Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 26;64(Pt 8):m1062. doi: 10.1107/S1600536808022812

A second polymorph of aqua­(2,9-di­methyl-1,10-phenanthroline-κ2 N,N′)bis­(formato-κO)copper(II)

Jian-Li Lin a,*, Wei Xu a, Hong-Zhen Xie a
PMCID: PMC2961975  PMID: 21203045

Abstract

A new monoclinic polymorphic form of the title compound, [Cu(HCO2)2(C14H12N2)(H2O)], is described. It differs from the first ortho­rhom­bic polymorph [Pan, Lin & Zheng (2005). Z. Kristallogr. New Cryst. Struct. 220, 495–496] in the deviation of the Cu atom relative to the plane of the 2,9-dimethyl-1,10-phenanthroline (dmp) ligand. In the present structure, the Cu atom is shifted from the mean plane of the dmp ligand by only 0.005 (1) Å, compared with 0.318 (6) Å in the ortho­rhom­bic form. Hydrogen-bonding and π–π stacking inter­actions (mean inter­planar distance of 3.59 Å in the title compound) in the two different polymorphs are both essential to the supra­molecular assembly.

Related literature

For the orthorhombic polymorph, see: Pan et al. (2005).graphic file with name e-64-m1062-scheme1.jpg

Experimental

Crystal data

  • [Cu(HCO2)2(C14H12N2)(H2O)]

  • M r = 379.85

  • Monoclinic, Inline graphic

  • a = 10.669 (2) Å

  • b = 7.7677 (16) Å

  • c = 19.338 (4) Å

  • β = 94.22 (3)°

  • V = 1598.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 295 (2) K

  • 0.26 × 0.17 × 0.09 mm

Data collection

  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (XSCANS; Siemens, 1996) T min = 0.749, T max = 0.879

  • 15099 measured reflections

  • 3632 independent reflections

  • 3202 reflections with I > 2σ(I)

  • R int = 0.019

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.072

  • S = 1.06

  • 3632 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022812/fj2128sup1.cif

e-64-m1062-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022812/fj2128Isup2.hkl

e-64-m1062-Isup2.hkl (178.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu—O1 1.9450 (12)
Cu—O3 1.9546 (12)
Cu—O5 1.9726 (12)
Cu—N1 2.0328 (13)
Cu—N2 2.2801 (15)
O1—Cu—O3 95.53 (6)
O1—Cu—O5 87.40 (6)
O1—Cu—N1 174.06 (6)
O1—Cu—N2 107.40 (6)
O3—Cu—O5 167.05 (6)
O3—Cu—N1 86.33 (5)
O3—Cu—N2 95.28 (6)
O5—Cu—N1 89.57 (5)
O5—Cu—N2 95.87 (5)
N1—Cu—N2 77.98 (6)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5C⋯O2i 0.88 1.86 2.714 (2) 166
O5—H5B⋯O4ii 0.89 1.72 2.605 (2) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University, the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).

supplementary crystallographic information

Comment

We reported a structure of the copper-dmp complex aqua-(2,9-dimethyl-1,10-phenanthroline-κ2N:N')-diromato-copper(II) previously, which crystallizes in space group Pna21 (Pan, et al.,2005). On repeating the experiment recently, to our surprise, we found a new polyporph, (I), that had crystallized in the space group P21/c.

The crystal structure of the title compound is very similar to the previously reported complex, built up by the [Cu(dmp)(H2O)(HCOO)2] complex molecules. The Cu atoms are each square pyramidally coordinated by two N atoms of one dmp ligand, three O atoms of two formate anions and one water molecule with the N2 atom of the dmp ligand at the apical position. The apical and basal Cu—N bond distances are 2.280 (1) and 2.033 (2) Å, respectively. The Cu—O bond distances to the formate anions are 1.945 (1) and 1.955 (1) Å, slightly longer than that to the water molecule (1.973 (1) Å). Suggesting that the formate anions possess better coordinating capability to the water molecule in the structure, which also show no significant difference from the isomer crystal structure that reported by us. The Cu atom is shifted by 0.153 (1) Å from the equatorial plane through N1, O1, O3 and O5 atoms towards the apical N2 atom. Through the intermolecular hydrogen bond the complex molecules are link into double chains with the chelating dmp ligands extending parallelly on one side along [010]. The substituted phenanthroline ligands of one double chain protrude into the grooves between adjacent aromatic planes of the neighboring double chain, yielding two-dimensional layers parallel to (100). It is found that the assembly of the double chains is due to interchain π-π stacking interactions between the dmp ligands (mean interplanar distance: 3.59 Å).

Experimental

Dropwise addition of 2.0 ml (1.0 M) Na2CO3 to an aqueous solution of 0.075 g (0.442 mmol) CuCl2.2H2O in 5.0 ml H2O yielded pale blue deposit, which was separated by centrifugation and washed with doubly distilled water until no Cl- anions are detectable in the supernatant. The precipitate was then added to a solution of 0.100 g (0.442 mmol) 2,9-dimethyl-1,10-phenanthroline in a mixed solvent consisting of 15 ml H2O and 15 ml me thanol. To the mixture 1.77 ml (1.0 M) formic acid was dropped and the precipitate was slowly dissolved under continuous stirring. The resulting blue solution was allowed to stand at room temperature, and slow evaporation for 10 days afforded blue plate crystals.

Refinement

H atoms attached to C atoms of the dmp ligand were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.96 Å, and Uiso(H) values set at 1.2 Ueq(C) and 1.5 Ueq(C), respectively. The H atoms of the water molecule and formate anions were located from difference Fourier maps.

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title compound. The displacement ellipsoids are drawn at 40% probability level.

Fig. 2.

Fig. 2.

A perspective view of the crystal structure of (I), with hydrogen bonds shown as dashed lines.

Crystal data

[Cu(HCO2)2(C14H12N2)(H2O)] F000 = 780
Mr = 379.85 Dx = 1.579 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 10.669 (2) Å θ = 5.0–12.5º
b = 7.7677 (16) Å µ = 1.40 mm1
c = 19.338 (4) Å T = 295 (2) K
β = 94.22 (3)º Plate, blue
V = 1598.3 (6) Å3 0.26 × 0.17 × 0.09 mm
Z = 4

Data collection

Bruker P4 diffractometer Rint = 0.019
Radiation source: fine-focus sealed tube θmax = 27.5º
Monochromator: graphite θmin = 3.3º
T = 295(2) K h = −13→13
θ/2θ scans k = −10→9
Absorption correction: multi-scan(XSCANS; Siemens, 1996) l = −24→25
Tmin = 0.749, Tmax = 0.879 3 standard reflections
15099 measured reflections every 97 reflections
3632 independent reflections intensity decay: none
3202 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H-atom parameters constrained
wR(F2) = 0.072   w = 1/[σ2(Fo2) + (0.0413P)2 + 0.5201P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
3632 reflections Δρmax = 0.35 e Å3
219 parameters Δρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu 0.209657 (18) 0.90493 (2) 0.156116 (9) 0.02440 (7)
N1 0.21922 (12) 0.80402 (17) 0.05966 (6) 0.0257 (3)
N2 0.42113 (13) 0.89494 (17) 0.14606 (7) 0.0275 (3)
C1 0.11886 (17) 0.7632 (2) 0.01841 (9) 0.0325 (4)
C2 0.1317 (2) 0.6999 (3) −0.04910 (10) 0.0472 (5)
H2A 0.0605 0.6741 −0.0778 0.057*
C3 0.2471 (2) 0.6765 (3) −0.07224 (10) 0.0508 (5)
H3A 0.2552 0.6332 −0.1165 0.061*
C4 0.35505 (19) 0.7178 (3) −0.02912 (9) 0.0393 (4)
C5 0.4803 (2) 0.6986 (3) −0.04949 (11) 0.0541 (6)
H5A 0.4929 0.6540 −0.0931 0.065*
C6 0.5804 (2) 0.7435 (3) −0.00711 (11) 0.0537 (6)
H6A 0.6609 0.7298 −0.0217 0.064*
C7 0.56433 (17) 0.8120 (3) 0.05998 (10) 0.0397 (4)
C8 0.66470 (19) 0.8661 (3) 0.10598 (12) 0.0511 (5)
H8A 0.7468 0.8577 0.0931 0.061*
C9 0.64241 (19) 0.9302 (3) 0.16884 (12) 0.0478 (5)
H9A 0.7091 0.9659 0.1992 0.057*
C10 0.51845 (17) 0.9430 (2) 0.18838 (9) 0.0350 (4)
C11 0.44274 (15) 0.8321 (2) 0.08260 (8) 0.0289 (3)
C12 0.33615 (16) 0.7831 (2) 0.03694 (8) 0.0281 (3)
C13 −0.00801 (18) 0.7856 (3) 0.04536 (10) 0.0438 (4)
H13A −0.0302 0.6831 0.0694 0.066*
H13B −0.0691 0.8066 0.0073 0.066*
H13C −0.0062 0.8816 0.0767 0.066*
C14 0.4920 (2) 1.0068 (3) 0.25888 (10) 0.0537 (6)
H14A 0.4243 1.0884 0.2547 0.081*
H14B 0.5659 1.0614 0.2802 0.081*
H14C 0.4691 0.9116 0.2870 0.081*
O1 0.18364 (13) 0.98991 (18) 0.24857 (6) 0.0408 (3)
O2 −0.02000 (15) 1.0452 (3) 0.22488 (8) 0.0613 (4)
C15 0.0760 (2) 1.0407 (3) 0.26275 (10) 0.0471 (5)
O3 0.18495 (13) 1.12747 (15) 0.10994 (6) 0.0365 (3)
O4 0.18327 (18) 1.41073 (16) 0.10823 (8) 0.0530 (4)
C16 0.19793 (18) 1.2723 (2) 0.13792 (9) 0.0360 (4)
O5 0.19568 (12) 0.67025 (15) 0.19376 (6) 0.0344 (3)
H5B 0.1958 0.5834 0.1636 0.051*
H5C 0.1416 0.6452 0.2242 0.054*
H15 0.0751 1.0904 0.3111 0.052*
H16 0.2383 1.2705 0.1852 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.02683 (11) 0.02277 (11) 0.02410 (11) 0.00161 (7) 0.00524 (7) −0.00126 (7)
N1 0.0280 (7) 0.0227 (6) 0.0263 (6) −0.0003 (5) 0.0021 (5) −0.0001 (5)
N2 0.0267 (7) 0.0283 (7) 0.0276 (6) −0.0012 (5) 0.0032 (5) 0.0011 (5)
C1 0.0353 (9) 0.0304 (8) 0.0313 (8) −0.0023 (7) −0.0011 (7) −0.0003 (7)
C2 0.0495 (12) 0.0554 (12) 0.0350 (9) −0.0055 (10) −0.0086 (8) −0.0096 (9)
C3 0.0627 (14) 0.0601 (13) 0.0297 (9) −0.0010 (11) 0.0040 (9) −0.0158 (9)
C4 0.0467 (11) 0.0421 (10) 0.0300 (8) 0.0022 (8) 0.0093 (7) −0.0060 (8)
C5 0.0587 (14) 0.0690 (15) 0.0373 (10) 0.0073 (11) 0.0227 (9) −0.0110 (10)
C6 0.0430 (12) 0.0737 (15) 0.0474 (11) 0.0080 (10) 0.0234 (9) −0.0016 (11)
C7 0.0319 (9) 0.0479 (11) 0.0408 (9) 0.0023 (8) 0.0126 (7) 0.0052 (9)
C8 0.0246 (9) 0.0722 (14) 0.0575 (12) −0.0005 (9) 0.0102 (8) 0.0079 (11)
C9 0.0306 (10) 0.0592 (13) 0.0526 (12) −0.0096 (9) −0.0033 (8) 0.0047 (10)
C10 0.0323 (9) 0.0346 (9) 0.0374 (9) −0.0041 (7) −0.0018 (7) 0.0021 (7)
C11 0.0292 (8) 0.0288 (8) 0.0295 (7) 0.0007 (6) 0.0077 (6) 0.0020 (7)
C12 0.0327 (8) 0.0264 (7) 0.0258 (7) 0.0020 (6) 0.0070 (6) 0.0006 (6)
C13 0.0308 (9) 0.0564 (12) 0.0434 (10) −0.0056 (9) −0.0033 (8) 0.0005 (9)
C14 0.0484 (12) 0.0687 (15) 0.0426 (11) −0.0057 (11) −0.0066 (9) −0.0160 (11)
O1 0.0475 (8) 0.0463 (8) 0.0293 (6) 0.0104 (6) 0.0073 (5) −0.0055 (6)
O2 0.0465 (9) 0.0904 (13) 0.0485 (8) 0.0135 (9) 0.0128 (7) −0.0072 (9)
C15 0.0577 (13) 0.0534 (12) 0.0319 (9) 0.0127 (10) 0.0159 (9) −0.0061 (9)
O3 0.0529 (8) 0.0249 (6) 0.0319 (6) 0.0037 (5) 0.0045 (5) 0.0000 (5)
O4 0.0859 (12) 0.0259 (7) 0.0479 (8) 0.0012 (7) 0.0098 (8) 0.0004 (6)
C16 0.0443 (10) 0.0292 (9) 0.0346 (8) −0.0012 (7) 0.0028 (7) −0.0013 (7)
O5 0.0415 (7) 0.0271 (6) 0.0359 (6) −0.0028 (5) 0.0122 (5) 0.0032 (5)

Geometric parameters (Å, °)

Cu—O1 1.9450 (12) C7—C11 1.408 (2)
Cu—O3 1.9546 (12) C8—C9 1.351 (3)
Cu—O5 1.9726 (12) C8—H8A 0.9300
Cu—N1 2.0328 (13) C9—C10 1.405 (3)
Cu—N2 2.2801 (15) C9—H9A 0.9300
N1—C1 1.326 (2) C10—C14 1.497 (3)
N1—C12 1.363 (2) C11—C12 1.439 (2)
N2—C10 1.327 (2) C13—H13A 0.9600
N2—C11 1.356 (2) C13—H13B 0.9600
C1—C2 1.411 (2) C13—H13C 0.9600
C1—C13 1.496 (3) C14—H14A 0.9600
C2—C3 1.353 (3) C14—H14B 0.9600
C2—H2A 0.9300 C14—H14C 0.9600
C3—C4 1.408 (3) O1—C15 1.264 (2)
C3—H3A 0.9300 O2—C15 1.215 (3)
C4—C12 1.403 (2) C15—H15 1.0122
C4—C5 1.429 (3) O3—C16 1.252 (2)
C5—C6 1.343 (3) O4—C16 1.223 (2)
C5—H5A 0.9300 C16—H16 0.9821
C6—C7 1.424 (3) O5—H5B 0.8914
C6—H6A 0.9300 O5—H5C 0.8760
C7—C8 1.405 (3)
O1—Cu—O3 95.53 (6) C9—C8—H8A 119.9
O1—Cu—O5 87.40 (6) C7—C8—H8A 119.9
O1—Cu—N1 174.06 (6) C8—C9—C10 119.97 (19)
O1—Cu—N2 107.40 (6) C8—C9—H9A 120.0
O3—Cu—O5 167.05 (6) C10—C9—H9A 120.0
O3—Cu—N1 86.33 (5) N2—C10—C9 121.54 (18)
O3—Cu—N2 95.28 (6) N2—C10—C14 117.62 (17)
O5—Cu—N1 89.57 (5) C9—C10—C14 120.81 (18)
O5—Cu—N2 95.87 (5) N2—C11—C7 122.89 (16)
N1—Cu—N2 77.98 (6) N2—C11—C12 118.11 (14)
C1—N1—C12 119.71 (14) C7—C11—C12 119.01 (15)
C1—N1—Cu 123.47 (11) N1—C12—C4 122.22 (16)
C12—N1—Cu 116.80 (11) N1—C12—C11 118.15 (14)
C10—N2—C11 118.80 (15) C4—C12—C11 119.63 (16)
C10—N2—Cu 132.20 (12) C1—C13—H13A 109.5
C11—N2—Cu 108.95 (11) C1—C13—H13B 109.5
N1—C1—C2 120.71 (17) H13A—C13—H13B 109.5
N1—C1—C13 118.29 (15) C1—C13—H13C 109.5
C2—C1—C13 121.00 (17) H13A—C13—H13C 109.5
C3—C2—C1 120.38 (18) H13B—C13—H13C 109.5
C3—C2—H2A 119.8 C10—C14—H14A 109.5
C1—C2—H2A 119.8 C10—C14—H14B 109.5
C2—C3—C4 119.86 (17) H14A—C14—H14B 109.5
C2—C3—H3A 120.1 C10—C14—H14C 109.5
C4—C3—H3A 120.1 H14A—C14—H14C 109.5
C12—C4—C3 117.10 (18) H14B—C14—H14C 109.5
C12—C4—C5 119.28 (18) C15—O1—Cu 119.93 (13)
C3—C4—C5 123.61 (18) O2—C15—O1 128.13 (18)
C6—C5—C4 121.48 (18) O2—C15—H15 118.8
C6—C5—H5A 119.3 O1—C15—H15 112.9
C4—C5—H5A 119.3 C16—O3—Cu 126.20 (12)
C5—C6—C7 120.61 (18) O4—C16—O3 125.51 (17)
C5—C6—H6A 119.7 O4—C16—H16 118.8
C7—C6—H6A 119.7 O3—C16—H16 114.6
C8—C7—C11 116.55 (17) Cu—O5—H5B 117.0
C8—C7—C6 123.44 (18) Cu—O5—H5C 121.6
C11—C7—C6 119.99 (19) H5B—O5—H5C 107.7
C9—C8—C7 120.23 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5C···O2i 0.88 1.86 2.714 (2) 166
O5—H5B···O4ii 0.89 1.72 2.605 (2) 175

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2128).

References

  1. Pan, J. G., Lin, J. L. & Zheng, Y. Q. (2005). Z. Kristallogr. New Cryst. Struct 220, 495–496.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022812/fj2128sup1.cif

e-64-m1062-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022812/fj2128Isup2.hkl

e-64-m1062-Isup2.hkl (178.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES