Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 31;64(Pt 8):m1098–m1099. doi: 10.1107/S1600536808023623

catena-Poly[[[diaqua­terbium(III)]-tri-μ2-isonicotinato-κ6 O:O′] tris(perchlorate) monohydrate]

Xiao-Hui Huang a, Wei-Bo Pan a, Xiao-Hong Xu a, Rong-Hua Zeng a,b,*
PMCID: PMC2962002  PMID: 21203072

Abstract

In the title complex, {[Tb(C6H5NO2)3(H2O)2](ClO4)3·H2O}n, the TbIII ion is coordinated by six O atoms from six isonicotinate (inic) ligands and two water mol­ecules, displaying a bicapped trigonal-prismatic geometry. The inic ligands, which are protonated at the pyridine N atom, link the metal centres, forming a polymeric chain running parallel to the a axis. The chains are further assembled via intra- and inter­molecular O—H⋯O and N—H⋯O hydrogen-bonding inter­actions into a three-dimensional supra­molecular network involving the inic ligands, the water mol­ecules and the perchlorate anions. One of the perchlorate ions is disordered over two sites with occupancies of 0.561 (17) and 0.439 (17).

Related literature

For related literature, see: Eddaoudi et al. (2001); Rizk et al. (2005). graphic file with name e-64-m1098-scheme1.jpg

Experimental

Crystal data

  • [Tb(C6H5NO2)3(H2O)2](ClO4)3·H2O

  • M r = 880.65

  • Triclinic, Inline graphic

  • a = 9.5270 (4) Å

  • b = 10.9508 (4) Å

  • c = 15.1309 (6) Å

  • α = 104.402 (2)°

  • β = 91.480 (2)°

  • γ = 111.159 (2)°

  • V = 1414.17 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.88 mm−1

  • T = 296 (2) K

  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS, Sheldrick, 1996) T min = 0.566, T max = 0.645

  • 19700 measured reflections

  • 6605 independent reflections

  • 6206 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.048

  • S = 1.04

  • 6605 reflections

  • 452 parameters

  • 77 restraints

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.79 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023623/rz2238sup1.cif

e-64-m1098-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023623/rz2238Isup2.hkl

e-64-m1098-Isup2.hkl (323.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.86 2.15 2.949 (4) 154
N2—H2⋯O1Wii 0.86 1.91 2.756 (3) 166
N3—H3A⋯O5iii 0.86 2.07 2.902 (3) 162
O1W—H1W⋯O4 0.84 2.48 3.054 (4) 127
O1W—H2W⋯O13 0.84 2.26 3.030 (3) 152
O2W—H4W⋯O3Wiv 0.84 2.20 2.920 (3) 145
O2W—H4W⋯O17 0.84 2.53 3.164 (2) 133
O2W—H3W⋯O11v 0.83 2.23 2.959 (9) 147
O3W—H5W⋯O12 0.84 2.20 2.934 (9) 146
O3W—H6W⋯O11vi 0.83 2.14 2.843 (9) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Comment

The design, synthesis, characterization, and properties of supramolecular networks formed by using functionalized organic molecules as bridges between metal centres are of great interest (Rizk et al., 2005; Eddaoudi et al., 2001). As a building block, isonicotinic acid is an excellent candidate for the construction of supramolecular complexes. Recently, we obtained the title new coordination polymer, whise structure is reported here.

In the title compound, each TbIII centre is coordinated by six oxygen donors of six inic ligands and two water molecules (Fig. 1), and exhibits a bicapped trigonal prismatic coordination geometry. The TbIII ions are linked by inic ligands to form a polymeric chain in the a axis direction. The Tb···Tb separations between adjacent metal atoms are 4.318 (4) and 5.259 (5) Å. Intra- and intermolecular O—H···O and N—H···O hydrogen bonding interaction (Table 1) involving the inic ligands, the water molecules and the perchlorate ions assemble neighboring chains into a three-dimensional supramolecular network (Fig. 2).

Experimental

A mixture of Tb4O7 (0.189 g, 0.25 mmol), isonicotinic acid (0.135 g, 1.5 mmol) and water (10 ml) in the presence of HClO4 (0.385 mmol) was stirred vigorously for 20 min and then sealed into a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated to and maintained at 433 K for 3 days, and then cooled to room temperature at 5 K h-1 to obtain colourless block-shaped crystals of the title compound suitable for X-ray analysis.

Refinement

The disordered perchlorate ion was spli into two components with site occupancy factors of 0.561 (17) and0.439 (17). The Cl···O and O···O distances were restrained to be 1.44 (1) and 2.35 (1) Å, respectively. Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.35 Å, and with Uiso(H) = 1.5 Ueq(O). All other H atoms were placed at calculated positions and were treated as riding with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atomic-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. Only the major component of disorder is shown. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) -x, 1-y, 1-z].

Fig. 2.

Fig. 2.

The supramolecular network of the title compound viewed along the a axis. Only the major componentof disorder is shown.

Crystal data

[Tb(C6H5NO2)3(H2O)2](ClO4)3·H2O Z = 2
Mr = 880.65 F000 = 868
Triclinic, P1 Dx = 2.068 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.5270 (4) Å Cell parameters from 6377 reflections
b = 10.9508 (4) Å θ = 1.7–28.0º
c = 15.1309 (6) Å µ = 2.88 mm1
α = 104.402 (2)º T = 296 (2) K
β = 91.480 (2)º Block, colourless
γ = 111.159 (2)º 0.20 × 0.18 × 0.15 mm
V = 1414.17 (10) Å3

Data collection

Bruker APEXII area-detector diffractometer 6605 independent reflections
Radiation source: fine-focus sealed tube 6206 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.024
T = 296(2) K θmax = 27.8º
φ and ω scan θmin = 2.1º
Absorption correction: multi-scan(SADABS, Sheldrick, 1996) h = −12→12
Tmin = 0.566, Tmax = 0.646 k = −14→14
19700 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021 H-atom parameters constrained
wR(F2) = 0.048   w = 1/[σ2(Fo2) + (0.021P)2 + 1.1255P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
6605 reflections Δρmax = 0.95 e Å3
452 parameters Δρmin = −0.79 e Å3
77 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.5075 (3) 0.5494 (2) 0.34089 (15) 0.0209 (4)
C2 0.5770 (3) 0.5734 (2) 0.25475 (15) 0.0226 (5)
C3 0.5067 (3) 0.6111 (3) 0.19077 (17) 0.0316 (5)
H3 0.4147 0.6209 0.1997 0.038*
C4 0.5740 (4) 0.6338 (3) 0.11420 (19) 0.0421 (7)
H4 0.5284 0.6602 0.0712 0.051*
C5 0.7756 (4) 0.5802 (3) 0.1610 (2) 0.0432 (7)
H5 0.8660 0.5686 0.1494 0.052*
C6 0.7134 (3) 0.5586 (3) 0.23913 (19) 0.0331 (6)
H6 0.7626 0.5341 0.2815 0.040*
C7 0.5896 (3) 0.7590 (2) 0.58623 (15) 0.0212 (4)
C8 0.6542 (3) 0.9101 (2) 0.63494 (16) 0.0231 (5)
C9 0.5830 (3) 0.9941 (3) 0.6193 (2) 0.0358 (6)
H9 0.4924 0.9581 0.5800 0.043*
C10 0.6474 (4) 1.1312 (3) 0.6624 (2) 0.0416 (7)
H10 0.6011 1.1889 0.6520 0.050*
C11 0.8452 (4) 1.1036 (3) 0.7370 (2) 0.0510 (8)
H11 0.9340 1.1423 0.7781 0.061*
C12 0.7861 (3) 0.9652 (3) 0.6950 (2) 0.0386 (7)
H12 0.8347 0.9101 0.7071 0.046*
C13 −0.0791 (2) 0.3637 (2) 0.35190 (15) 0.0189 (4)
C14 −0.1596 (3) 0.2516 (2) 0.26504 (15) 0.0214 (4)
C15 −0.3153 (3) 0.2093 (3) 0.24151 (18) 0.0316 (6)
H15 −0.3706 0.2529 0.2772 0.038*
C16 −0.3860 (4) 0.1024 (3) 0.1649 (2) 0.0432 (7)
H16 −0.4903 0.0716 0.1489 0.052*
C17 −0.1552 (4) 0.0837 (3) 0.13243 (19) 0.0426 (7)
H17 −0.1023 0.0413 0.0934 0.051*
C18 −0.0790 (3) 0.1880 (3) 0.20941 (17) 0.0314 (5)
H18 0.0252 0.2155 0.2239 0.038*
Cl1 0.19389 (9) 0.70180 (8) 0.03011 (5) 0.04494 (17)
Cl2 0.29246 (9) 0.22081 (7) 0.09772 (5) 0.04040 (16)
N1 0.7053 (3) 0.6179 (3) 0.10183 (17) 0.0461 (7)
H1 0.7463 0.6327 0.0536 0.055*
N2 0.7759 (3) 1.1812 (2) 0.71899 (18) 0.0424 (6)
H2 0.8156 1.2674 0.7449 0.051*
N3 −0.3051 (3) 0.0434 (2) 0.11387 (16) 0.0438 (6)
H3A −0.3514 −0.0242 0.0665 0.053*
O1 0.3135 (4) 0.8310 (3) 0.0649 (2) 0.0980 (12)
O2 0.1590 (4) 0.6721 (3) −0.06629 (17) 0.0719 (8)
O3 0.0636 (3) 0.7009 (3) 0.0738 (2) 0.0740 (8)
O4 0.2370 (4) 0.5967 (3) 0.0487 (2) 0.0825 (9)
O5 0.4033 (3) 0.2007 (3) 0.03987 (17) 0.0615 (7)
O6 0.2468 (4) 0.3225 (3) 0.0772 (2) 0.0801 (9)
O7 0.3532 (4) 0.2641 (3) 0.19129 (16) 0.0728 (8)
O8 0.1675 (3) 0.0947 (3) 0.0809 (2) 0.0852 (10)
O13 0.37551 (18) 0.54575 (17) 0.34757 (11) 0.0256 (3)
O14 0.58826 (19) 0.53420 (17) 0.40081 (11) 0.0272 (4)
O15 0.45551 (18) 0.70996 (16) 0.54760 (12) 0.0265 (4)
O16 0.67592 (18) 0.69729 (16) 0.58981 (12) 0.0259 (4)
O17 −0.14890 (19) 0.43444 (17) 0.39150 (11) 0.0275 (4)
O18 0.05161 (18) 0.37668 (17) 0.37767 (12) 0.0281 (4)
Tb1 0.270670 (11) 0.491645 (10) 0.483309 (7) 0.01654 (4)
O1W 0.1147 (2) 0.53818 (19) 0.22458 (14) 0.0412 (5)
H1W 0.1025 0.4998 0.1681 0.062*
H2W 0.1711 0.5100 0.2502 0.062*
O2W 0.18165 (19) 0.66276 (17) 0.44776 (12) 0.0298 (4)
H4W 0.0905 0.6479 0.4333 0.045*
H3W 0.2191 0.7391 0.4861 0.045*
O3W 0.0974 (2) 0.28637 (18) 0.52869 (13) 0.0323 (4)
H5W 0.1357 0.2549 0.5636 0.048*
H6W 0.0490 0.2213 0.4832 0.048*
Cl3 0.21484 (9) 0.04724 (7) 0.62478 (5) 0.04379 (17) 0.561 (17)
O9 0.3356 (12) 0.1332 (11) 0.5842 (9) 0.062 (3) 0.561 (17)
O10 0.3010 (12) 0.0741 (6) 0.7152 (4) 0.065 (2) 0.561 (17)
O11 0.1764 (12) −0.0885 (8) 0.5784 (8) 0.066 (2) 0.561 (17)
O12 0.0975 (11) 0.0931 (12) 0.6326 (9) 0.109 (4) 0.561 (17)
Cl3' 0.21484 (9) 0.04724 (7) 0.62478 (5) 0.04379 (17) 0.439 (17)
O9' 0.2951 (16) 0.1488 (12) 0.5860 (10) 0.056 (3) 0.439 (17)
O10' 0.2119 (17) 0.0782 (8) 0.7181 (5) 0.070 (3) 0.439 (17)
O11' 0.2277 (15) −0.0826 (11) 0.5862 (10) 0.065 (3) 0.439 (17)
O12' 0.0520 (9) 0.0154 (16) 0.5847 (10) 0.108 (4) 0.439 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0267 (11) 0.0172 (10) 0.0180 (10) 0.0069 (9) 0.0022 (8) 0.0055 (8)
C2 0.0243 (11) 0.0208 (11) 0.0200 (11) 0.0060 (9) 0.0040 (9) 0.0047 (9)
C3 0.0322 (13) 0.0395 (14) 0.0264 (13) 0.0141 (11) 0.0057 (10) 0.0141 (11)
C4 0.0515 (18) 0.0481 (17) 0.0271 (14) 0.0144 (14) 0.0052 (12) 0.0180 (13)
C5 0.0402 (16) 0.0495 (18) 0.0404 (16) 0.0183 (14) 0.0189 (13) 0.0098 (14)
C6 0.0320 (13) 0.0383 (14) 0.0327 (14) 0.0170 (11) 0.0088 (11) 0.0104 (11)
C7 0.0236 (11) 0.0185 (10) 0.0199 (11) 0.0064 (9) 0.0062 (8) 0.0046 (8)
C8 0.0238 (11) 0.0186 (11) 0.0241 (11) 0.0067 (9) 0.0045 (9) 0.0028 (9)
C9 0.0327 (14) 0.0224 (12) 0.0481 (17) 0.0093 (11) −0.0036 (12) 0.0052 (11)
C10 0.0456 (17) 0.0229 (13) 0.0564 (19) 0.0149 (12) 0.0067 (14) 0.0085 (12)
C11 0.0418 (17) 0.0331 (16) 0.058 (2) 0.0070 (13) −0.0149 (15) −0.0099 (14)
C12 0.0378 (15) 0.0268 (13) 0.0439 (16) 0.0129 (11) −0.0090 (12) −0.0022 (12)
C13 0.0198 (10) 0.0184 (10) 0.0178 (10) 0.0056 (8) 0.0013 (8) 0.0065 (8)
C14 0.0254 (11) 0.0209 (11) 0.0174 (10) 0.0083 (9) 0.0008 (8) 0.0054 (9)
C15 0.0279 (13) 0.0347 (14) 0.0271 (13) 0.0088 (11) −0.0016 (10) 0.0050 (11)
C16 0.0391 (16) 0.0383 (16) 0.0384 (16) 0.0031 (13) −0.0131 (12) 0.0062 (13)
C17 0.065 (2) 0.0353 (15) 0.0265 (14) 0.0237 (14) 0.0060 (13) −0.0009 (12)
C18 0.0370 (14) 0.0313 (13) 0.0256 (12) 0.0154 (11) 0.0048 (10) 0.0041 (10)
Cl1 0.0505 (4) 0.0462 (4) 0.0342 (4) 0.0140 (3) 0.0078 (3) 0.0105 (3)
Cl2 0.0534 (4) 0.0382 (4) 0.0268 (3) 0.0162 (3) 0.0091 (3) 0.0056 (3)
N1 0.0547 (16) 0.0498 (15) 0.0274 (12) 0.0105 (13) 0.0208 (11) 0.0122 (11)
N2 0.0426 (14) 0.0191 (11) 0.0502 (15) 0.0027 (10) 0.0063 (11) −0.0033 (10)
N3 0.0626 (17) 0.0297 (12) 0.0244 (12) 0.0088 (12) −0.0121 (11) −0.0029 (9)
O1 0.076 (2) 0.072 (2) 0.092 (2) −0.0128 (16) 0.0228 (18) −0.0111 (17)
O2 0.122 (2) 0.0698 (18) 0.0360 (13) 0.0448 (17) 0.0139 (14) 0.0228 (12)
O3 0.0541 (15) 0.089 (2) 0.0655 (17) 0.0209 (14) 0.0186 (13) 0.0063 (15)
O4 0.112 (3) 0.099 (2) 0.0642 (18) 0.065 (2) 0.0037 (17) 0.0356 (17)
O5 0.0657 (16) 0.0725 (17) 0.0480 (14) 0.0280 (13) 0.0226 (12) 0.0155 (12)
O6 0.116 (3) 0.091 (2) 0.0670 (18) 0.068 (2) 0.0267 (17) 0.0357 (17)
O7 0.112 (2) 0.0620 (16) 0.0280 (12) 0.0186 (16) 0.0000 (13) 0.0070 (11)
O8 0.0703 (19) 0.0567 (17) 0.089 (2) −0.0050 (14) 0.0157 (16) −0.0055 (15)
O13 0.0243 (8) 0.0332 (9) 0.0235 (8) 0.0135 (7) 0.0070 (6) 0.0111 (7)
O14 0.0298 (9) 0.0293 (9) 0.0227 (8) 0.0099 (7) −0.0030 (7) 0.0102 (7)
O15 0.0225 (8) 0.0180 (8) 0.0336 (9) 0.0046 (6) −0.0021 (7) 0.0027 (7)
O16 0.0263 (9) 0.0224 (8) 0.0297 (9) 0.0125 (7) 0.0043 (7) 0.0034 (7)
O17 0.0313 (9) 0.0303 (9) 0.0231 (8) 0.0173 (7) 0.0062 (7) 0.0026 (7)
O18 0.0218 (8) 0.0278 (9) 0.0296 (9) 0.0086 (7) −0.0055 (7) 0.0014 (7)
Tb1 0.01613 (6) 0.01654 (6) 0.01645 (6) 0.00657 (4) 0.00083 (4) 0.00326 (4)
O1W 0.0515 (12) 0.0314 (10) 0.0364 (11) 0.0131 (9) −0.0026 (9) 0.0068 (8)
O2W 0.0266 (9) 0.0266 (9) 0.0377 (10) 0.0130 (7) 0.0011 (7) 0.0073 (8)
O3W 0.0319 (9) 0.0255 (9) 0.0367 (10) 0.0071 (7) 0.0033 (8) 0.0094 (8)
Cl3 0.0564 (4) 0.0332 (3) 0.0465 (4) 0.0181 (3) 0.0120 (3) 0.0168 (3)
O9 0.067 (5) 0.052 (4) 0.069 (4) 0.017 (3) 0.020 (3) 0.026 (3)
O10 0.092 (5) 0.047 (3) 0.042 (3) 0.007 (3) −0.009 (3) 0.018 (2)
O11 0.069 (5) 0.027 (3) 0.081 (4) 0.006 (3) −0.027 (4) −0.001 (2)
O12 0.083 (5) 0.120 (7) 0.144 (7) 0.066 (5) 0.042 (5) 0.029 (5)
Cl3' 0.0564 (4) 0.0332 (3) 0.0465 (4) 0.0181 (3) 0.0120 (3) 0.0168 (3)
O9' 0.075 (6) 0.035 (4) 0.056 (4) 0.012 (4) 0.018 (4) 0.024 (3)
O10' 0.101 (7) 0.052 (4) 0.049 (4) 0.020 (4) 0.018 (4) 0.016 (3)
O11' 0.067 (6) 0.041 (4) 0.078 (6) 0.022 (4) −0.002 (5) 0.000 (3)
O12' 0.063 (5) 0.128 (8) 0.129 (8) 0.051 (5) 0.002 (5) 0.008 (6)

Geometric parameters (Å, °)

C1—O13 1.251 (3) Cl1—O2 1.416 (3)
C1—O14 1.255 (3) Cl1—O1 1.419 (3)
C1—C2 1.515 (3) Cl1—O3 1.419 (3)
C2—C6 1.385 (3) Cl1—O4 1.438 (3)
C2—C3 1.386 (3) Cl2—O7 1.411 (2)
C3—C4 1.372 (4) Cl2—O8 1.419 (3)
C3—H3 0.9300 Cl2—O6 1.428 (3)
C4—N1 1.336 (4) Cl2—O5 1.432 (2)
C4—H4 0.9300 N1—H1 0.8600
C5—N1 1.332 (4) N2—H2 0.8600
C5—C6 1.370 (4) N3—H3A 0.8600
C5—H5 0.9300 O13—Tb1 2.4189 (16)
C6—H6 0.9300 O14—Tb1i 2.3152 (16)
C7—O16 1.246 (3) O15—Tb1 2.3406 (15)
C7—O15 1.254 (3) O16—Tb1i 2.3268 (16)
C7—C8 1.515 (3) O17—Tb1ii 2.3702 (16)
C8—C12 1.375 (4) O18—Tb1 2.3293 (15)
C8—C9 1.383 (4) Tb1—O14i 2.3152 (16)
C9—C10 1.372 (4) Tb1—O16i 2.3268 (16)
C9—H9 0.9300 Tb1—O17ii 2.3701 (16)
C10—N2 1.327 (4) Tb1—O2W 2.4789 (17)
C10—H10 0.9300 Tb1—O3W 2.5292 (17)
C11—N2 1.321 (4) O1W—H1W 0.8376
C11—C12 1.380 (4) O1W—H2W 0.8389
C11—H11 0.9300 O2W—H4W 0.8361
C12—H12 0.9300 O2W—H3W 0.8339
C13—O18 1.242 (3) O3W—H5W 0.8383
C13—O17 1.250 (3) O3W—H6W 0.8343
C13—C14 1.512 (3) Cl3—O10' 1.371 (7)
C14—C18 1.382 (3) Cl3—O12 1.378 (6)
C14—C15 1.391 (3) Cl3—O9' 1.378 (9)
C15—C16 1.372 (4) Cl3—O11 1.382 (8)
C15—H15 0.9300 Cl3—O11' 1.447 (9)
C16—N3 1.323 (4) Cl3—O9 1.459 (8)
C16—H16 0.9300 Cl3—O10 1.484 (6)
C17—N3 1.333 (4) Cl3—O12' 1.534 (8)
C17—C18 1.373 (4) O10—O10' 0.867 (9)
C17—H17 0.9300 O12—O12' 0.921 (10)
C18—H18 0.9300 O12—O10' 1.745 (12)
O13—C1—O14 124.7 (2) C17—N3—H3A 118.5
O13—C1—C2 118.7 (2) C1—O13—Tb1 115.63 (14)
O14—C1—C2 116.6 (2) C1—O14—Tb1i 177.12 (16)
C6—C2—C3 118.9 (2) C7—O15—Tb1 136.30 (15)
C6—C2—C1 120.1 (2) C7—O16—Tb1i 144.47 (15)
C3—C2—C1 121.0 (2) C13—O17—Tb1ii 152.03 (16)
C4—C3—C2 119.5 (3) C13—O18—Tb1 148.90 (15)
C4—C3—H3 120.3 O14i—Tb1—O16i 76.86 (6)
C2—C3—H3 120.3 O14i—Tb1—O18 142.30 (6)
N1—C4—C3 119.6 (3) O16i—Tb1—O18 81.76 (6)
N1—C4—H4 120.2 O14i—Tb1—O15 75.81 (6)
C3—C4—H4 120.2 O16i—Tb1—O15 124.12 (6)
N1—C5—C6 119.4 (3) O18—Tb1—O15 141.36 (6)
N1—C5—H5 120.3 O14i—Tb1—O17ii 81.73 (6)
C6—C5—H5 120.3 O16i—Tb1—O17ii 140.19 (6)
C5—C6—C2 119.8 (3) O18—Tb1—O17ii 95.97 (6)
C5—C6—H6 120.1 O15—Tb1—O17ii 81.27 (6)
C2—C6—H6 120.1 O14i—Tb1—O13 122.25 (6)
O16—C7—O15 127.4 (2) O16i—Tb1—O13 76.08 (6)
O16—C7—C8 116.1 (2) O18—Tb1—O13 81.06 (6)
O15—C7—C8 116.6 (2) O15—Tb1—O13 78.95 (6)
C12—C8—C9 119.3 (2) O17ii—Tb1—O13 143.18 (6)
C12—C8—C7 119.7 (2) O14i—Tb1—O2W 140.16 (6)
C9—C8—C7 121.0 (2) O16i—Tb1—O2W 140.79 (6)
C10—C9—C8 119.3 (3) O18—Tb1—O2W 71.74 (6)
C10—C9—H9 120.3 O15—Tb1—O2W 70.71 (6)
C8—C9—H9 120.3 O17ii—Tb1—O2W 72.52 (6)
N2—C10—C9 119.7 (3) O13—Tb1—O2W 71.74 (6)
N2—C10—H10 120.1 O14i—Tb1—O3W 73.90 (6)
C9—C10—H10 120.1 O16i—Tb1—O3W 71.06 (6)
N2—C11—C12 120.1 (3) O18—Tb1—O3W 69.91 (6)
N2—C11—H11 120.0 O15—Tb1—O3W 141.20 (6)
C12—C11—H11 120.0 O17ii—Tb1—O3W 70.93 (6)
C8—C12—C11 119.0 (3) O13—Tb1—O3W 138.50 (6)
C8—C12—H12 120.5 O2W—Tb1—O3W 122.65 (6)
C11—C12—H12 120.5 H1W—O1W—H2W 107.2
O18—C13—O17 125.8 (2) Tb1—O2W—H4W 123.7
O18—C13—C14 116.4 (2) Tb1—O2W—H3W 113.6
O17—C13—C14 117.84 (19) H4W—O2W—H3W 107.2
C18—C14—C15 119.4 (2) Tb1—O3W—H5W 118.0
C18—C14—C13 120.0 (2) Tb1—O3W—H6W 112.5
C15—C14—C13 120.6 (2) H5W—O3W—H6W 106.9
C16—C15—C14 119.1 (3) O10'—Cl3—O12 78.8 (5)
C16—C15—H15 120.5 O10'—Cl3—O9' 119.3 (7)
C14—C15—H15 120.5 O12—Cl3—O9' 91.0 (7)
N3—C16—C15 119.7 (3) O10'—Cl3—O11 117.0 (7)
N3—C16—H16 120.2 O12—Cl3—O11 116.2 (5)
C15—C16—H16 120.2 O9'—Cl3—O11 121.0 (9)
N3—C17—C18 119.7 (3) O10'—Cl3—O11' 113.6 (7)
N3—C17—H17 120.1 O12—Cl3—O11' 135.4 (6)
C18—C17—H17 120.1 O9'—Cl3—O11' 114.8 (8)
C17—C18—C14 119.0 (3) O10'—Cl3—O9 121.1 (7)
C17—C18—H18 120.5 O12—Cl3—O9 110.0 (5)
C14—C18—H18 120.5 O11—Cl3—O9 110.2 (6)
O2—Cl1—O1 110.4 (2) O11'—Cl3—O9 99.6 (8)
O2—Cl1—O3 109.95 (19) O12—Cl3—O10 112.4 (4)
O1—Cl1—O3 109.64 (19) O9'—Cl3—O10 107.3 (8)
O2—Cl1—O4 108.26 (17) O11—Cl3—O10 108.0 (5)
O1—Cl1—O4 110.4 (2) O11'—Cl3—O10 94.6 (6)
O3—Cl1—O4 108.2 (2) O9—Cl3—O10 98.6 (6)
O7—Cl2—O8 108.89 (19) O10'—Cl3—O12' 104.2 (6)
O7—Cl2—O6 109.02 (18) O9'—Cl3—O12' 100.7 (7)
O8—Cl2—O6 111.1 (2) O11—Cl3—O12' 81.5 (6)
O7—Cl2—O5 110.65 (18) O11'—Cl3—O12' 100.6 (5)
O8—Cl2—O5 108.17 (17) O9—Cl3—O12' 116.1 (6)
O6—Cl2—O5 109.06 (17) O10—Cl3—O12' 138.6 (5)
C5—N1—C4 122.8 (2) O10'—O10—Cl3 65.4 (6)
C5—N1—H1 118.6 O12'—O12—Cl3 81.1 (7)
C4—N1—H1 118.6 O12'—O12—O10' 115.2 (10)
C11—N2—C10 122.6 (2) Cl3—O12—O10' 50.4 (3)
C11—N2—H2 118.7 O10—O10'—Cl3 79.5 (7)
C10—N2—H2 118.7 O10—O10'—O12 127.9 (9)
C16—N3—C17 123.1 (2) Cl3—O10'—O12 50.8 (4)
C16—N3—H3A 118.5 O12—O12'—Cl3 62.5 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O6iii 0.86 2.15 2.949 (4) 154
N2—H2···O1Wiv 0.86 1.91 2.756 (3) 166
N3—H3A···O5v 0.86 2.07 2.902 (3) 162
O1W—H1W···O4 0.84 2.48 3.054 (4) 127
O1W—H2W···O13 0.84 2.26 3.030 (3) 152
O2W—H4W···O3Wii 0.84 2.20 2.920 (3) 145
O2W—H4W···O17 0.84 2.53 3.164 (2) 133
O2W—H3W···O11vi 0.83 2.23 2.959 (9) 147
O3W—H5W···O12 0.84 2.20 2.934 (9) 146
O3W—H6W···O11vii 0.83 2.14 2.843 (9) 142

Symmetry codes: (iii) −x+1, −y+1, −z; (iv) −x+1, −y+2, −z+1; (v) −x, −y, −z; (ii) −x, −y+1, −z+1; (vi) x, y+1, z; (vii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2238).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc, Madison, Wisconsin, USA.
  2. Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res.34, 319–330. [DOI] [PubMed]
  3. Rizk, A. T., Kilner, C. A. & Halcrow, M. A. (2005). CrystEngComm, 7, 359–362.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023623/rz2238sup1.cif

e-64-m1098-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023623/rz2238Isup2.hkl

e-64-m1098-Isup2.hkl (323.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES