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Abstract
The overproduction and extracellular buildup of amyloid-β peptide (Aβ) is a critical step in the
etiology of Alzheimer’s disease. Recent data suggest that intracellular trafficking is of central
importance in the production of Aβ. Here we use a neuronal cell line to examine two structurally
similar clathrin assembly proteins, AP180 and CALM. We show that RNA interference-mediated
knockdown of AP180 reduces the generation of Aβ 1-40 and Aβ 1-42, whereas CALM knockdown
has no effect on Aβ generation. Thus AP180 is among the traffic controllers that oversee and regulate
amyloid precursor protein processing pathways. Our results also suggest that AP180 and CALM,
while similar in their domain structures and biochemical properties, are in fact dedicated to separate
trafficking pathways in neurons.
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Introduction
Extracellular accumulation and aggregation of amyloid-β peptide (Aβ) plays a pivotal in the
pathogenesis of Alzheimer’s disease (AD) [1]. Within the brain, Aβ is mostly produced by
neurons and is derived from the amyloid precursor protein (APP). APP can undergo two
different cleavage processes, non-amyloidogenic processing and amyloidogenic processing;
the latter route leads to overproduction and extracellular accumulation of Aβ [3,4]. Recent
advances in understanding APP processing have led to the realization that many of the
molecules that play fundamental roles in intracellular trafficking also function to direct APP
away or towards the amyloidogenic processing pathway [5–10]. We therefore examined the
possible roles of AP180 and CALM (clathrin assembly lymphoid myeloid protein) – two
regulators of clathrin-mediated trafficking – in Aβ production.

AP180 and CALM belong to clathrin assembly proteins because of their widely recognized
role in promoting the assembly of clathrin-coated vesicles [11–16]. AP180 and CALM share
a remarkably similar domain structure [14] and both are present in neurons [13,17,18].
However, we previously found that AP180 and CALM carry out different functions in neurons
[19], raising the possibility that AP180 and CALM might be involved in different populations
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of clathrin-coated vesicles and thus regulate different clathrin-mediated pathways. Consistent
with this idea, we have found in this study that AP180 but not CALM influences the level of
extracellular Aβ.

Materials and Methods
Cells, shRNAs, and transfection

Human neuroblastoma SH-SY5Y cells expressing human Swedish mutant APP695 cDNA
were obtained from Dr. Wataru Araki (National Institute for Longevity Sciences) [20]. The
pSuper-AP180shRNA has been described in detail in a previous study [19]. The pSuper-
CALMshRNA has also been previously characterized and described [19,21]. Cells were
transfected using Lipofectamine following the manufacturer’s (Invitrogen) protocol and
analyzed 3–4 days after transfection.

ELISA
The Aβ 1-40 and 1-42 in the media of transfected cells were measured using enzyme-linked
immunosorbent assay (ELISA) kits (Biosource International Inc.). For each experiment,
samples were assayed in triplicate and all experiments were repeated at least three times. To
confirm changes in Aβ 1-40, we also used a non-commercial ELISA protocol [22]. The data
from both ELISA protocols were similar.

Antibodies, immunoblotting, and immunolabeling
The following antibodies were used: mouse monoclonal anti-AP180 (clone AP180-I; Sigma),
goat polyclonal anti-CALM (sc5395 and sc6433; Santa Cruz Biotechnology), mouse
monoclonal anti-APP N-terminus (clone 22C11; Chemicon/Millipore), and rabbit polyclonal
anti-APP C-terminus (IBL Co., LTD, Japan). For immunoblotting, cell lysates were separated
by SDS-PAGE and transferred to nitrocellulose membranes. Blots were incubated with primary
antibodies followed by appropriate HRP-conjugated secondary antibodies, and visualized
using ECL chemiluminescence. For immunolabeling, cells were fixed with 4%
paraformaldehyde and 4% sucrose, and permeabilized with 0.1% Triton X-100. Cells were
then incubated with primary antibodies followed by appropriate fluorescently tagged
secondary antibodies.

Results and Discussion
The goal of this study was to determine whether AP180 and CALM have effects on Aβ
production. We chose to use the neuroblastoma SH-SY5Y cells expressing the AD-associated
Swedish mutant APP [20] for several reasons. First, these cells have been used as a simple
system for studying APP processing and Aβ production [8,20]. Second, because SH-SY5Y
cells are neural, we were able to compare the neuron-specific AP180 and the ubiquitously
expressed CALM. Third, higher transfection efficiency in cell lines compared with primary
cultured neurons provides a practical means for biochemical assays.

To suppress the expression of AP180 or CALM, we transfected the SH-SY5Y cells with AP180
shRNA or CALM shRNA. The specificity and efficacy of these shRNAs in reducing the level
of AP180 or CALM in the SH-SY5Y cells were analyzed by immunoblotting and
immunolabeling. AP180 shRNA was originally designed to silence the rat AP180 gene and
has proven to be highly effective in the knockdown of AP180 in rat neurons [19]. However,
the shRNA targeting region of rat and human AP180 differs in two nucleotides (Figure 1A).
The difference could potentially render AP180 shRNA ineffective in human SH-SY5Y cells,
as gene silencing by RNAi is known to be specific [23,24]. To address this question, we
examined the cells after they had been transfected with AP180 shRNA for 3–4 days.
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Immunoblotting of the cell lysates showed that the level of AP180 in the AP180 shRNA-
transfected cells was significantly lower (<50%) compared to those transfected with the control
vector (Figure 1B, upper panel). The level of AP180 in the CALM shRNA-transfected cells,
however, was not reduced (Figure 1B, also upper panel), suggesting the specificity of the
AP180 shRNA. To confirm the immunoblotting observation and to determine if the residual
AP180 was derived from non-transfected cells, we co-transfected the cells with EGFP to mark
transfected cells and carried out immunofluoresence labeling. While not all cells were
transfected, those EGFP-expressing transfected cells were devoid of AP180 labeling (Figure
1C).

CALM shRNA was also designed to silence rat CALM [21]. Unlike AP180 shRNA, the
sequence within the CALM shRNA-targeting region is identical between rats and human, as
well as between the long- and short-splice variants (see Materials and Methods). This CALM
shRNA has been characterized in rat neurons [19] and in human embryonic kidney (HEK) 293
cells [21]. As expected, the shRNA suppressed the expression of CALM, as determined by
immunoblotting (Figure 1B, middle panel) and immunolabeling (Figure 1D). Thus, AP180
shRNA and CALM shRNA can specifically and effectively suppress the expression of AP180
and CALM in the SH-ST5Y cells.

To determine if suppressing AP180 or CALM would influence Aβ production, we measured
Aβ1-40 and Aβ1-42 levels in the media of the shRNA transfected cells using ELISA. We
observed that the AP180-knockdown cells produced significantly less Aβ1-40 (63% ± 10.8)
compared to the control cells (Figure 2A). The level of Aβ1-40 from the CALM-knockdown
cells was slightly reduced (88.8% ± 6.2), but the reduction was not statistically significant
(Figure 2A). The AP180-knockdown cells also produced less Aβ1-42 (78.2% ± 1.3) (Figure
2A). In contrast, the level of Aβ1-42 in the CALM-knockdown cells remained unchanged
(100% ± 2.2) (Figure 2B). Therefore, suppressing AP180 reduces the production of both
Aβ1-40 and Aβ1-42. Suppressing CALM, on the other hand, does not alter Aβ levels.

To assess whether the reduction of Aβ resulted from a decrease of total APP, we next measured
APP level in the lysates of the AP180 knockdown cells using immunoblotting. We used two
different APP antibodies: one reacts against APP’s N-terminus [25] and the other against APP’s
C-terminus. We found that both antibodies revealed a major protein band at ~120 kDa and that
the intensity of this band was not different between the AP180 knockdown cells and the control
cells (Figure 2B). This result suggests that AP180 knockdown has no effect on the level of
APP.

Our results add AP180 to the growing list of endocytic proteins that are actively involved in
Aβ production by neurons. Endocytosis and subsequent intracellular sorting direct APP to
subcellular compartments where the amylidogenic cleavages of APP that generate Aβ take
place [2,3]. Therefore, the production of Aβ is not only controlled by the enzymes that carry
out the cleavage, but also by cell’s ability to control the traffic and the destination of APP.

Our finding also raises several questions about AP180. First, does AP180 exert the same effects
on mutant APP and on the wild-type APP? In the initial course of this study, we planned to
analyze two different SH-SY5Y cells, expressing either the AD-associated Swedish mutant
APP or the wild-type APP. However, we found that the level of AP180 in the wild-type APP
expressing cells was nearly undetectable (data not shown), precluding us from carrying out
analysis on AP180 in those cells. The disappearance of AP180 could directly result from the
overexpression of wild-type APP. It is, then, tempting to ask if a two-way regulatory
relationship exists between APP and AP180 and if the mutation in APP alters this relationship.

Second, how can we consolidate the data described here and the previous observations from
tissues of AD patients? We previously found that AP180 was significantly and consistently
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reduced in the postmortem brain tissues of patients suffering late-stage AD [26,27]. The in
vitro finding that AP180 suppression leads to Aβ reduction seems to conflict with the
observation of low AP180 but high Aβ in vivo [26,27]. The seeming contradiction, however,
can be ascribed to the complexity of the disease. Important issues to address in future studies
include at what disease stage the loss of AP180 occurs, whether its loss simply reflects the
disease or contributes to the disease pathology, and how AP180 cooperates with other endocytic
proteins in regulating APP trafficking and Aβ production.

Third, how are AP180 and CALM related to each other? AP180 and CALM have been regarded
as homologues because of their overlapping amino acid sequences, similar domain structures,
and ability to promote the assembly of clathrin-coated vesicles [11–16]. In neurons, however,
AP180 and CALM do not co-localize [18,28], and they play different roles in the growth of
neurons [19]. Our finding that AP180, but not CALM, affects Aβ production supports the
notion put forward previously: that AP180 and CALM are two functionally separate clathrin
assembly proteins.
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Figure 1.
Characterization of the AP180 shRNA and CALM shRNA in SH-SY5Y cells. (A) Comparison
of the shRNA-targeting sequences between rat and human AP180. The two nucleotides that
are different between the rat AP180 and the human AP180 are indicated (the rat AP180 shRNA-
targeting sequence was nt2157-nt2175, accession number X68877; the human AP180 shRNA-
targeting sequence was nt2424-nt2442, accession number NM_014841). (B) Immunoblots of
the cells transfected with the indicated shRNA showed that AP180 shRNA and the CALM
shRNA respectively suppressed the expression of AP180 and CALM. (C)(D) Immunolabeling
of the cells co-transfected with EGFP and the indicated shRNA confirmed that the AP180
shRNA suppressed AP180 expression but not CALM, whereas the CALM shRNA suppressed
CALM expression but not AP180. Bars = 10 μm.
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Figure 2.
Knockdown of AP180 reduces the levels of Aβ but not APP. (A) Cells were transfected with
the indicated shRNAs for 3 to 4 days and the amount of Aβ 1-40 and 1-42 in the media were
measured (n ≥ 3 experiments, triplicate samples per experiment). Data represent means ± SEM.
(B) Cell lysates from AP180 shRNA-transfected cells used in (A) were analyzed by
immunoblotting. The same major band revealed by two different APP antibodies migrated at
~120 kDa.
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