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Purpose: The accuracy of the system model that governs the transformation from the image space
to the projection space in positron emission tomography �PET� greatly affects the quality of recon-
structed images. For efficient computation in iterative reconstructions, the system model in PET can
be factored into a product of geometric projection and sinogram blurring function. To further speed
up reconstruction, fully 3D PET data can be rebinned into a stack of 2D sinograms and then be
reconstructed using 2D iterative algorithms. The purpose of this work is to develop a method to
estimate the sinogram blurring function to be used in reconstruction of Fourier-rebinned data.
Methods: In a previous work, the authors developed an approach to estimating the sinogram
blurring function of nonrebinned PET data from experimental scans of point sources. In this study,
the authors extend this method to the estimation of sinogram blurring function for Fourier-rebinned
PET data. A point source was scanned at a set of sampled positions in the microPET II scanner. The
sinogram blurring function is considered to be separable between the transaxial and axial directions.
A radially and angularly variant 2D blurring function is estimated from Fourier-rebinned point
source scans to model the transaxial blurring with consideration of the detector block structure of
the scanner; a space-variant 1D blurring kernel along the axial direction is estimated separately to
model the correlation between neighboring planes due to detector intrinsic blurring and Fourier
rebinning. The estimated sinogram blurring function is incorporated in a 2D maximum a posteriori
�MAP� reconstruction algorithm for image reconstruction.
Results: Physical phantom experiments were performed on the microPET II scanner to validate the
proposed method. The authors compared the proposed method to 2D MAP reconstruction without
sinogram blurring model and 2D MAP reconstruction with a Monte Carlo based blurring model.
The results show that the proposed method produces images with improved contrast and spatial
resolution. The reconstruction time is unaffected by the new method since the blurring component
takes a relatively negligible part of the overall reconstruction time.
Conclusions: The proposed method can estimate sinogram blurring matrix for Fourier-rebinned
PET data and can be used to improve contrast and spatial resolution of reconstructed images. The
method can be applied to other human and animal scanners. © 2010 American Association of
Physicists in Medicine. �DOI: 10.1118/1.3490711�
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I. INTRODUCTION

Iterative image reconstruction methods have gained increas-
ing popularity in positron emission tomography �PET� be-
cause they are amenable to an arbitrary, complicated, and
realistic system model that defines the mapping from sources
to measurements. The system model is usually stored in a set
of factored matrices to reduce storage and computational
costs.1–7 The major element is the geometric projection ma-
trix that is either approximated by simple line integrals or
calculated based on the solid angle effect. The second com-
ponent is the sinogram blurring function, or detector re-
sponse, which models the physical effects such as crystal
penetration, intercrystal scatter, photon noncollinearity,
etc.1,2 The sinogram blurring matrix can be calculated
analytically,4,8–10 but it is hard to model all the physical ef-

fects of the photon detection process. Direct measurement is
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also challenging because it requires placing a collimated
point source at different radial positions inside the PET scan-
ner to avoid crosstalk between measurements taken at differ-
ent angles.11 As a result, Monte Carlo simulations are often
used to estimate the detector blurring matrix1,6 or the com-
plete system matrix without any decomposition between the
geometric and blurring components.12 In our previous
work,13,14 we proposed a maximum likelihood �ML� ap-
proach to estimating the 2D blurring kernel in both radial
and angular directions from experimental measurements of
noncollimated point sources. Our method differs from other
approaches2,5 with the explicit modeling of the block struc-
ture of the detector instead of assuming the detector blurring
matrix to be the same for all azimuthal angles and the addi-
tion of blurring effect along the angular direction. A similar

ML method was used to estimate the detector response in
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SPECT from measurements of an extended source,15 but that
method is not applicable to PET because of the differences in
scanner geometry.

In this work, we apply the sinogram blurring matrix esti-
mation to Fourier-rebinned data with the aim to speed up
reconstruction by first Fourier rebinning �FORE�16–18 fully
3D data into 2D sinograms, and then reconstructing the im-
age using a 2D iterative reconstruction algorithm. The rebin-
ning algorithms range in complexity from the single slice
rebinning algorithm19 to the Fourier rebinning with John’s
equation18 �FOREJ� and the exact Fourier rebinning
algorithm.20 In this paper, we use the FOREJ algorithm,
which will be simply referred to as FORE from here on. By
directly estimating the sinogram blurring function from
FORE data, we expect to model the loss in resolution intro-
duced by the FORE step in addition to the burring caused by
PET detectors. Furthermore, a space-variant 1D axial blur-
ring function is estimated separately to model the detector
intrinsic axial blurring and the blurring across neighboring
planes following the FORE algorithm. The estimated blur-
ring matrices have been incorporated into a 2D maximum a
posteriori �MAP� reconstruction. Alessio et al.21 proposed a
method to compute the transaxial and the axial FORE ker-
nels analytically and deconvolve the FORE kernels in sino-
gram space prior to FBP reconstruction. Our approach mod-
els both detector blurring and FORE-related blurring in a
single sinogram blurring function and integrates it into the
system model in an iterative reconstruction algorithm. We
used an existing MAP algorithm in this paper, but the esti-
mated blurring kernel can be incorporated into other iterative
reconstruction algorithms, such as the attenuation-weighted
ordered-subsets22 and the penalized weighted least-squares23

algorithms. We performed physical phantom experiments on
the microPET II scanner24 to compare the proposed MAP
reconstruction with the MAP reconstruction using a Monte
Carlo �MC�-based detector response function and MAP re-
construction without detector response modeling.

II. MATERIALS AND METHODS

II.A. The imaging system model

In this paper we focus on reconstruction of Fourier-
rebinned �or conventional 2D� PET data. Since PET data are
prenormalized and attenuation corrected prior to Fourier re-
spectively, d�= j�− i�, K is the number of crystals in each
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binning, the expectation of the FORE data �ȳ�RN�1� can be
modeled as an affine transform of the tracer distribution
x�RM�1

ȳ = BGZx + r̄ + s̄ , �1�

where r̄ and s̄�RN�1 are the expectation of the randoms and
the scatters, respectively. The factored system matrix con-
sists of three components: B�RN�N is the transaxial sino-
gram blurring matrix with the �i , j�th element, bij, being the
blurring contribution from detector pair j to detector pair i;
G�RN�M is the geometrical projection matrix with the
�i , j�th element being the probability of an event from voxel
j reaching the face of detector pair i in the absence of object
attenuation; and Z�RM�M is the axial blurring matrix. Here,
G is computed based on the solid angle extended from each
voxel to each detector pair. The estimation of the transaxial
sinogram blurring matrix B and the axial blurring matrix Z is
described below.

The above model considers the axial blurring component
to be separable from the in-plane sinogram blurring, which is
reasonable for image reconstruction of 2D PET data
�Fourier-rebinned or conventional 2D� �Ref. 5� and also al-
lows us to estimate the transaxial blurring component and the
axial blurring component separately. Here we let the axial
blurring matrix Z act on the image space directly, but it can
also be applied to the sinogram as long as the geometric
projection matrix G does not introduce any additional axial
blurring. When the number of image voxels is less than the
number of lines of response in the rebinned sinogram, the
image space axial blurring is more computationally efficient.

II.B. Estimation of the transaxial sinogram blurring
matrix

The transaxial sinogram blurring matrix B models crystal
penetration, intercrystal scatter, and other blurring effects in
PET detectors. We estimate the elements of B from Fourier-
rebinned point source scans using an iterative ML algorithm
developed previously,13 which has a form similar to the
ML-EM algorithm for emission tomography. Considering the
rotational symmetry of cylindrical PET systems, we refer-
ence detector pair i by its radial and angular components
�ir , i��. The update equation for estimating B can then be
written as
bn+1�ir,k, jr,d�� =
bn�ir,k, jr,d��

�
i�:

modulo�i�,K�=k

�m=1

M
gjr,i�+d�,m

�
i�:

modulo�i�,K�=k

�
m=1

M yir,i�,mgjr,i�+d�,m

� jr�=1

Nr � j��=1

N� bn�ir,k, jr�, j�� − i��gjr�,j
�� ,m

, �2�
where yir,i�,m and gjr,j�,m are the measured projection and
calculated geometric projection of the mth point source, re-
detector block, and M is the number of point source posi-
tions. This algorithm was derived based on the Poisson like-

lihood function.13 We note that Fourier-rebinned data do not
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follow the Poisson distribution, so the result is no longer a
ML estimate. However, this loss in statistical efficiency is
not critical because the measured point source data have rela-
tively low noise. In addition, the measurements yir,i�,m have
been prenormalized during the Fourier rebinning step, so no
further normalization factors are needed.

Each blurring kernel b�ir ,k , : , :��RNr�N� that acts on a
particular reference �ir ,k� sinogram element is defined and
calculated in the sinogram data space. The above equation
considers the rotation symmetry only at the detector block
level. The measured data yir,i�,m are sampled at every K angle
starting from angle k to estimate the blurring matrix at angle
k. The resulting estimated detector response kernel can be
viewed as a 4D matrix: The last two indices contain the
radial and angular blurring information which act on a par-
ticular bin and angle defined by the first two indices. In prac-
tice, b�ir ,k , : , :� is a locally smoothing operator and the size
of the blurring window is reduced from Nr�N� �a full 2D
sinogram� to �10 radial bins and �4 angular bins.

In this work, gi,m were calculated by forward projecting a
computer simulated point source using the geometrical pro-
jection matrix. To get yi,m, an 18.5 MBq �0.5 mCi� 22Na
point source was scanned at 0.5 mm intervals for 3064 dif-
ferent locations inside the microPET II scanner using a 2D
high-precision computer-controlled motion stage. The stage
was positioned in such a manner as to restrict the 2D motion
of the point source to the central axial plane. The scan dura-
tion at each location was 60 s, resulting in an average of
22.3�106 detected events. The microPET II scanner has 30
detector blocks per ring and 14�14 crystals per block
�K=14�, which means that the estimated blurring kernel is
rotationally symmetric at every 14 angles. List mode data
were histogrammed into sinograms having 140 radial bins
�Nr� and 210 azimuthal angles �N��, and a span of 3, result-
ing in 83 direct planes and 1120 oblique planes. The fully 3D
PET data were then Fourier rebinned into 2D sinograms �83
planes� using the FOREJ algorithm18 and the blurring kernel
estimation algorithm was applied to obtain the sinogram
blurring function for Fourier-rebinned sinograms. Special
care was given to the gaps between detector blocks during
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FIG. 1. The estimated sinogram blurring kernel for k=8 �top row
the Fourier rebinning process. The gaps in the sinogram were
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filled in using linear interpolation along the radial direction
prior to Fourier rebinning, and were removed after Fourier
rebinning before being introduced to the blurring kernel es-
timation algorithm to maintain the rotational symmetry at
every 14 angles. A 12 h normalization scan was performed
prior to the data acquisition to obtain the detector normaliza-
tion factor ni.

We estimated the sinogram blurring matrix by running the
update Eq. �2� for 200 iterations. Figure 1 shows the esti-
mated blurring kernels for ir=71, 43, and 15, and k=1 and
k=8. The value of the blurring kernel at each position re-
flects the probability of mispositioning an event with the
corresponding angular and radial offset. In a perfect system
with no detector blurring effect, the blurring kernel would be
a delta function at �0, 0�. Note that ir=71 corresponds to the
line of response passing through the center of the field of
view. Thus, it has the minimum blurring effect. As the line of
response moves away from the center, the blurring effect
increases as shown by the increased size and reduced peak
value of the blurring kernel. The plots also show that the
detector blurring occurs in both radial and angular directions.
Results of different k values �only k=1 and k=8 shown here�
also confirm that the sinogram blurring effect is dependent
on the position of the detector pair inside detector blocks
�angular dependence�.

II.C. Estimation of the axial blurring matrix

The axial blurring component can be estimated indepen-
dently from the in-plane �transaxial� sinogram blurring. This
axial blurring function models the correlation between neigh-
boring planes due to the detector intrinsic axial blurring and
the blurring introduced during the Fourier rebinning step.
The former is caused mainly by the intercrystal scatter, crys-
tal penetration, and photon noncollinearity, and is assumed to
be independent of axial and radial positions, while the latter
is position-dependent. The assumption of shift invariance of
the detector intrinsic axial blurring is a reasonable approxi-
mation as long as the acceptance angle of the scanner is not
too large, which holds true for most animal and clinical scan-
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The intrinsic axial function is obtained by taking the axial
profiles of images of 22Na point source scans reconstructed
by a fully 3D ML reconstruction algorithm �i.e., no FORE
effect�. The point source sinograms were superimposed on a
warm background to avoid the artificial resolution enhance-
ment caused by the non-negativity constraint. The axial pro-
files should be symmetrical in nature. However, because it is
difficult to accurately position the point source at the center
of a detector ring, the contribution of the point source to
neighboring planes is often asymmetric as shown in Fig.
2�b�. Our solution to this problem was to acquire a series of
point source scans at various axial positions �illustrated in
Fig. 2�a��. We extracted axial profiles through the center of
the point sources in the reconstructed images and fitted each
profile with a Gaussian curve. We then used the peak loca-
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FIG. 2. �a� Illustration of the point source positions for axial blurring ker
background phantom. �b� Original unaligned profiles through the point sour
field of view. �c� Aligned profiles obtained by fitting a Gaussian curve to ea
by re-sampling the fitted curve.
tion of the fit to align different axial profiles and combined
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them into a single up-sampled representative profile shown
in Fig. 2�c�. This new profile was in turn fitted with a sum of
two Gaussian curves and resampled at the original axial sam-
pling rate to form the detector intrinsic axial function shown
in Fig. 2�d�. The results also verify that the detector intrinsic
axial function is radially independent for the microPET II
scanner because the measurements from the point source at
the radially center and off-center positions are almost indis-
tinguishable in the plot �Fig. 2�c��.

The axial FORE kernel, on the other hand, is position-
dependent, and thus requires a series of point source data at
different radial and axial positions. To circumvent the need
to acquire a large number of point source measurements, the
FORE kernel was obtained from simulations as was done by
others.21 Sinogram data were obtained by forward projecting
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easurements, which were superimposed on a scan of a cylindrical warm
cated at the radially center �crosses� and radially off-center �circles� in the

ofile to obtain the peak location. �d� Detector intrinsic axial kernel obtained
nel m
ces lo
ch pr
simulated images of a point source at different radial and



5534 M. S. Tohme and J. Qi: MAP reconstruction of Fourier-rebinned PET data 5534
axial positions. The sinograms were then Fourier rebinned
and the reconstructed images were used to extract the
position-dependent axial FORE function.

Examples of the position-dependent FORE axial kernel
obtained from the simulations are plotted in Fig. 3. The sets
of two curves in each plot are the axial kernels at the radial
center of the field of view and at a 25 mm radially off-center
position. We see an increase in the support size and a re-
duced peak value of the FORE axial kernel as the radial
distance from the center of the field of view increases. The
final overall axial blurring kernel is formed by convolving
the detector intrinsic axial kernel with the FORE axial ker-
nel.

II.D. Evaluation phantoms and figures of merit

The estimated 2D sinogram blurring kernels �axial blur-
ring kernels ignored first� were incorporated into a 2D MAP
reconstruction algorithm.1,25 The algorithm uses a precondi-
tioned conjugate gradient �PCG� update with a diagonal pre-
conditioner. We performed phantom experiments to compare
the proposed method to a 2D MAP algorithm without a de-
tector response model, and 2D MAP with the existing MC-
based blurring matrix. The MC-based blurring matrix models
photon pair noncollinearity, crystal penetration, and inter-
crystal scatter, but does not include any axial blurring or
FORE-related effects. The MC-based model also ignored
blurring effect caused by detector readout electronics. All
phantom data were Fourier rebinned first using the FORE
algorithm with John’s equation18 and then reconstructed us-
ing the three methods independently. Furthermore, the 1D
axial blurring function is also integrated into the MAP algo-
rithm and a comparison is made between the 2D MAP re-
construction of FORE data with and without the axial kernel.
All reconstructions were performed with �=0 �equivalent to
ML� and with various number of iterations to evaluate the
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FIG. 3. Normalized FORE axial kernel for a plane located at the center of th
The plane width is 0.58 mm.
convergence property.
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Three physical phantoms are used. The first phantom is a
3�3 line phantom �Fig. 4�a�� made by a plastic tube. The
phantom was filled with 3.7 MBq �100 �Ci� of 18F and
scanned at 2 cm radial offset from the center of the field of
view �FOV� for 20 min. The second phantom is an ultrami-
cro hot spot phantom™ �Fig. 4�b��, which was filled with
11.1 MBq �300 �Ci� of 18F and scanned at 1.5 cm radial
offset from the center for 30 min. The third phantom is a
cylindrical phantom with two 30 gauge line sources �inner
diameter of 160 �m, shown in Fig. 4�c�� filled with 14.8
MBq �400 �Ci� of 18F, resulting in a concentration of
20 �Ci /cc in the background and about 4 mCi/cc inside the
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FIG. 4. The physical phantoms used in the evaluation study. �a� A 3�3 line
phantom. The inner diameter of the tube is about 0.6 mm and the center-to-
center spacing between the lines is about 2 mm. �b� The ultramicro hot spot
phantom with hot spot diameters of 2.4, 2, 1.7, 1.35, 1, and 0.75 mm. The
spacing between line channels is twice the diameter. �c� The dual-line source
e axi
phantom. The inner diameter of the line sources is 160 �m.
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line sources. This phantom was scanned for 20 min at two
positions. In position A, the phantom is placed along the
axial direction of the scanner �line sources parallel to the
z-direction� while it is rotated to form a small angle with
respect to the transaxial plane in position B. The first three
data sets were used to evaluate the transaxial blurring kernel,
while the last data set �dual-line source in position B� is used
to study the axial blurring kernel.

Line profiles were drawn along the radial directions
through hot spots of the first two phantoms to compare the
reconstruction results. We calculated a contrast coefficient
defined as

C =
1

Nv
�
k=1

Nv � pk + pk+1

2vk
− 1� , �3�

where pk and vk represent the values of the kth peak and
valley in the line profile, respectively, and Nv is the number
of valleys. A sum of two Gaussian function was fitted to the
profiles and the corresponding full width at half maximum
�FWHM� was extracted to compare the resolution across dif-
ferent reconstruction methods. For the phantom with the two
line sources, the axial planes were summed for position A to
collapse the line sources into point sources and radial profiles
were extracted through each of the point sources. The axial
profile was extracted from the phantom at position B in a
manner reminiscent of that used by Boone et al.26 Since the
line sources were scanned at an angle, we obtained the slope
of the line sources by a least-squares fit. This slope deter-
mines the center location of the axial profile at each plane,
which was used to align all the axial profiles into one up-
sampled profile �similar to the one shown in Fig. 2�c�� for
measuring contrast and resolution. The noise was estimated
by computing the standard deviation of a large uniform area
within the phantoms away from the high activity regions and
then normalized by the means of the region.

III. RESULTS

III.A. Effect of the transaxial blurring kernel

III.A.1. The 3Ã3 line phantom

Figure 5 shows the reconstructed images of the 3�3 line
phantom with the 2D MAP PCG algorithm �18 iterations�
using no detector response model, the existing MC-based
blurring matrix, and the newly estimated transaxial blurring
matrix, respectively. The contrast and resolution versus itera-
tion plots are shown in Fig. 6. The improvement in contrast
with the proposed method at iteration 73 is 144% and 289%
over the MAP reconstruction with the existing MC blurring
kernel and the one without any transaxial blurring model,
respectively. The resolution is characterized by the average
FWHM of the three line sources. The MAP reconstruction
using the proposed blurring kernel results in an average
FWHM of 1.48 mm, while the corresponding resolutions ob-
tained by the MC-based kernel and no blurring modeling are

1.63 and 1.85 mm, respectively. Note that these values are
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worse than the intrinsic resolution of the microPET II scan-
ner because we did not deconvolve the physical size of the
line sources. Also, we observe that the spatial resolution of
the line sources in Fig. 5 is anisotropic for all reconstruction
methods, such that the radial resolution is worse than the
tangential one. This is due to the fact that the majority of the
in-plane blurring tends to radially blur events from the edge
of the field of view toward the center of the field of view as
a result of crystal penetration. Since it is difficult to have a
complete recovery of the resolution, some radial blurring
persists in the reconstructed images.

III.A.2. The ultramicro hot spot phantom

Reconstructed images of the ultramicro hot spot phantom
are shown in Fig. 7 �top row�. The MAP reconstructions
which model the blurring effects result in images that are of
higher quality than the MAP reconstruction without any blur
modeling. The figures of merit reported for this phantom
focus on the 1 mm pie of the phantom �upper right section�.
The case with no blurring model was not included in the
quantitative comparison since the corresponding recon-
structed images were unable to resolve the 1 mm section.
The contrast versus noise curves are plotted in Fig. 7 �bottom
row�. It shows that at a similar noise level �around 20% noise
mark�, the new estimated blurring kernel improved the con-
trast by 33% over the MC-based blurring kernel.

III.A.3. The dual-line source phantom with warm
background „position A…

Figure 8 shows the summed images of the dual-line
source phantom with warm background �position A� for all
FORE reconstruction methods. For comparison, we also in-
cluded in Fig. 8 the fully 3D reconstruction using the MAP
with the MC-based transaxial blurring kernel. The corre-
sponding contrast and resolution versus noise curves are

FIG. 5. The reconstructed images of the 3�3 phantom placed at 2 cm radial
offset. Left: MAP reconstruction with no detector response model. Center:
MAP reconstruction using the Monte Carlo based blurring matrix. Right:
MAP reconstruction using the new blurring matrix. Top row: Transaxial
views; bottom row: Sagittal views through the center column.
shown in Fig. 9. Here, again, the proposed blurring kernel
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results in higher contrast and better resolution when com-
pared to the other two MAP reconstruction results. When the
line source is located close to the center of the field of view,
the enhanced contrast obtained with the new blurring kernel
translates into a 136% and 21% improvement over the case
with no blurring kernel and the case with the MC kernel,
respectively. This improvement becomes 173% and 31%
when the line source is located off-center in the field of view.
The improvement in resolution is 30.5% and 7% over the
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no-blur case and MC-blur case, respectively, for the center
line source, while it is 31% and 6%, respectively, for the
off-center line source. These percent improvements are ob-
tained from the end point of each curve in Fig. 9. In addition,
we observed little difference between the 2D MAP recon-
struction of FORE data and 3D MAP reconstruction of 3D
data using the same MC blurring kernel for this data set,
indicating that the reconstruction of FORE data with a sino-
gram blurring kernel is a fast alternative to fully 3D recon-
struction. Moreover, we found that the contrast and reso-
lution obtained in the FORE reconstruction with the
estimated blurring kernel are better than those obtained in the
3D reconstruction using MC blurring kernel. This could be
attributed to the fact that the MC blurring kernel is an in-
plane 2D kernel geared toward the direct �nonoblique�
planes. When used in 3D reconstruction, the same kernel is
applied to all planes, some of which �the oblique planes� they
may be ill-suited for. With the estimated blurring kernel, we
observe a decrease in the difference in resolution at the cen-
ter and off-center point source when compared to the case
where no blurring kernel was used. Quantitatively, the differ-
ence between the off-center and center resolution for the no-
blur case is 1.629−1.269=0.36 mm, while it is only
1.118−0.882=0.236 mm for the proposed method.

III.B. Effect of the axial blurring kernel

III.B.1. The dual-line source phantom with warm
background „position B…

The coronal views of the reconstructed images of the
dual-line source phantom at position B are shown in Fig. 10
�top row� for the cases with and without axial kernel model-
ing. The corresponding contrast and resolution versus noise
curves are plotted in Fig. 10 �bottom row�. It is important to
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A B

C D

FIG. 8. The reconstructed images of the dual-line source phantom with warm background. �a� MAP reconstruction with no detector response model. �b� MAP
reconstruction using the Monte Carlo based blurring matrix. �c� MAP reconstruction using the new blurring matrix. �d� Fully 3D MAP reconstruction using
the Monte Carlo based blurring matrix.
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sources as being at the center of the phantom in Fig. 10 does
not signify that the line source is located at the center of the
field of view, since the phantom is at an angle and both line
sources will span a wide range of radial distances from the
center of the field of view. The axial kernel appears to visu-
ally sharpen the line sources as well as increase their con-
trast. Quantitatively, it results in an increase in contrast by
92% and 118% over the case when the axial kernel was not
used in the reconstruction for the center and off-center line
sources, respectively. The gain in contrast is accompanied by
a resolution enhancement of 37.5% and 42% for the center

10 20 30 40 50 60

10

20

30

40

50

60

70

80

(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.5

1

1.5

2

2.5

3

3.5

Normalized noise

C
on
tr
as
t

Contrast vs noise

(c)

FIG. 10. Top row: Coronal view of the reconstructed images of the dual-lin
with no axial blurring model. �b� MAP reconstruction with the estimated axi
with warm background at position B. �c� Contrast versus normalized noise
and off-center line sources, respectively. The off-center line
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source has better resolution than the center line source be-
cause of the nature of Poisson noise.27 There is a noticeable
undershoot at the edges of the line sources of Fig. 10�b�. This
undershoot is about 6.5% of the peak on average for the
center line source and increases to about 12% for the off-
center line source. This increase in undershoot is asymmetri-
cal and is more severe on the side of the line source closer to
the edge of the phantom, which is caused by the superposi-
tion of the undershoots from the off-center line source and
that from the sharp edge of the phantom. There is also some
change in noise pattern in the background in Fig. 10�b� when
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correlation because both images were taken at matched stan-
dard deviation levels �iteration 100 and 60 for the case with-
out and with axial modeling, respectively�.

IV. DISCUSSION

The results show that modeling the detector response
function is important in image reconstruction for PET. The
estimated 2D transaxial blurring matrix produces higher con-
trast and improved resolution compared to the existing
Monte Carlo based blurring matrix. Similarly, the estimated
axial kernel also yields reconstructed images with better con-
trast and resolution compared with the case without any axial
blurring modeling.

In this study, we use the ML-EM algorithm to estimate the
transaxial sinogram blurring matrix from Fourier-rebinned
point source data. No regularization was applied because the
point source measurements are of high counting statistics
and the noise in the point source measurements are far less
than that in a normal scan. The algorithm was run for 200
iterations to get a good fit of the data. The blurring kernel
estimation was run in parallel on a PC cluster because each
blurring kernel can be estimated independently. The estima-
tion took about 140 s per blurring kernel on a single 2 GHz
CPU and 1 h for all 994 blurring kernels on a 40 CPU clus-
ter. Since this is a one-time computation, the computational
time is not an issue. The same sinogram blurring matrix can
be used with different geometric projection matrices for re-
constructions using different image voxel size, which is one
advantage of the factored system matrix. Another advantage
of the factored system matrix is its computational efficiency
because the system matrix retains the sparsity of the geomet-
ric projection matrix, for which forward and back projections
can be efficiently calculated. The computation cost of the
sinogram blurring operation is insignificant compared to geo-
metric forward and back projections. Thus, the new blurring
kernels, while having slightly larger support than the Monte
Carlo based blurring kernels, do not affect the total image
reconstruction time.

When a PET scanner is operated in 2D or when PET data
are rebinned into 2D sinograms, the axial blurring effects can
be obtained separately from the transaxial blurring kernel.
On the other hand, for fully 3D PET data, the axial and
in-plane blurring effects are correlated with each other for
oblique sinograms and thus should be estimated simulta-
neously.

We note that Fourier-rebinned PET data no longer follow
Poisson distribution because of the precorrections for attenu-
ation, randoms, scatters, dead time, and detector efficiency,
as well as linear interpolations used in the rebinning proce-
dure. In this paper, we focus on studying the effect of sino-
gram blurring kernels. While the MAP reconstruction algo-
rithm was derived based on Poisson statistics, the loss in
statistical efficiency when applying to non-Poisson data
should not affect the relative performance between different
sinogram blurring models. To improve statistical efficiency,

the estimated blurring kernels can be incorporated into other
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reconstruction algorithms, such as the one proposed by
Alessio et al.,28 that use a more appropriate statistical model
for Fourier-rebinned data.

V. CONCLUSION

We have presented a method for estimating the transaxial
and axial blurring components of the system matrix for itera-
tive image reconstruction of Fourier-rebinned 2D PET data.
The method has been validated using the small animal mi-
croPET II scanner. The proposed method models sinogram
blurring effects along the radial and angular directions, as
well as the correlations between neighboring planes in the
axial direction. The in-plane blurring function explicitly
takes into account the block structure of the detectors. Phan-
tom experiments show that the proposed method provides
superior results in terms of resolution and contrast with no
noticeable additional cost in reconstruction time when com-
pared to MAP reconstruction using the existing Monte Carlo
based blurring matrix. The proposed method is applicable to
other PET scanners for human and animal imaging.
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