.0195 (5) −0.0049 (4) −0.0029 (4) −0.0061 (4)
C15 0.0198 (5) 0.0232 (5) 0.0221 (6) −0.0066 (4) −0.0014 (4) −0.0090 (4)
O16 0.0325 (5) 0.0212 (4) 0.0259 (5) 0.0005 (4) −0.0056 (4) −0.0108 (4)
O17 0.0302 (5) 0.0206 (4) 0.0305 (5) −0.0012 (3) −0.0058 (4) −0.0090 (4)
C1 0.0196 (5) 0.0262 (6) 0.0156 (5) −0.0089 (4) −0.0015 (4) −0.0051 (4)
C2 0.0180 (5) 0.0187 (5) 0.0228 (6) −0.0049 (4) −0.0023 (4) −0.0023 (4)
C3 0.0217 (5) 0.0206 (5) 0.0237 (6) −0.0051 (4) 0.0005 (4) −0.0094 (4)
C4 0.0213 (5) 0.0228 (5) 0.0184 (5) −0.0043 (4) −0.0026 (4) −0.0074 (4)
C5 0.0165 (5) 0.0190 (5) 0.0196 (5) −0.0041 (4) 0.0003 (4) −0.0050 (4)
C6 0.0181 (5) 0.0218 (5) 0.0205 (5) −0.0081 (4) 0.0020 (4) −0.0077 (4)
C7 0.0290 (6) 0.0277 (6) 0.0276 (6) −0.0077 (5) 0.0010 (5) −0.0144 (5)
N8 0.0317 (6) 0.0207 (5) 0.0241 (5) 0.0027 (4) −0.0051 (4) −0.0071 (4)
Cl9 0.02920 (17) 0.02088 (16) 0.03136 (17) −0.00375 (11) −0.00674 (12) −0.00040 (11)
F10 0.0341 (4) 0.0346 (4) 0.0175 (3) −0.0092 (3) −0.0072 (3) −0.0055 (3)

Geometric parameters (Å, °)

C11—N12 1.3890 (14) C2—C3 1.3885 (17)
C11—C15 1.5141 (16) C2—Cl9 1.7335 (12)
C11—O17 1.2075 (14) C3—C4 1.3826 (16)
N12—C13 1.3689 (15) C3—H31 0.913
N12—H1 0.852 C4—C5 1.4075 (16)
C13—C14 1.5082 (16) C4—H41 0.952
C13—O16 1.2235 (14) C5—C6 1.4096 (16)
C14—C15 1.5309 (16) C5—N8 1.3629 (14)
C14—H141 0.947 C6—C7 1.5076 (16)
C14—H142 0.970 C7—H71 0.968
C15—H151 0.943 C7—H72 0.963
C15—H152 0.968 C7—H73 0.955
C1—C2 1.3848 (17) N8—H9 0.842
C1—C6 1.3826 (16) N8—H11 0.882
C1—F10 1.3569 (13)
N12—C11—C15 107.80 (9) C1—C2—C3 118.84 (11)
N12—C11—O17 124.27 (11) C1—C2—Cl9 119.74 (9)
C15—C11—O17 127.93 (11) C3—C2—Cl9 121.41 (9)
C11—N12—C13 113.60 (10) C2—C3—C4 119.37 (11)
C11—N12—H1 125.7 C2—C3—H31 117.6
C13—N12—H1 120.5 C4—C3—H31 123.1
N12—C13—C14 108.74 (9) C3—C4—C5 121.32 (11)
N12—C13—O16 123.80 (11) C3—C4—H41 119.8
C14—C13—O16 127.46 (11) C5—C4—H41 118.9
C13—C14—C15 104.82 (9) C4—C5—C6 119.65 (11)
C13—C14—H141 109.5 C4—C5—N8 120.21 (11)
C15—C14—H141 111.9 C6—C5—N8 120.13 (10)
C13—C14—H142 109.2 C5—C6—C1 117.02 (10)
C15—C14—H142 111.7 C5—C6—C7 120.92 (11)
H141—C14—H142 109.5 C1—C6—C7 122.05 (11)
C14—C15—C11 104.97 (9) C6—C7—H71 111.7
C14—C15—H151 114.0 C6—C7—H72 111.2
C11—C15—H151 109.0 H71—C7—H72 106.7
C14—C15—H152 112.8 C6—C7—H73 111.5
C11—C15—H152 109.9 H71—C7—H73 108.1
H151—C15—H152 106.2 H72—C7—H73 107.4
C2—C1—C6 123.78 (11) C5—N8—H9 120.4
C2—C1—F10 118.07 (10) C5—N8—H11 120.3
C6—C1—F10 118.14 (10) H9—N8—H11 119.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N12—H1···O16i 0.85 2.11 2.945 (2) 168
N8—H9···O16i 0.84 2.18 2.915 (2) 147
N8—H11···O17 0.88 2.17 3.030 (2) 166

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2642).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  3. Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [DOI] [PubMed]
  4. Lazar, C., Kluczyk, A., Kiyota, T. & Konishi, Y. (2004). J. Med. Chem.47, 6973–6982. [DOI] [PubMed]
  5. Marterer, W., Prikoszovich, W., Wiss, J. & Prashad, M. (2003). Org. Process Res. Dev.7, 318–323.
  6. Nickson, T. E. & Roche-Dolson, C. A. (1985). Synthesis, 6, 669–670.
  7. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Shapiro, R., Taylor, E. & Zimmerman, W. (2006). PCT Int. Appl. WO 2 006 062 978.
  10. Tukada, H. & Mazaki, Y. (1997). Chem. Lett., pp. 441–442.
  11. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, UK.
  12. Zanka, A. & Kubota, A. (1999). Synlett, 12, 1984–1986.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018795/lh2642sup1.cif

e-64-o1355-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018795/lh2642Isup2.hkl

e-64-o1355-Isup2.hkl (182KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES