Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1406. doi: 10.1107/S1600536808019776

2-(4-Methoxy­phen­yl)-1H-indene

Pu Liu a,*, Zhen Liu a, Xiao-Wei Wang a, Wei Wang a
PMCID: PMC2962039  PMID: 21203126

Abstract

Excluding four H atoms, the molecule of the title compound, C16H14O, is almost planar, with an r.m.s. deviation of 0.0801 (2) Å. Due to p–π conjugation, the lengths of the two single bonds attached to the O atom are significantly different.

Related literature

For related literature, see: Rayabarapu et al. (2003); Senanayake et al. (1995).graphic file with name e-64-o1406-scheme1.jpg

Experimental

Crystal data

  • C16H14O

  • M r = 222.27

  • Monoclinic, Inline graphic

  • a = 5.8347 (8) Å

  • b = 7.5584 (10) Å

  • c = 26.135 (4) Å

  • β = 92.772 (11)°

  • V = 1151.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 (2) K

  • 0.34 × 0.32 × 0.12 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Molecular Structure Corporation & Rigaku, 1999) T min = 0.974, T max = 0.991

  • 10940 measured reflections

  • 2724 independent reflections

  • 2360 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.135

  • S = 1.10

  • 2724 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019776/wk2085sup1.cif

e-64-o1406-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019776/wk2085Isup2.hkl

e-64-o1406-Isup2.hkl (133.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

O1—C1 1.3724 (16)
O1—C16 1.4301 (19)

Acknowledgments

The project was supported by the Fund for Doctorates of Henan University of Science and Technology.

supplementary crystallographic information

Comment

Indene ring frameworks are present in a large number of biologically active compounds, and their metallocene complexes are able to catalyze olefin polymerization (Senanayake et al., 1995; Rayabarapu et al., 2003). Some derivatives have shown analgesic and myorelaxation activity, and others are used as valuable intermediates for the synthesis of indenyl chrysanthemates that possess insecticidal properties. So in the recent three decades, many chemists have been attracted by the synthesis of indenes. In this context, we report the synthesis and crystal structure of the title compound, (I), namely 2-(4-methoxyphenyl)-1H-indene.

The title compound was obtained as colourless plate-like crystals in the monoclinic space group P 1 21/c 1. A view of the molecular structure of (I) with the numbering scheme is shown in Fig. 1. The whole molecular structure is almost planar with an r.m.s. deviation of 0.0801 (2) Å. Due to the p–π conjugation of atom O1 and benzene ring, the single-bond distance of the O1—C1 [1.3724 (16) Å] is significantly shorter than that of O1—C16 [1.4301 (19) Å].

Experimental

o-Bromobenzyl zinc bromide (3.5 mmol, 3.5 equiv) in 3.5 ml CH2Cl2 was added to a degassed refluxing CH2Cl2 solution (8 ml) of 1-ethynyl-4-methoxybenzene (1.0 mmol, 1.0 equiv) and Ni(PPh3)2I2 (0.1 mmol, 0.1 equiv). After being stirred at 313 K for 6 h, the solution was cooled to room temperature. The resultant solution was diluted with 50 ml ethyl acetate. The organic layer was washed with 10 ml aqueous HCl solution, saturated NaCl. The aqueous layer was back-extracted with Ethyl acetate. The combined organic layer was dried over anhydrous Na2SO4. After filtration, the solvent was removed under reduced pressure and the residue was purified via flash chromatography (SiO2) to afford the compound. Single crystal suitale for X-ray analysis were obtained by slow evaporation at 298 K of a CH2Cl2 solution.

Refinement

H atoms were positioned geometrically and refined as riding with C—H = 0.95–0.99 Å. For the CH and CH2 groups, Uiso(H) values are set equal to 1.2Ueq (carrier atom) and for the methyl groups they are set equal to 1.5Ueq (carrier atom).

Figures

Fig. 1.

Fig. 1.

View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.

Crystal data

C16H14O F000 = 472
Mr = 222.27 Dx = 1.282 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71070 Å
Hall symbol: -P 2ybc Cell parameters from 2782 reflections
a = 5.8347 (8) Å θ = 2.8–27.9º
b = 7.5584 (10) Å µ = 0.08 mm1
c = 26.135 (4) Å T = 113 (2) K
β = 92.772 (11)º Plate, colourless
V = 1151.3 (3) Å3 0.34 × 0.32 × 0.12 mm
Z = 4

Data collection

Rigaku Saturn diffractometer 2724 independent reflections
Radiation source: rotating anode 2360 reflections with I > 2σ(I)
Monochromator: confocal Rint = 0.038
Detector resolution: 7.31 pixels mm-1 θmax = 27.9º
T = 113(2) K θmin = 2.8º
ω scans h = −7→7
Absorption correction: multi-scan(CrystalClear; Molecular Structure Corporation & Rigaku, 1999) k = −9→9
Tmin = 0.974, Tmax = 0.991 l = −34→34
10940 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.135   w = 1/[σ2(Fo2) + (0.0654P)2 + 0.4321P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
2724 reflections Δρmax = 0.32 e Å3
155 parameters Δρmin = −0.39 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.06468 (18) 0.38400 (14) 0.43568 (4) 0.0246 (3)
C1 0.0999 (2) 0.37824 (18) 0.38417 (5) 0.0196 (3)
C2 −0.0458 (2) 0.29441 (18) 0.34780 (5) 0.0209 (3)
H2 −0.1824 0.2384 0.3578 0.025*
C3 0.0118 (2) 0.29399 (18) 0.29665 (5) 0.0205 (3)
H3 −0.0875 0.2366 0.2720 0.025*
C4 0.2110 (2) 0.37525 (17) 0.28040 (5) 0.0188 (3)
C5 0.3523 (2) 0.46050 (18) 0.31800 (5) 0.0207 (3)
H5 0.4884 0.5177 0.3082 0.025*
C6 0.2972 (2) 0.46277 (18) 0.36889 (5) 0.0217 (3)
H6 0.3944 0.5223 0.3935 0.026*
C7 0.2705 (2) 0.37168 (17) 0.22661 (5) 0.0191 (3)
C8 0.4701 (2) 0.44705 (18) 0.20655 (5) 0.0203 (3)
H8 0.5885 0.5082 0.2255 0.024*
C9 0.4594 (2) 0.41280 (18) 0.15079 (5) 0.0193 (3)
C10 0.6102 (3) 0.45594 (19) 0.11311 (5) 0.0234 (3)
H10 0.7468 0.5203 0.1215 0.028*
C11 0.5577 (3) 0.40313 (19) 0.06279 (6) 0.0251 (3)
H11 0.6602 0.4309 0.0368 0.030*
C12 0.3566 (3) 0.31006 (19) 0.05014 (5) 0.0246 (3)
H12 0.3239 0.2747 0.0157 0.030*
C13 0.2030 (3) 0.26833 (18) 0.08766 (5) 0.0220 (3)
H13 0.0648 0.2064 0.0790 0.026*
C14 0.2559 (2) 0.31909 (17) 0.13805 (5) 0.0188 (3)
C15 0.1310 (2) 0.29032 (18) 0.18543 (5) 0.0197 (3)
H15A −0.0226 0.3461 0.1824 0.024*
H15B 0.1118 0.1623 0.1919 0.024*
C16 −0.1393 (3) 0.3029 (2) 0.45282 (6) 0.0311 (4)
H16A −0.1495 0.3227 0.4897 0.047*
H16B −0.1347 0.1755 0.4460 0.047*
H16C −0.2736 0.3548 0.4345 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0271 (6) 0.0282 (6) 0.0184 (5) −0.0015 (4) 0.0008 (4) 0.0018 (4)
C1 0.0221 (7) 0.0180 (6) 0.0187 (6) 0.0040 (5) −0.0003 (5) 0.0017 (5)
C2 0.0195 (7) 0.0196 (7) 0.0237 (7) −0.0020 (5) 0.0006 (5) 0.0014 (5)
C3 0.0205 (7) 0.0188 (6) 0.0219 (7) −0.0012 (5) −0.0019 (5) −0.0009 (5)
C4 0.0197 (7) 0.0141 (6) 0.0224 (7) 0.0037 (5) 0.0004 (5) 0.0003 (5)
C5 0.0179 (7) 0.0195 (7) 0.0247 (7) −0.0006 (5) 0.0011 (5) −0.0011 (5)
C6 0.0205 (7) 0.0204 (7) 0.0240 (7) 0.0004 (5) −0.0025 (5) −0.0020 (5)
C7 0.0216 (7) 0.0139 (6) 0.0220 (7) 0.0030 (5) 0.0012 (5) −0.0006 (5)
C8 0.0181 (7) 0.0212 (7) 0.0215 (7) −0.0014 (5) −0.0001 (5) −0.0021 (5)
C9 0.0193 (7) 0.0158 (6) 0.0225 (7) 0.0011 (5) −0.0001 (5) −0.0001 (5)
C10 0.0229 (7) 0.0209 (7) 0.0267 (7) −0.0024 (6) 0.0026 (6) 0.0015 (5)
C11 0.0280 (8) 0.0241 (7) 0.0235 (7) 0.0019 (6) 0.0060 (6) 0.0053 (6)
C12 0.0311 (8) 0.0230 (7) 0.0198 (7) 0.0021 (6) 0.0006 (6) 0.0011 (5)
C13 0.0242 (8) 0.0200 (7) 0.0216 (7) −0.0013 (6) −0.0018 (5) 0.0005 (5)
C14 0.0191 (7) 0.0157 (6) 0.0216 (7) 0.0016 (5) 0.0002 (5) 0.0011 (5)
C15 0.0192 (7) 0.0185 (6) 0.0211 (6) 0.0008 (5) −0.0008 (5) −0.0004 (5)
C16 0.0332 (9) 0.0371 (9) 0.0234 (7) −0.0048 (7) 0.0043 (6) 0.0049 (6)

Geometric parameters (Å, °)

O1—C1 1.3724 (16) C9—C10 1.391 (2)
O1—C16 1.4301 (19) C9—C14 1.409 (2)
C1—C6 1.392 (2) C10—C11 1.394 (2)
C1—C2 1.3963 (19) C10—H10 0.9500
C2—C3 1.394 (2) C11—C12 1.394 (2)
C2—H2 0.9500 C11—H11 0.9500
C3—C4 1.399 (2) C12—C13 1.397 (2)
C3—H3 0.9500 C12—H12 0.9500
C4—C5 1.4078 (19) C13—C14 1.3919 (19)
C4—C7 1.4645 (19) C13—H13 0.9500
C5—C6 1.384 (2) C14—C15 1.4829 (19)
C5—H5 0.9500 C15—H15A 0.9900
C6—H6 0.9500 C15—H15B 0.9900
C7—C8 1.419 (2) C16—H16A 0.9800
C7—C15 1.4542 (19) C16—H16B 0.9800
C8—C9 1.4785 (19) C16—H16C 0.9800
C8—H8 0.9500
C1—O1—C16 117.40 (12) C9—C10—C11 118.88 (14)
O1—C1—C6 115.60 (12) C9—C10—H10 120.6
O1—C1—C2 124.55 (13) C11—C10—H10 120.6
C6—C1—C2 119.85 (13) C12—C11—C10 120.83 (14)
C3—C2—C1 119.13 (13) C12—C11—H11 119.6
C3—C2—H2 120.4 C10—C11—H11 119.6
C1—C2—H2 120.4 C11—C12—C13 120.59 (13)
C2—C3—C4 122.18 (13) C11—C12—H12 119.7
C2—C3—H3 118.9 C13—C12—H12 119.7
C4—C3—H3 118.9 C14—C13—C12 118.78 (14)
C3—C4—C5 117.14 (13) C14—C13—H13 120.6
C3—C4—C7 121.50 (12) C12—C13—H13 120.6
C5—C4—C7 121.36 (13) C13—C14—C9 120.54 (13)
C6—C5—C4 121.43 (13) C13—C14—C15 130.85 (13)
C6—C5—H5 119.3 C9—C14—C15 108.60 (12)
C4—C5—H5 119.3 C7—C15—C14 106.02 (12)
C5—C6—C1 120.26 (13) C7—C15—H15A 110.5
C5—C6—H6 119.9 C14—C15—H15A 110.5
C1—C6—H6 119.9 C7—C15—H15B 110.5
C8—C7—C15 109.64 (12) C14—C15—H15B 110.5
C8—C7—C4 125.75 (12) H15A—C15—H15B 108.7
C15—C7—C4 124.61 (13) O1—C16—H16A 109.5
C7—C8—C9 107.34 (12) O1—C16—H16B 109.5
C7—C8—H8 126.3 H16A—C16—H16B 109.5
C9—C8—H8 126.3 O1—C16—H16C 109.5
C10—C9—C14 120.36 (13) H16A—C16—H16C 109.5
C10—C9—C8 131.24 (13) H16B—C16—H16C 109.5
C14—C9—C8 108.40 (12)
C16—O1—C1—C6 178.34 (12) C7—C8—C9—C10 −179.34 (14)
C16—O1—C1—C2 −2.0 (2) C7—C8—C9—C14 0.24 (15)
O1—C1—C2—C3 −178.41 (13) C14—C9—C10—C11 −0.7 (2)
C6—C1—C2—C3 1.3 (2) C8—C9—C10—C11 178.81 (14)
C1—C2—C3—C4 −0.1 (2) C9—C10—C11—C12 0.6 (2)
C2—C3—C4—C5 −0.7 (2) C10—C11—C12—C13 0.3 (2)
C2—C3—C4—C7 179.21 (13) C11—C12—C13—C14 −0.9 (2)
C3—C4—C5—C6 0.4 (2) C12—C13—C14—C9 0.8 (2)
C7—C4—C5—C6 −179.47 (13) C12—C13—C14—C15 −178.47 (14)
C4—C5—C6—C1 0.7 (2) C10—C9—C14—C13 0.0 (2)
O1—C1—C6—C5 178.17 (12) C8—C9—C14—C13 −179.60 (12)
C2—C1—C6—C5 −1.5 (2) C10—C9—C14—C15 179.45 (12)
C3—C4—C7—C8 −178.77 (13) C8—C9—C14—C15 −0.18 (15)
C5—C4—C7—C8 1.1 (2) C8—C7—C15—C14 0.09 (15)
C3—C4—C7—C15 1.7 (2) C4—C7—C15—C14 179.70 (12)
C5—C4—C7—C15 −178.42 (13) C13—C14—C15—C7 179.39 (14)
C15—C7—C8—C9 −0.20 (15) C9—C14—C15—C7 0.06 (15)
C4—C7—C8—C9 −179.80 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2085).

References

  1. Molecular Structure Corporation & Rigaku (1999). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  2. Rayabarapu, D. K., Yang, C. H. & Cheng, C. H. (2003). J. Org. Chem.68, 6726–6731. [DOI] [PubMed]
  3. Senanayake, C. H., Roberts, F. E., DiMichele, L. M., Ryan, K. M., Liu, J., Fredenburgh, L. E., Foster, B. S., Douglas, A. W., Larsen, R. D., Verhoeven, T. R. & Reider, P. J. (1995). Tetrahedron Lett.36, 3993–3996.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019776/wk2085sup1.cif

e-64-o1406-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019776/wk2085Isup2.hkl

e-64-o1406-Isup2.hkl (133.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES