Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 12;64(Pt 8):m1024. doi: 10.1107/S1600536808020916

Hexaaqua­copper(II) dichloride bis­(hexa­methyl­enetetra­mine) tetra­hydrate

Zhan Lin Li a, Xin Jian Yao a, Wen Wu a, Ya Wen Xuan a,*
PMCID: PMC2961946  PMID: 21203016

Abstract

The title compound, [Cu(H2O)6]Cl2·2C6H12N4·4H2O, was prepared under mild hydro­thermal conditions. The asymmetric unit consists of one half of the [Cu(H2O)6]2+ cation, a hexa­methyl­enetetra­mine mol­ecule, two solvent water mol­ecules and a chloride ion. The formula unit is generated by crystallographic inversion symmetry. The Cu atom lies on a crystallographic inversion centre. It is in a slightly distorted octa­hedral coordination environment. In the crystal structure, inter­molecular O—H⋯O, O—H⋯N and O—H⋯Cl hydrogen bonds link the components into a three-dimensional network.

Related literature

For a related structure, see: Kinzhibalo et al. (2002).graphic file with name e-64-m1024-scheme1.jpg

Experimental

Crystal data

  • [Cu(H2O)6]Cl2·2C6H12N4·4H2O

  • M r = 594.99

  • Triclinic, Inline graphic

  • a = 9.321 (3) Å

  • b = 9.3923 (16) Å

  • c = 9.4261 (16) Å

  • α = 119.523 (2)°

  • β = 94.153 (3)°

  • γ = 101.065 (3)°

  • V = 691.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 291 (2) K

  • 0.36 × 0.29 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.709, T max = 0.860

  • 5328 measured reflections

  • 2551 independent reflections

  • 2083 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.108

  • S = 1.05

  • 2551 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020916/lh2645sup1.cif

e-64-m1024-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020916/lh2645Isup2.hkl

e-64-m1024-Isup2.hkl (125.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—O2 2.017 (2)
Cu1—O1 2.045 (2)
Cu1—O3 2.053 (2)
O2—Cu1—O2i 180
O2—Cu1—O1 87.24 (9)
O2—Cu1—O1i 92.76 (9)
O1—Cu1—O1i 180
O2—Cu1—O3i 90.30 (10)
O1—Cu1—O3i 86.64 (9)
O2—Cu1—O3 89.70 (10)
O1—Cu1—O3 93.36 (9)
O3i—Cu1—O3 180

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯N3 0.82 2.04 2.814 (3) 158
O1—H2W⋯O5ii 0.83 1.94 2.734 (3) 162
O2—H3W⋯N2iii 0.83 1.99 2.800 (3) 167
O2—H4W⋯O4iii 0.83 1.89 2.700 (3) 165
O3—H5W⋯Cl1 0.82 2.54 3.190 (2) 137
O3—H6W⋯N1iv 0.82 2.00 2.805 (3) 165
O4—H7W⋯Cl1 0.83 2.35 3.170 (3) 168
O4—H8W⋯N4v 0.84 2.00 2.829 (4) 174
O5—H9W⋯Cl1 0.83 2.43 3.245 (3) 169
O5—H10W⋯Cl1vi 0.83 2.37 3.200 (3) 175

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

We thank the Natural Science Foundation of Henan Province and the Key Discipline Foundation of Zhoukou Normal University for financial support of this research.

supplementary crystallographic information

Comment

The asymmetric unit and some symmetry related atoms are shown in Fig.1. The asymmetric unit consists of one half of hexaaqua CuII cation, one chloride anion, one uncoordinated neutral hexamethylenetetramine molecule and two molecules of water of crystallization. In the crystal structure, hydrogen bonding between [Cu(H2O)6]2+ cations and hexamethylenetetramine molecules, and those between [Cu(H2O)6]2+ cations and chloride ions are shown in Fig. 2 and Fig.3, respectively. A 16-membered ring formed by cations and hexamethylenetetramine moieties via the H-bonding interactions propagates along the c-axis. The chloride ion H-bonded with the uncoordinated water molecules gives rise to a number of anionic ring systems (Fig. 3). One of the hydrogen atoms of the uncoordinated water molecule connects the chloride ion and forms a 16-membered ring. The combonation of these anionic and cationic frameworks results in the formation of a three-dimensional network.

Experimental

All reagents were of AR grade and used without further purification. C6H12N4 (1.401 g, 10 mmol) was dissolved in 50 ml EtOH/H2O (V:V = 1:1) solution, then the resultant solution was added in 10 ml double-distilled water containing CuCl2.2H2O (0.171 g, 1 mmol), The resulting solution was heated at 373 K for 96 h. After cooling to room temperature, blue crystals were obtained in a yield up to 48.6%.

Refinement

H atoms bonded to O atoms were located in a difference map and included in their 'as found' positions with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically with C-H = 0.97 Å and with Uiso(H)=1.2Ueq(C). All H atoms were treated as riding.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit and symmetry related atoms of the title compound with 30% probability ellipsoids [symmetry code: (A) -x+1, -y, -z].

Fig. 2.

Fig. 2.

Hydrogen bonding [dashed lines] in part of the crystal structure between [Cu(H2O)6]2+ cations, hexamethylenetetramine molecules and water molecules.

Fig. 3.

Fig. 3.

Hydrogen bonding [dashed lines] in part of the crystal structure between the [Cu(H2O)6]2+ cations, chloride anions and water molecules.

Crystal data

[Cu(H2O)6]Cl2·2C6H12N4·4H2O Z = 1
Mr = 594.99 F000 = 315
Triclinic, P1 Dx = 1.430 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.321 (3) Å Cell parameters from 1415 reflections
b = 9.3923 (16) Å θ = 2.5–22.9º
c = 9.4261 (16) Å µ = 1.04 mm1
α = 119.523 (2)º T = 291 (2) K
β = 94.153 (3)º Block, blue
γ = 101.065 (3)º 0.36 × 0.29 × 0.15 mm
V = 691.1 (3) Å3

Data collection

Bruker SMART CCD diffractometer 2551 independent reflections
Radiation source: fine-focus sealed tube 2083 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.027
Detector resolution: 0 pixels mm-1 θmax = 25.5º
T = 291(2) K θmin = 2.5º
φ and ω scans h = −11→11
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) k = −11→11
Tmin = 0.709, Tmax = 0.860 l = −11→11
5328 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.108   w = 1/[σ2(Fo2) + (0.0473P)2 + 0.4567P] P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2551 reflections Δρmax = 0.30 e Å3
151 parameters Δρmin = −0.51 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.5000 0.0000 0.0000 0.03048 (18)
Cl1 0.18946 (11) 0.17433 (12) 0.43516 (12) 0.0544 (3)
O1 0.3831 (2) 0.1341 (3) −0.0575 (3) 0.0410 (6)
H1W 0.3885 0.2251 0.0267 0.061*
H2W 0.3032 0.0955 −0.1237 0.061*
O2 0.6183 (3) 0.2239 (3) 0.1983 (3) 0.0458 (6)
H3W 0.6168 0.2522 0.2960 0.069*
H4W 0.6825 0.2950 0.1926 0.069*
O3 0.3576 (3) −0.0289 (3) 0.1457 (3) 0.0468 (6)
H5W 0.3400 0.0621 0.2072 0.070*
H6W 0.3653 −0.0847 0.1901 0.070*
O4 0.1965 (3) 0.5031 (3) 0.7782 (3) 0.0481 (6)
H7W 0.2086 0.4204 0.6934 0.072*
H8W 0.1057 0.4942 0.7787 0.072*
O5 0.1485 (3) 0.0517 (4) 0.7004 (4) 0.0741 (9)
H9W 0.1697 0.0946 0.6432 0.111*
H10W 0.0599 −0.0029 0.6717 0.111*
N1 0.3348 (3) 0.7402 (3) 0.2551 (3) 0.0349 (6)
N2 0.3362 (3) 0.6544 (3) 0.4602 (3) 0.0347 (6)
N3 0.3419 (3) 0.4512 (3) 0.1727 (3) 0.0339 (6)
N4 0.1150 (3) 0.5418 (3) 0.2441 (3) 0.0352 (6)
C1 0.3865 (4) 0.7928 (4) 0.4281 (4) 0.0372 (7)
H1A 0.3493 0.8884 0.5004 0.045*
H1B 0.4945 0.8297 0.4544 0.045*
C2 0.3940 (4) 0.5117 (4) 0.3491 (4) 0.0367 (7)
H2A 0.3622 0.4193 0.3685 0.044*
H2B 0.5021 0.5469 0.3747 0.044*
C3 0.1779 (4) 0.4020 (4) 0.1381 (4) 0.0399 (8)
H3A 0.1418 0.3631 0.0225 0.048*
H3B 0.1433 0.3083 0.1550 0.048*
C4 0.1704 (4) 0.6831 (4) 0.2180 (4) 0.0390 (8)
H4A 0.1311 0.7774 0.2886 0.047*
H4B 0.1342 0.6476 0.1034 0.047*
C5 0.3921 (4) 0.5949 (4) 0.1478 (4) 0.0384 (8)
H5A 0.5002 0.6301 0.1718 0.046*
H5B 0.3584 0.5583 0.0324 0.046*
C6 0.1729 (4) 0.5996 (4) 0.4188 (4) 0.0388 (8)
H6A 0.1335 0.6931 0.4911 0.047*
H6B 0.1386 0.5079 0.4386 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0393 (3) 0.0273 (3) 0.0255 (3) 0.0104 (2) 0.0087 (2) 0.0133 (2)
Cl1 0.0599 (6) 0.0441 (5) 0.0534 (6) 0.0137 (5) 0.0259 (5) 0.0190 (5)
O1 0.0505 (14) 0.0335 (12) 0.0335 (12) 0.0193 (11) 0.0002 (10) 0.0117 (10)
O2 0.0663 (16) 0.0310 (12) 0.0231 (11) −0.0071 (11) 0.0028 (11) 0.0093 (10)
O3 0.0699 (17) 0.0442 (14) 0.0551 (15) 0.0328 (13) 0.0383 (13) 0.0372 (13)
O4 0.0416 (14) 0.0439 (14) 0.0435 (14) 0.0008 (11) 0.0087 (11) 0.0151 (12)
O5 0.0623 (18) 0.088 (2) 0.070 (2) 0.0023 (16) −0.0133 (15) 0.0494 (19)
N1 0.0419 (16) 0.0337 (15) 0.0399 (15) 0.0157 (13) 0.0169 (12) 0.0237 (13)
N2 0.0422 (15) 0.0331 (14) 0.0248 (13) 0.0026 (12) 0.0077 (11) 0.0143 (12)
N3 0.0421 (15) 0.0299 (14) 0.0300 (14) 0.0139 (12) 0.0067 (12) 0.0141 (12)
N4 0.0353 (15) 0.0330 (15) 0.0333 (14) 0.0089 (12) 0.0074 (12) 0.0141 (12)
C1 0.0456 (19) 0.0255 (16) 0.0339 (17) 0.0049 (14) 0.0106 (15) 0.0117 (14)
C2 0.0448 (19) 0.0355 (18) 0.0335 (17) 0.0093 (15) 0.0032 (14) 0.0214 (15)
C3 0.0403 (19) 0.0323 (18) 0.0335 (18) 0.0067 (15) 0.0012 (15) 0.0090 (15)
C4 0.047 (2) 0.0410 (19) 0.0398 (18) 0.0225 (16) 0.0150 (15) 0.0240 (16)
C5 0.047 (2) 0.046 (2) 0.0327 (17) 0.0224 (17) 0.0174 (15) 0.0240 (16)
C6 0.048 (2) 0.0343 (18) 0.0359 (18) 0.0082 (15) 0.0176 (15) 0.0190 (15)

Geometric parameters (Å, °)

Cu1—O2 2.017 (2) N2—C2 1.469 (4)
Cu1—O2i 2.017 (2) N2—C1 1.475 (4)
Cu1—O1 2.045 (2) N3—C3 1.472 (4)
Cu1—O1i 2.045 (2) N3—C2 1.473 (4)
Cu1—O3i 2.053 (2) N3—C5 1.476 (4)
Cu1—O3 2.053 (2) N4—C3 1.467 (4)
O1—H1W 0.8200 N4—C4 1.472 (4)
O1—H2W 0.8260 N4—C6 1.474 (4)
O2—H3W 0.8254 C1—H1A 0.9700
O2—H4W 0.8330 C1—H1B 0.9700
O3—H5W 0.8200 C2—H2A 0.9700
O3—H6W 0.8246 C2—H2B 0.9700
O4—H7W 0.8304 C3—H3A 0.9700
O4—H8W 0.8351 C3—H3B 0.9700
O5—H9W 0.8312 C4—H4A 0.9700
O5—H10W 0.8289 C4—H4B 0.9700
N1—C1 1.462 (4) C5—H5A 0.9700
N1—C5 1.473 (4) C5—H5B 0.9700
N1—C4 1.477 (4) C6—H6A 0.9700
N2—C6 1.466 (4) C6—H6B 0.9700
O2—Cu1—O2i 180 C4—N4—C6 107.7 (2)
O2—Cu1—O1 87.24 (9) N1—C1—N2 111.9 (2)
O2i—Cu1—O1 92.76 (9) N1—C1—H1A 109.2
O2—Cu1—O1i 92.76 (9) N2—C1—H1A 109.2
O2i—Cu1—O1i 87.24 (9) N1—C1—H1B 109.2
O1—Cu1—O1i 180 N2—C1—H1B 109.2
O2—Cu1—O3i 90.30 (10) H1A—C1—H1B 107.9
O2i—Cu1—O3i 89.70 (10) N2—C2—N3 112.0 (2)
O1—Cu1—O3i 86.64 (9) N2—C2—H2A 109.2
O1i—Cu1—O3i 93.36 (9) N3—C2—H2A 109.2
O2—Cu1—O3 89.70 (10) N2—C2—H2B 109.2
O2i—Cu1—O3 90.30 (10) N3—C2—H2B 109.2
O1—Cu1—O3 93.36 (9) H2A—C2—H2B 107.9
O1i—Cu1—O3 86.64 (9) N4—C3—N3 112.7 (3)
O3i—Cu1—O3 180 N4—C3—H3A 109.1
Cu1—O1—H1W 109.5 N3—C3—H3A 109.1
Cu1—O1—H2W 126.7 N4—C3—H3B 109.1
H1W—O1—H2W 113.2 N3—C3—H3B 109.1
Cu1—O2—H3W 124.5 H3A—C3—H3B 107.8
Cu1—O2—H4W 124.2 N4—C4—N1 112.3 (2)
H3W—O2—H4W 110.9 N4—C4—H4A 109.2
Cu1—O3—H5W 109.5 N1—C4—H4A 109.2
Cu1—O3—H6W 123.5 N4—C4—H4B 109.2
H5W—O3—H6W 113.5 N1—C4—H4B 109.2
H7W—O4—H8W 110.2 H4A—C4—H4B 107.9
H9W—O5—H10W 111.4 N1—C5—N3 112.0 (2)
C1—N1—C5 108.3 (2) N1—C5—H5A 109.2
C1—N1—C4 108.1 (2) N3—C5—H5A 109.2
C5—N1—C4 108.3 (3) N1—C5—H5B 109.2
C6—N2—C2 108.5 (2) N3—C5—H5B 109.2
C6—N2—C1 108.5 (2) H5A—C5—H5B 107.9
C2—N2—C1 108.0 (2) N2—C6—N4 112.1 (2)
C3—N3—C2 108.0 (3) N2—C6—H6A 109.2
C3—N3—C5 108.1 (2) N4—C6—H6A 109.2
C2—N3—C5 107.7 (2) N2—C6—H6B 109.2
C3—N4—C4 108.1 (3) N4—C6—H6B 109.2
C3—N4—C6 107.9 (2) H6A—C6—H6B 107.9
C5—N1—C1—N2 −58.7 (3) C3—N4—C4—N1 −57.9 (3)
C4—N1—C1—N2 58.3 (3) C6—N4—C4—N1 58.4 (3)
C6—N2—C1—N1 −58.5 (3) C1—N1—C4—N4 −58.8 (3)
C2—N2—C1—N1 58.9 (3) C5—N1—C4—N4 58.3 (3)
C6—N2—C2—N3 58.4 (3) C1—N1—C5—N3 58.7 (3)
C1—N2—C2—N3 −59.0 (3) C4—N1—C5—N3 −58.2 (3)
C3—N3—C2—N2 −57.7 (3) C3—N3—C5—N1 58.0 (3)
C5—N3—C2—N2 58.8 (3) C2—N3—C5—N1 −58.5 (3)
C4—N4—C3—N3 58.1 (3) C2—N2—C6—N4 −58.6 (3)
C6—N4—C3—N3 −58.2 (3) C1—N2—C6—N4 58.5 (3)
C2—N3—C3—N4 58.1 (3) C3—N4—C6—N2 58.2 (3)
C5—N3—C3—N4 −58.2 (3) C4—N4—C6—N2 −58.3 (3)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1W···N3 0.82 2.04 2.814 (3) 158
O1—H2W···O5ii 0.83 1.94 2.734 (3) 162
O2—H3W···N2iii 0.83 1.99 2.800 (3) 167
O2—H4W···O4iii 0.83 1.89 2.700 (3) 165
O3—H5W···Cl1 0.82 2.54 3.190 (2) 137
O3—H6W···N1iv 0.82 2.00 2.805 (3) 165
O4—H7W···Cl1 0.83 2.35 3.170 (3) 168
O4—H8W···N4v 0.84 2.00 2.829 (4) 174
O5—H9W···Cl1 0.83 2.43 3.245 (3) 169
O5—H10W···Cl1vi 0.83 2.37 3.200 (3) 175

Symmetry codes: (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) −x, −y+1, −z+1; (vi) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2645).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Kinzhibalo, V. V., Mys’kiv, M. G. & Davydov, V. N. (2002). Koord. Khim.28, 927–928.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808020916/lh2645sup1.cif

e-64-m1024-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020916/lh2645Isup2.hkl

e-64-m1024-Isup2.hkl (125.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES