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GUEST COMMENTARY

It Is All about Metabolic Fluxes
Jens Nielsen*

Center for Process Biotechnology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

In the field of genomics there has been a move towards the
development of novel experimental techniques that enable
analysis of all components of a certain kind in a biological
system, and this has resulted in the appearance of new methods
for analyzing the omes. Obviously, in a given cellular system it
is attractive to measure all the mRNAs, all the proteins, a large
number of the metabolites, a large fraction of protein-protein
or protein-DNA interactions, and so on, but a fundamental
problem in functional genomics is integration of the informa-
tion obtained, i.e., how this information can be integrated and
lead to new insights into the functioning of cellular processes.
Bioinformatics and advanced computer models are continu-
ously supplying new methods for integration of data, and surely
progress in the field of systems biology will eventually result in
an ability to describe cellular functions in silico. In the race to
obtain large amounts of data for phenotypic characterization
of different cellular systems, a relatively simple experimental
technique for quantitative determination of metabolic fluxes
has escaped the attention of a large part of the biological
research community; this technique has been used primarily by
researchers in the field of metabolic engineering (1). The tech-
nique is based on relatively old principles from biochemistry,
namely, feeding of specifically 13C-labeled substrates to the cell
for characterization of the metabolism. However, with the de-
velopment of the necessary mathematical framework for anal-
ysis of data obtained from this type of analysis it has become
possible to obtain estimates for the fluxes in the different parts
of the central carbon metabolism. This information is obvi-
ously interesting in connection with improving metabolite pro-
duction by a given microbial cell, but as demonstrated in a
paper in this issue of Journal of Bacteriology (11), it also
provides a very powerful tool for functional analysis of differ-
ent mutant cells. In this short commentary the use of this
technique for functional analysis and the advantages and lim-
itations of different techniques for flux quantification are dis-
cussed, and some of the underlying methods are reviewed,
Finally, some future perspectives are given.

METABOLIC NETWORKS

Cellular metabolism is represented by a large number of
metabolic reactions that are involved in the conversion of the
carbon source into building blocks needed for macromolecular

biosynthesis. Furthermore, there are specific reactions that
ensure the constant supply of Gibbs free energy via ATP and
redox equivalents (generally in the form of the cofactor
NADPH) needed for biosynthesis of macromolecules. This
large number of metabolic reactions forms a so-called meta-
bolic network inside the cells, and as a result of reconstruction
of the complete metabolic networks in different bacteria (6, 17,
18) and in the yeast Saccharomyces cerevisiae (8), more insight
into the function of complete metabolic networks has been
obtained. These reconstructed metabolic networks can be used
for detailed studies of metabolic functions (4, 16) and the effect
of gene deletions (6, 7, 9), and in the context of flux analysis
there are two key lessons that can be learned.

The first lesson is that the fraction of open reading frames
(ORFs) in a given genome directly involved in cellular metab-
olism is relatively low. Table 1 lists some statistics on the
metabolic networks in four different microorganisms, and it is
interesting that a higher percentage of the ORFs encode en-
zymes involved in metabolism in bacteria with small genomes,
like Helicobacter pylori and Haemophilus influenzae (16 to
18%), than in Escherichia coli (15%) and the yeast S. cerevisiae
(12%). In E. coli, which has relatively complex regulatory sys-
tems, and in eukaryotic cells a larger fraction of the ORFs code
for proteins involved in regulation, and the fraction is even
larger in higher eukaryotes. However, despite the relatively low
fraction of ORFs involved directly in cellular metabolism,
many more ORFs do have an impact on cellular metabolism
via regulation of gene expression and enzyme activities. Thus,
in the MIPS database (http://mips.gsf.de/proj/yeast/index.jsp)
there are about twice as many ORFs grouped into carbon and
energy metabolism as there are ORFs involved in this part of
the metabolism in the reconstructed metabolic network (8),
and the majority of the additional ORFs encode proteins in-
volved in regulation.

The second lesson is that the reconstructed networks clearly
illustrate how the different parts of the cellular metabolism are
interconnected, particularly due to usage of common cofactors,
like ATP, ADP, NADH, and NADPH. These cofactors are
produced in the cellular energy metabolism and are used in a
large number of biosynthetic reactions. However, it is not only
these cofactors that ensure a tight connection among the dif-
ferent branches of the metabolic network; e.g., in the network
for S. cerevisiae there are 86 metabolites (corresponding to
15% of all metabolites in the metabolic network) which are
involved in 10 or more reactions. This tight connection of
reactions in the cellular metabolism through sharing of metab-
olites is illustrated in Fig. 1 for the four reconstructed meta-
bolic networks mentioned above. The tight connection of the
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different parts of the metabolism means that changes in fluxes
in one part of the metabolism disseminate to many other parts
of the metabolism, resulting in a global response. Thus, mea-
surement of even a few metabolic fluxes may provide valuable
information about the function of the complete metabolic net-
work.

FLUXES AND PHENOTYPE

As a result of evolution, the function of the central carbon
metabolism has been fine-tuned to exactly meet the needs for
building blocks and Gibbs free energy in conjunction with cell
growth. There is therefore tight regulation of the fluxes
through the central carbon metabolism. However, when a
given cell experiences a change in its environment, the metab-
olism has to be adjusted. For example, when the carbon source
changes from glucose to acetate, the cells need to down-regu-
late certain parts of the metabolic network (glycolysis) and
activate other parts of the metabolic network (gluconeogene-
sis). Clearly, a large number of ORFs are involved in this
regulation, and modifying the activity of the gene products of
these ORFs also influences the fluxes in the metabolic net-
work.

In order to understand the complex regulation of metabolic
fluxes, one can specify the flux through a given biochemical
reaction as a function of three factors: (i) the activity level of
the enzyme catalyzing the reaction; (ii) the properties of the
enzyme (i.e., its affinities for the substrates and possible affec-
tors (inhibitors, activators, etc.); and (iii) the concentrations of
the metabolites affecting the enzyme activity, including the
reactants and products of the enzyme-catalyzed reaction.

The activity level is a function of gene expression, transla-
tion, and posttranslational protein modifications. The proper-
ties of the enzyme are generally fixed for the biological system
under study, but in cases in which heterologous enzymes are
inserted in order to redirect carbon fluxes, it is relevant to
consider the properties of the heterologous enzyme compared
with those of other enzymes interacting with the same metab-
olite pools. The concentrations of the metabolites are them-
selves functions of the fluxes in the metabolic network and the
properties of the enzymes, and thus there is important feed-
back regulation imposed on the system.

From the information discussed above it is clear that the
metabolic fluxes represent the final outcome of cellular regu-
lation at many different levels, and hence they are an ultimate
representation of the cellular phenotype expressed under cer-
tain conditions. Analysis of metabolic fluxes is therefore an
interesting approach to functional analysis of cells, as illus-
trated by Hua et al. (11), who analyzed two different knockout
mutants of E. coli by quantifying the metabolic fluxes.

FLUXES AND GENOTYPE

As discussed above, metabolic fluxes represent integrative
information; i.e., the metabolic fluxes are a function of gene
expression, translation, posttranslational protein modifica-
tions, and protein-metabolite interactions. In biotechnology it
is interesting to obtain integrative information, as one is pri-

FIG. 1. Frequency plot of the number of reactions that each metabolite appears in for four different reconstructed metabolic networks. For
each metabolic network the 10 metabolites that appear in the most reactions are listed. PP, pyrophosphate; COA, coenzyme A. The numbers in
the box specify the numbers of reactions the 10 most frequently used metabolites participate in for the four different microorganisms.

TABLE 1. Overview of reactions, metabolites, and ORFs in
reconstructed metabolic networksa

Organism No. of
reactions

No. of
metabolites

No. of
metabolic

ORFs

Total no.
of ORFs

% of ORFs
involved in
metabolism

H. pylori 444 340 268 1,638 16
H. influenzae 477 343 362 1,880 19
E. coli 720 436 695 4,485 15
S. cerevisiae 1,175 584 708 5,773 12b

a The reconstructed networks are described in references 6, 8, 17, and 18.
b The value is based on a recent gene count (3).
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marily interested in whether a specific modification results in a
higher flux (or a lower flux if this is desirable), whereas under-
standing the exact molecular mechanisms underlying the
change in the flux may be less important. However, for func-
tional analysis of, for example, orphan gene function it is dif-
ficult to apply integrative information alone, and in this re-
search area metabolic flux analysis, or fluxome analysis, has to
be combined with analysis of other omes (e.g., the transcrip-
tome, the proteome, the interactome, and the metabolome).
Thus, it is only through analysis of several omes that it is
possible to decode the functions of ORFs involved in overall
regulation of cellular metabolism (15). Despite the drawback
of representing integrative information, fluxome analysis does
represent a method that is attractive for initial screening to
determine the functions of orphan genes, as it is a simple
method that allows rapid determination of whether deletion of
an orphan gene results in modification of the fluxes. Further-
more, fluxome analysis may be used to obtain further insight
into the functions of genes with known functions, as illustrated
in studies of knockout mutants of S. cerevisiae (5, 10).

HOW TO MEASURE FLUXES

There are no direct methods for analysis of metabolic fluxes.
However, based on one key assumption, it is possible to impose
a large number of constraints on the fluxes in a given metabolic
network. This assumption is as follows: all fluxes into a given
intracellular metabolite pool balance all fluxes out of the pool.
Basically, this assumption implies that the intracellular concen-
tration of all metabolites is constant at all times, and obviously
this is not the case. However, due to the rapid turnover of
metabolite pools the intracellular metabolite concentrations
can be adjusted rapidly to new levels, and in fact it has been
observed that even after drastic changes in the environment
the level of intracellular metabolites is adjusted to a new con-
stant value within 1 to 2 min (20).

The key assumption mentioned above means that for a given
metabolic network the balances around each metabolite im-
pose a number of constraints on the system. In general, if there
are J fluxes and K metabolites, then the degrees of freedom is
F � J � K, and through measurement of only F fluxes the
remaining fluxes can be calculated. Some fluxes can be mea-
sured directly (e.g., the fluxes of substrates into the cells and
the fluxes of metabolites that are secreted from the cells), but
even though some studies have relied only on measurement of
these so-called exchange fluxes (12, 22), it is normally not
possible to measure sufficient fluxes to calculate the remaining
fluxes with good precision (24). However, if one feeds the cells
13C-labeled glucose (e.g., glucose with enriched 13C in the first
position) and subsequently analyzes the 13C enrichment pat-
tern in different intracellular metabolites, one obtains addi-
tional experimental data that can be used to obtain solid flux
estimates. However, one needs to combine these data with
information about the carbon transitions in all biochemical
reactions, and the mathematical complexity therefore in-
creases substantially. In recent years solid mathematical frame-
works for analysis of this kind of experimental data have been
developed (23, 25, 26), and this has resulted in computer al-
gorithms for calculation of the metabolic fluxes from this kind
of 13C enrichment data (24). It should, however, be mentioned

that currently it is only possible to quantify the fluxes in the
central carbon metabolism, but as indicated above, this part of
the metabolism is tightly connected to most other parts of the
cellular metabolism and it is therefore also the part of the
complete metabolic network that is most interesting to study.

Several experimental techniques for analysis of the enrich-
ment patterns in intracellular metabolites have been devel-
oped, but all these techniques are currently based on using
nuclear magnetic resonance (NMR) (13, 14) or gas chroma-
tography-mass spectrometry (GC-MS) (1). In all methods the
enrichment patterns are not measured directly with the inter-
mediates of central carbon metabolism (e.g., pyruvate and
oxaloacetate), but rather they are measured with the corre-
sponding amino acids (e.g., alanine and aspartate), as the
amino acids are present at much higher levels in the cell both
as free amino acids and integrated into proteins. The informa-
tion content is somewhat different from the information con-
tent resulting from an analysis of the enrichment patterns by
NMR or GC-MS, but the underlying principle is the same. In
order to avoid the relatively complex data analysis required for
estimating the metabolic fluxes, a simpler method of estimat-
ing flux ratios has been developed based on cofeeding unla-
beled and uniformly 13C-labeled [6-13C]glucose (19). The re-
sulting 13C labeling patterns of metabolic intermediates are
analyzed by two-dimensional NMR spectroscopy of the amino
acids. Since different pathways leading to the same metabolite
yield different intact fragments, it is possible to easily calculate
flux ratios. In the study of Hua et al. (11) the authors per-
formed a flux ratio analysis, but they also estimated all of the
fluxes; this study was the first study in which both methods
were used. Both of the methods provide the same results for
fluxes at key branch points and therefore basically provide the
same kind of information. Determination of the flux ratios is
simpler and may therefore seem more attractive, but estima-
tion of all the fluxes provides a better visualization of the
results and provides a more complete set of data. However,
one should be aware of the fact that not all fluxes may be
estimated with the same precision (2).

IDENTIFICATION OF METABOLIC NETWORK
TOPOLOGIES

Besides allowing quantification of the metabolic fluxes, the
use of 13C-enriched carbon sources is a powerful approach for
identifying the metabolic network topology (i.e., which path-
ways are active under different growth conditions). From anal-
ysis of the enrichment patterns in intracellular metabolites one
can deduce which pathways are active. This is illustrated in Fig.
2, which shows the enrichment pattern in pyruvate when glu-
cose with 13C enrichment in the first position is metabolized via
three different pathways, the Embden-Meyerhof-Parnas path-
way, the pentose phosphate pathway, and the Entner-Doudor-
off pathway. If glucose is metabolized via the Embden-Meyer-
hof-Parnas pathway, one-half of the pyruvate molecules are
enriched in the third position, whereas one-half of the pyruvate
molecules are enriched in the first position if glucose is me-
tabolized via the Entner-Doudoroff pathway. However, if glu-
cose is metabolized via the pentose phosphate pathway, then
there is no enrichment of pyruvate as the 13C is lost as carbon
dioxide.
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The principles illustrated above can be taken much further,
and it may even be possible to locate specific biochemical
reactions in different compartments in eukaryotic cells (5, 21).
Hua et al. (11) identified the topology of the metabolic net-
work in wild-type E. coli and in mutants with disruptions of
phosphoglucomutase and glucose-6-phosphate dehydrogenase
and subsequently quantified the metabolic fluxes in the net-
works identified. Of particular interest, they identified some
Entner-Doudoroff pathway activity in a phosphoglucose
isomerase knockout strain and also activity in the glyoxylate
shunt.

A NEW TOOL IN FUNCTIONAL GENOMICS?

As mentioned above, so far metabolic flux analysis has pri-
marily been used for quantification of fluxes in connection with
metabolic engineering of microbial overproducing strains, but
as discussed here, it is obvious that this technique offers some
interesting possibilities for performing functional analyses of
different mutants in the field of functional genomics, as illus-
trated by Hua et al. (11) and other workers (5). In order for the
technique to gain wider application in functional genomics,
however, it is necessary to develop the technique further, and
among other things this may involve ease of experimentation,
direct analysis of metabolites, and high-throughput analysis.

Ease of experimentation. The experimental technique that
has been developed is relatively easy to perform, and in par-
ticular, the introduction of simple GC-MS methods has al-
lowed analyses to be performed in many laboratories. How-
ever, interpretation of the experimental data is relatively
complicated, and in particular, identification of the metabolic
network requires substantial insight into cellular metabolism.
This problem may be solved in the future with better computer
algorithms for rapid testing of different metabolic networks
and at the same time quantification of the metabolic fluxes.

Direct analysis of metabolites. The technique of measuring
the enrichment pattern in amino acids rather than in intracel-
lular metabolites facilitates the analysis substantially, but it
would be interesting to use novel methods for direct analysis of
the enrichment patterns in intracellular metabolites, like pyru-
vate and oxaloacetate. This would enable analysis of the fluxes
during rapid transients, something that is not possible with the
current techniques (due to the slow dynamics in turnover of
the protein pool). However, introduction of new analytical
techniques will also require more advanced models for data

interpretation as issues related to turnover of amino acids will
become relevant.

High-throughput analysis. In principle, there is nothing that
prevents the use of the current techniques for high-throughput
analysis; these techniques include, e.g., using microtiter plates
for growth of different cells and subsequent analysis of a large
number of mutants. Such techniques should enable screening
of a large number of mutants and thus enable the development
of large databases that can be used for more detailed func-
tional analysis.

There have been recent developments in all three areas
described above, and it is therefore predicted that metabolic
flux analysis will be used much more widely for functional
analysis in the future.
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