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Abstract
The pacemaking system of the heart is complex; a healthy heart constantly integrates and responds
to extracardiac signals, resulting in highly complex heart rate patterns with a great deal of variability.
In the laboratory and in some pathological or age-related states, however, dynamics can show reduced
complexity that is more readily described and modeled. Reduced heart rate complexity has both
clinical and dynamical significance – it may provide warning of impending illness or clues about the
dynamics of the heart’s pacemaking system. In this paper, we describe uniquely simple and
interesting heart rate dynamics that we have observed in premature human infants -- reversible
transitions to large-amplitude periodic oscillations -- and we show that the appearance and
disappearance of these periodic oscillations can be described by a simple mathematical model, a
Hopf bifurcation.
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INTRODUCTION
The normal, healthy heart beats at a variable rate with extraordinarily complex fluctuations
across a wide range of time scales (1–9). This phenomenon is commonly referred to as heart
rate variability (HRV). Multiple mechanisms contribute to HRV; it is a composite reflection
of autonomic outflow (the combination of sympathetic and parasympathetic nervous system
activation), neuroendocrine influences, and autonomic responsiveness (the ability of the
cardiovascular system to respond to changes in autonomic outflow) (2). It has been
demonstrated that this healthy complex variability deteriorates as a consequence of disease and
aging (1,2,5,7). Complexity in heart rate may be easy to see but it is hard to define, so there
are many different measures of complexity, having varying degrees of utility in different
contexts (10–22).
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Regularity, on the other hand, is often easy to see and easy to define precisely, especially when
that regularity has the form of periodic cycles. Two periodic cycles of heart rate have been
extensively studied. Respiratory sinus arrhythmia, the coupling of heart rate to breathing,
produces fluctuations in heart rate with a period of a few seconds in adults, or about one second
in infants in a neonatal intensive care unit (NICU) (23,24). Another cycle of heart rate is
correlated with a cycle of blood pressure called Mayer waves (25,26); the period of these is
about ten seconds in adults or 12–14 seconds in NICU patients (23). In these infants, who
typically have interbeat intervals near 350 ms (and heart rate around 170 beats per minute), the
magnitude of the changes of interbeat intervals due to respiratory sinus arrhythmia is about 2–
4 ms, while that associated with Mayer waves is about 10 ms. Combined, they can sum to give
periodic fluctuations of magnitude around 5% of the interbeat interval. Other, lower frequency
components elevate the range of fluctuations of heart rates further (6), but these are less cyclical.

We describe here in infants a different and previously uncharacterized heart rate cycle with
large decelerations. A deceleration is a decrease in heart rate followed by a return to the base
rate. In previous work, we have found that heart rate decelerations in the setting of otherwise
low heart rate variability often preceded acute neonatal illness (27–33). In those studies, we
used statistical measures based on heart rate distributions to make predictive models for clinical
use.

For this new work, we devised a wavelet-based detector of decelerations in heart rate records
and applied it to a large clinical database. We find that large decelerations are common, similar
in shape among infants, and can appear in clusters in which they are sometimes remarkably
periodic for epochs as long as two days. Their period is nearly constant at about 15 seconds,
and their sizes may increase the interbeat interval from 350 to 550 ms, or reduce the heart rate
from 170 to 110 beats per minute. Thus these cycles of decelerations are much too long and
much too large to represent respiratory sinus arrhythmia, and, though the period is comparable,
they are much larger than reported Mayer waves in infants (23). Indeed, these cycles do not
resemble any well-characterized heart rate oscillation, and we propose that they constitute a
previously unrecognized form of low-dimensional heart rate dynamics. We give a
mathematical interpretation of clusters of periodic decelerations as resulting from a Hopf
bifurcation, a common way for a steady state to change to a cycle.

This phenomenon is interesting from both dynamical and clinical perspectives. It is
dynamically interesting because it shows that the immature control system of the heart rate can
go into a previously uncharacterized oscillatory mode. These observations therefore can
provide a new point of contact with mathematical models of the control system (34–36). It is
clinically interesting because the occurrence of clusters of decelerations is correlated with risk
of neonatal sepsis1.

METHODS
We give here our methods of computerized detection and measurement of decelerations. We
collected heart rate (HR) data from neonatal intensive care units, and extracted interbeat (RR)
intervals as previously described (27,28,31–33). (All the rhythms were sinus in origin, and
there were no variations in the P-wave morphology. Also there was little variation in the PR
intervals; in fact the PR intervals got a little shorter as the RR intervals became longer.)

Some examples of neonatal RR interval time series are shown in Figure 1. Panel (a) is a complex
time series of a healthy NICU infant; panel (b) is a time series showing reduced variability of

1Sepsis (bloodstream infection) is one of the greatest threats to infants in a NICU, but diagnosis of neonatal sepsis using current clinical
and laboratory methods is difficult, and has a high rate of false negatives.
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a NICU infant with sepsis (bloodstream infection); panel (c) is a time series with decelerations
(each spike in the RR interval time series is a deceleration, or a slowing of the HR followed
by return to a base rate); and panel (d) is a time series with periodic decelerations. Compared
to case (a), case (d) plainly represents reduced-dimensional dynamics. The period of the
decelerations is nearly constant at about 45 beats, or 15 seconds, and, while the decelerations
have a variety of heights (which can be anywhere from 20 to 300 ms), they have a common
shape.

To investigate the dynamics, we developed a neonatal HR deceleration detector. We studied
the HR records of 479 very low birth weight (< 1500 g) neonates from NICUs at the University
of Virginia, the University of Alabama at Birmingham, and Wake Forest University, with a
total of 513,193 half-hour HR records collected between August 2005 and May 2006. To search
these records, we constructed a pattern-matching algorithm inspired by wavelet theory (37) –
we defined a template function that gives an adequate description of the shape of a deceleration,
and swept this function through the RR interval time series to identify points at which the HR
signal matched the template within a specified tolerance.

To detect decelerations in the signals that also contain fluctuations that have the appearance
of random noise, we chose a function χb (n − n0), which describes the observed shape of typical
decelerations, and we treated the RR interval (time interval between beats) signal as if it were
a sum of that deceleration function plus some remainder:

(1)

Here RR(n) is the time between beat n and beat n+1, χb (n − n0) is a function describing a
deceleration of width b centered about the point n0, and G(n) represents the remainder of the
signal (Fig. 2). The value a represents the height or amplitude of the deceleration and is to be
determined. We get an estimate of this height from the formula,

(2)

The numerator  is the projection of a portion of the signal RR(n) onto the waveform of
the deceleration:

(3)

where

(One can show that if it were presumed that the remainder G(n) from Equation (1) had the
properties of Gaussian white noise, then formula (2) would be a maximum likelihood estimate
of a.)
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To employ this scheme effectively, an appropriate template function, χ, is needed. Fig. 3 shows
several decelerations from the record shown in Fig. 1d superimposed atop one another.
Evidently, decelerations are relatively symmetric in shape and, compared with a Gaussian, are
narrower at the peak and wider in the wings. A function that meets these criteria and
subsequently has proven to successfully locate decelerations of similar nature throughout
signals from many infants is:

(4)

where the amplitude a is calculated as described by Equation (2), and b is the width parameter.
The goodness of fit of this function was high; when compared with visually identified
decelerations the median R-squared value was 0.93. In addition, the χ(n) function consistently
provided a reasonable estimate of the height of a deceleration relative to its baseline. Thus, χ
(n) was used as a template for a deceleration detector2.

We swept this template function χb (n − n0) through the signal RR(n) with width parameter b
ranging from eight beats to 100 beats and calculated the correlation coefficient a(n0, b) at each
scale and translation. This process generated a surface of a(n0, b) values like that shown in Fig.
4. We then found the points (n0, b) at which a(n0, b) has a local maximum, that is, where the
correlation between the deceleration waveform and the signal was locally strongest.

Having isolated these (n0, b) points, we added several more stipulations in order to identify
decelerations. First, if there was more than one local maximum near a particular translation,
we picked the largest of the maxima (highest coefficient a) so that one deceleration was not
erroneously represented by two waveforms. Next, to avoid spurious correlations, we demanded
that the wavelet χb (n − n0) fit the original signal with an R-squared value of at least 0.75.

RESULTS
1. Observations

We found that decelerations may be isolated, or, less commonly, they may occur in clusters
lasting up to two days. (In a separate, clinically-oriented paper, we will show that clusters of
decelerations are correlated with impending sepsis.) Fig. 5a shows a half-hour excerpt of such
a cluster, the whole of which lasted approximately one day. Within such extended clusters of
decelerations, we sometimes found shorter intervals of time, lasting up to several hours, in
which the decelerations showed remarkable periodicity (Figure 5c) – we refer to these as
periodic sequences of decelerations. While decelerations are common, clusters of decelerations
are uncommon3, and periodic sequences of decelerations lasting 10 minutes or more without
interruption (we refer to these as long periodic sequences of decelerations) are rare; they were
seen in six cases out of the population of several hundred patients. In each of these cases, the
period of the long periodic sequences of decelerations was about 15 seconds. We focus on
periodic and long periodic sequences of decelerations for the remainder of this report.

2We do not attach any theoretical significance to this function; rather, it has been reached empirically as a function that represents the
data.
3Large decelerations are common: at least one occurs in about 1/3 of our 20–30 minute records. If we define a “cluster of large
decelerations” as a collection of at least four decelerations, each having height of at least 100 ms, then such clusters are uncommon; of
the approximately 450,000 half-hour neonatal heart records studied, less than 700 contained four or more decelerations of 100 ms height
or more.
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2. Dynamical Interpretation
A cluster of periodic decelerations having a common shape suggests low-dimensional
dynamics. Moreover, the clusters began and ended abruptly. Interestingly, small amplitude
oscillations of similar period were often present in the vicinity of these clusters (Figures 5c,
7c). All of these behaviors are consistent with a noisy Hopf bifurcation; in fact, a Hopf
bifurcation is the most general way a system can change from stable to oscillatory. Such
bifurcations occur for example in laser systems, oscillatory chemical reactions, predator-prey
dynamics, and in the Hodgkin-Huxley model of the giant squid axon (38–42). The effect of
noise on a system having a Hopf bifurcation was described by Wiesenfeld and his collaborators
(43,44).

The theory of Hopf bifurcations is well known, and we summarize just enough of it here to
show how we do our simulations. One assumes that the pacemaking system of the heart has
feedback loops that can be modeled by a large number of dynamical variables (denoted u=
[u1…un]) governed by an equally large number of differential equations4,

(5)

These governing equations are assumed to contain many parameters p=p1…pm, which may
vary with time in the following way: on short time-scales, they may have small, rapid, noisy
fluctuations but generally they do not have large changes; on long time-scales, they have
substantial slow variation. The functions f (u;p), governing the rate of change of u, are not
presumed to be known. However, it is assumed that these functions have Taylor expansions
that converge in the range of interest, and that these functions have a zero (steady state) which
can be taken to occur at u=0. For some values of the parameters p, the steady state is assumed
to be stable.

If the Taylor expansions are truncated at first degree, one obtains a set of linear equations

(6)

The eigenvalues of the matrix M(p) associated with these linear equations must either be real
or occur in complex conjugate pairs. When all real parts of these eigenvalues are negative, the
steady state is stable. The steady state can go unstable if, as the parameters p change, one real
eigenvalue, or a pair of complex-conjugate eigenvalues, crosses the imaginary axis. Hopf
theory examines the latter case, and provides two powerful theorems. (1) “Center Manifold
Theorem”: In the state space of dynamical variables u, there is a two-dimensional surface
(called a center manifold) which is an invariant surface and an attractor. That means: (a) if u
(t) lies initially on this two-dimensional surface, it stays on this surface; (b) if u(t) lies initially
off the surface, it moves toward the surface in the manner of exponential decay. Furthermore,
the surface is analytic (Taylor-expandable) and the evolution in the surface can be described
by two differential equations. (2) “Normal Form Theorem”: there exists an analytic change of
variables to new coordinates (x, y) such that the governing pair of equations can be reduced to
a standard “normal” form:

4Hopf theory can also describe differential equations containing time-delays, or difference equations describing beat-to-beat models.
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(7)

In polar coordinates, that normal form is

(8)

The new parameters μ, a, b, and ω depend on the parameters p. If, as the parameters p vary
with time, μ changes from negative to positive, the stable steady state goes unstable, and one
of two things happens: (1) if a<0, a stable cycle is created (this is a “soft” Hopf bifurcation,
also called “supercritical”); (2) if a>0, an unstable cycle is destroyed; in this case, if b<0, the
radius r(t) can go quickly to a large value while the angle θ(t) increases steadily, so the system
“jumps” to a large cycle of frequency ω (this is a “hard” Hopf bifurcation, also called
“subcritical”). Finally, in both cases (1) and (2), if μ remains just below the bifurcation point,
small oscillations of frequency ω will occur in the presence of noise – these are called “noisy
precursors”.

We can use this theory to simulate the heart rate if we only postulate that the time between
beats RR(t) is some function of one of these unknown variables x(t)=r(t)cos(θ(t)). Since we
know the shape of the decelerations, we can use a Fourier representation of that shape to get
RR(r(t), θ(t)):

(9)

To generate a simulation, we integrated the equations (7), adding random noise to both variables
after every time step, Δt. This noise term was multiplied by a coefficient, . The factor
ξ controls the strength of the noise and, for our simulations, generally assumed a value between .
01 and 0.1. The factor  ensures that the statistical properties of the noise fluctuations are
independent of the step size5 Δt. The integration was carried out for various values of
parameters μ, a, and b (though a was always kept positive and b negative in order to keep the
bifurcation “hard”) and for cases in which these parameters fluctuated in time; more
specifically, in our model, we set μ initially negative, and allowed it to vary near zero. This
integration process yielded output like that shown in Figure 6a; as μ goes from negative to
positive, the system goes from low variability to noisy precursors to large oscillations. As μ
then decreases, the system crosses another critical point, in this case at μ=−1/18, and returns
to its low variability state. The hysteresis shown here is characteristic of a hard Hopf
bifurcation. This output in (x(t), y(t)) was then transformed into RR(t) as defined by Equation
(9), using only the first 11 terms in this series, as these are sufficient to provide a good
approximation to the deceleration shape. This transformation converted the output shown in
Figure 6a into that shown in Figure 6b.

Thus, by allowing the parameter μ to vary in the Hopf model and using a Fourier representation
to transform the output into an RR interval series, it is possible to produce clusters of periodic

5The point here is that the width parameter of the distribution resulting from a random walk is proportional to the size of each step times
the square root of the number of steps.
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decelerations similar to those observed in the clinical data (Fig. 7). Furthermore, by specifying
the times at which decelerations begin and end, and forcing the parameter μ to cross its critical
points accordingly, one can reasonably capture the essential elements of the HR data including
the noisy precursors, abrupt starts and stops, and repeating cycles of decelerations (Figure 7c).

Another way to show the cycle is in Cartesian coordinates (x, y)= (r cos θ, r sin θ), or, better,
in coordinates (RR, y). Part of the simulation shown in Fig. 7c is shown in these variables in
Fig. 7d.

We conclude that this two-dimensional dynamical model, based on minimal assumptions, gives
a credible simulation of periodic neonatal HR decelerations.

DISCUSSION
Using a new wavelet-based deceleration detector, we have described an apparently new type
of periodic behavior in the heart rates of neonates. While oscillatory patterns have been
observed previously in the human heart rate in the form of Mayer waves or Cheyne-Stokes
dynamics (2,45), the oscillations reported here are up to ten times larger in amplitude than are
seen in those cases. We interpret the behavior as a noisy Hopf bifurcation, and we have shown
that quantitative output of this model resembles the observations. If this interpretation is
correct, then we are reporting here for the first time the observation of a previously unknown
bifurcation in the dynamics of the control system of the human heart rate.

Decelerations like those we observe, and in particular long periodic sequences of decelerations,
have been seen only in neonates. Therefore one may speculate that the bifurcation producing
them is connected with the immature control system of these infants. An obvious candidate for
further study is the feedback loops between heart rate, blood pressure, respiration, and oxygen
saturation. On the observational side, we are now collecting large databases consisting of
waveforms of EKG, oxygen saturation, respiration, temperature and in some cases blood
pressure, for some hundreds of infants in two NICU’s. On the mathematical side, we are
examining models of the physiological control loops governing heart rate. We know that some
of these models (developed from data on adults) exhibit dynamical bifurcations (35,46), and
we will see whether appropriate modifications of such models give behavior that is consistent
with our data.

We emphasize that since long periodic sequences of decelerations occurred spontaneously in
the clinical setting, and were not induced by controlled means, they appear to be a natural mode
of low-dimensional dynamics in the human cardiac pacemaking system near the time of birth.
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Fig. 1.
(color online) Examples of approximately four minutes of continuous RR (interbeat) intervals
from four different NICU patients. (a) RR interval series for a healthy NICU patient;(b) RR
interval series for a NICU patient showing reduced heart rate variability prior to diagnosis of
sepsis (bloodstream infection); (c) RR interval series for a NICU patient showing decelerations;
(d) RR interval series showing part of a long cluster of periodic decelerations. Each peaked
structure in (c) and (d) is termed a “deceleration.” (d) shows striking periodicity (period ~45
beats, or about 15 s), which lasted well beyond the duration of the shown excerpt; the periodic
decelerations lasted over 48 hours. (This infant suffered intracranial hemorrhage with
concomitant sepsis.)
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Fig. 2.
(color online) A typical decomposition of RR interval (inter-beat interval) signal into a sum of
decelerations of various widths and heights and some remainder. The red curves represent the
functions a(n0,b)χ(n; n0,b). a(n0,b) describes the height of the function, n0 represents the
location of the peak of the function, and b represents the width (or scale) of the function. G
(n), the remaining signal after decelerations are removed, is represented in black.
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Fig. 3.
(color online) Decelerations have a common shape that can be represented by a template
function for use in a deceleration detector. (a) Three decelerations from a record scaled to width
of one and height of one. (b) Standard functions are optimized to fit a deceleration: blue
asterisks, data; red line, exponential; green line, Gaussian; black line, χ. A Gaussian function
is too rounded, while an exponential is too sharply peaked, but χ fits the data adequately.
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Fig. 4.
(color online) a(no,b) for a portion of neonatal heart rate data. We identify the large local
maxima of the surface as decelerations (indicated by black arrows). The surface a(n0,b) was
generated by sweeping the template function, χ(n0,b), through a portion of neonatal HR data
at various widths (or scales), b.
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Fig. 5.
(color online) Decelerations occur in clusters that may show periodicity. (a) Example of a
cluster of tall decelerations in a half-hour record of RR. (b) For the same infant, number of tall
decelerations (greater than 100 ms from peak to baseline) in a half-hour record as a function
of days since birth. Each data point represents one half-hour record. Through most of the
infant’s stay, there were few occurrences of tall decelerations, but a cluster occurred around
Day 23. (Six hours later, this patient showed clinical signs of sepsis.) Fig. 5a is a record from
the cluster occurring near day 23. Note the presence of intermittent periodicity in a. (c) A burst
of decelerations arising from a state of low variability. The abrupt onset of the decelerations
is indicative of a “hard” Hopf bifurcation. (d) Periodic bursts of decelerations for six NICU
infants. We show time to next deceleration as a function of deceleration index. The typical
time between decelerations is about 15 s.
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Fig. 6.
(color online) (a) Output from a noisy hard Hopf model with noise coefficient, ξ, equal to 0.03,
μ varying in time as shown on plot (black line), a=1/3, and b=−1/2. (Top) Variable x as a
function of time. (Bottom) Variable y as a function of time. Output was produced using
Equations (7) with the specified parameter values. (b) RR (t) corresponding to (x(t), y(t)) output
of (a). RR (t) is calculated by converting the output (x(t), y(t)) of the noisy Hopf model into
polar form, and then using Eq. (9). The behaviour of μ is identical to that in (a).
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Fig. 7.
(color online) A noisy Hopf bifurcation model produces behavior similar to that of observed
data. (a) Oscillations induced in a noisy hard Hopf bifurcation model transformed into RR
intervals via a Fourier series representation of a deceleration. Oscillations arise when μ
increases through zero, and terminate when μ decreases through its critical value, in this case
−1 (μ plotted in green, RR intervals in blue). (b) Bursts of periodic decelerations created by
allowing the parameter μ to vary near zero. Such results of simulations resemble observed data.
(c) (Top) Data from a neonatal RR interval record showing bursts of periodic decelerations.
(Bottom) Simulation of data produced by the noisy Hopf model. (d) A portion of the same
simulation shown in coordinates (RR, y). The noisy precursors have RR ≃ 335, y ≃ 0. When
μ increases through zero, that point becomes unstable, and the path quickly spirals out to a
large cycle. When μ decreases through its critical point again, the path spirals back to fluctuate
again about the now-stable steady state.
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