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Abstract
Bivariate clustered (correlated) data often encountered in epidemiological and clinical research are
routinely analyzed under a linear mixed model framework with underlying normality assumptions
of the random effects and within-subject errors. However, such normality assumptions might be
questionable if the data-set particularly exhibit skewness and heavy tails. Using a Bayesian
paradigm, we use the skew-normal/independent (SNI) distribution as a tool for modeling clustered
data with bivariate non-normal responses in a linear mixed model framework. The SNI
distribution is an attractive class of asymmetric thick-tailed parametric structure which includes
the skew-normal distribution as a special case. We assume that the random effects follows
multivariate skew-normal/independent distributions and the random errors follow symmetric
normal/independent distributions which provides substantial robustness over the symmetric
normal process in a linear mixed model framework. Specific distributions obtained as special
cases, viz. the skew-t, the skew-slash and the skew-contaminated normal distributions are
compared, along with the default skew-normal density. The methodology is illustrated through an
application to a real data which records the periodontal health status of an interesting population
using periodontal pocket depth (PPD) and clinical attachment level (CAL).

Keywords
Bayesian; linear mixed model; MCMC; normal/independent distributions; skewness

1. Introduction
Periodontal disease usually refers to a collection of inflammatory disease affecting tissues
called periodontium that surround and support the tooth and maintains them in the maxillary
(upper jaw) and mandibular (lower jaw) bones. If left untreated, it can cause progressive
bone loss around the tooth with loosening and eventual loss. It is well documented that some
5% to 15% of any population is susceptible to severe generalized periodontitis worldwide
[1]. Being the primary cause of adult tooth loss, it has been estimated that about 50% of U.S.
adults over the age of 35 experience early stages of periodontal disease [2]. Periodontal
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progression is usually assessed by hygienists by measuring two correlated popular bio-
markers, viz. periodontal pocket depth (PPD) and clinical attachment level (CAL) [3].

The motivating data example for this paper comes from a clinical study conducted at the
Medical University of South Carolina (MUSC) to determine the periodontal disease status of
Type-2 diabetic Gullah-speaking African-Americans. For an overall tooth level periodontal
status, our bivariate response is the mean of the measurements, i.e. mean PPD and mean
CAL for the 6 sites observed simultaneously for each tooth nested within a subject. More
details on this data appears in Section 2. With this type of multiple outcome measures, the
underlying statistical question is to estimate the functions that model their dependence on
co-variates as well as to investigate the relationship between these functions. Similar clinical
and epidemiological studies often generate clustered as well as longitudinal follow-up data
with bivariate or multivariate outcomes as primary endpoints which are routinely analyzed
using multivariate linear mixed models [4]. In this paper, we focus on a linear mixed effects
model that accommodates the tooth level clustering within subjects as well as the correlation
among bivariate (PPD and CAL) measures and facilitates borrowing of strength across all
teeth when assessing the effects of co-variates, viz. age, gender, body mass index (obesity
status), glycemic control (diabetic status), etc. on periodontal disease progression. We seek
to address the pertinent question: ‘How do potential co-variates influence periodontal status
of a particular tooth after accounting for subject-level clustering?’. In traditional linear
mixed model (LMM) analysis [5], the correlation due to clustered/repeated measures on a
subject are usually accounted for through the inclusion of random effects and within subject
measurement-errors which are often assumed to be normally distributed. While such an
assumption makes data analysis amenable to popular software like SAS, the usual fidelity to
normality assumptions has been questionable [6,7,8] when data exhibits non-normal
behavior. Figure 1 shows the raw density histogram plots of tooth-level mean PPD
(0-14mm) and mean CAL (0-12mm) in our data. The density histograms demonstrate
considerable skewness along with (possible) thick tails. A common approach adopted for
data analysis in these situations is reverting back to usual multivariate normality
assumptions after suitable transformation of the response (viz. log transform) on a
continuous scale. Although they may lead to reasonable empirical results, they may be
avoided when a suitable alternative theoretical model is available because data
transformation hinders underlying data generation mechanisms due to reduced information
and often component-wise transformation does not lead to joint normality [9]. Besides,
transformations are not universal, i.e. transforms used for one particular data may not be
adapted for a different data. Moreover, mean PPD and mean CAL can have zero values and
this hinders the applicability of popular log transformations. This motivates researchers to
consider exploration of a more general mixed effects framework that takes into account the
flexibility in distributional assumptions of random effects and measurement error to produce
robust parameter estimates. The term ‘robustness’ is quite extensive; here robustness is
achieved with respect to parameter estimation.

Considerable research has been done by introducing more flexible parametric families that
can accommodate normality departures (skewness and heavy tails) and hence eliminate the
need of ad-hoc data transformations [10]. In the context of LMM, the random effects
distribution was relaxed using finite normal mixtures [6], smoothing [7], a semi-
nonparametric (SNP) density [11] or a thick-tailed normal/independent (NI) densities [12].
Much of recent frequentist and Bayesian advances in regression problems revolve around
the attractive and popular skew-normal (elliptical) distributions [10,13,14,15]. Related
literature in this context is very rich [8,16,17,18] and the curious reader might choose to
venture an entire monograph [19] dedicated to discuss recent developments. Starting with
the multivariate skew-normal (SN) density [15], SN linear mixed models (SNLMM) were
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proposed in [9,20]. A common feature of these classes of SNLMM's is that the normal linear
mixed model (NLMM) is a special member in each class.

In this article, we propose a parametric modeling of LMM for robust estimation using skew-
normal/independent (SNI) distributions under a Bayesian paradigm. We assume a SNI
distribution for the random effects and a symmetric normal/independent (NI) distribution
[28] for the within-subject errors, so that the skew-normal/independent linear mixed model
(SNILMM) is defined. The multivariate SNI distributions used in this paper is developed
primarily from the multivariate SN density proposed in [14] for Bayesian regression
problems and is different from the multivariate SNI densities developed in [21] motivated
from the SN version proposed in [15]. However, the differences are only due to the various
parameterizations [22] used and an unification of all skew-normal (elliptical) variants is
presented in [23]. Recent Bayesian implementation of multivariate SN distributions [9]
involves skew-normal (SN) and skew-t (ST) densities using a conditional stochastic
representation. Starting from a marginal stochastic representation as in [8,20], our SNI
distributions are amenable to Bayesian implementation and provides a unified class of skew-
thick-tailed densities particularly attractive for robust parametric inference and contains as
proper elements not only the SN, ST but also the skew-slash (SSL) and the skew-
contaminated normal (SCN) densities.

The rest of the paper unfolds as follows. Section 2 illustrates the motivating data behind this
research. In Section 3, we introduce the SNI distributions for our bivariate response setup
and propose Bayesian inference and related model comparison techniques. We apply our
SNILMM to the periodontal data in Section 4 and use model selection tools to determine the
best model, comparing between the elements of the SNI class as well as the traditional
NLMM. Conclusions and future developments are relegated to Section 5.

2. Periodontal disease data
The motivating data analyzed in this paper was collected from a clinical study [24]
conducted at the Medical University of South Carolina (MUSC). The study was primarily
aimed to explore the relationship between periodontal disease and diabetes level (determined
by Hba1c, or ‘glycosylated hemoglobin’) in Type-2 diabetic Gullah-speaking (or simply
Gullah) African-Americans (13 years or older) residing in the coastal sea-islands of South
Carolina. The substantial evidence of adverse effects of diabetes on periodontal health [25]
has been extensively explored in dental research. The 2006 American Diabetes Association
(ADA) Standards of Medical Care recommend diabetic patients strive to maintain the
HbA1c < 7, ideally between 4-6 [26]. Since this is part of an ongoing study, we selected 214
patients with complete covariate information.

To measure periodontal status/progression, dental hygienists usually record the periodontal
pocket depth (PPD) and clinical attachment level (CAL), both measured in mm using a
manual probe for 6 surfaces per tooth (disto-buccal, mid-buccal, mesio-buccal, disto-lingual,
mid-lingual and mesio-lingual) for all 28 teeth per subject, except the third molars. Figure
2(a) provides a pictoral description of the two measures for a single tooth. PPD is defined as
the distance (in mm) from the gingival margin to the base of the sulcus/pocket as measured
by a periodontal probe. CEJ-GM, or gingival recession is the distance between the free
gingival margin and the cemento-enamel junction [3]. The primary measure of perio
progression, CAL is defined as CAL = PPD − (CEJ-GM) [3]. Clearly, site-level PPD and
CAL are correlated. In our data, we take the mean PPD and mean CAL measures as
representative tooth-level periodontal status clustered within a subject. Note that CEJ-GM
was recorded as negative when the free gingival margin recessed below the cemento-enamel
junction (CEJ). From the raw plot of mean PPD and mean CAL in Figure 2(b), we suspect
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some positive correlation between the two response measures. Additionally several subject
level covariates were also collected in the study, viz. Age (in years), Gender (1=Female,
0=Male), Body Mass Index or BMI (in kg/m2), glycemic status or Hba1c (1= High, 0 =
controlled), etc. The mean age of the subjects is about 55 years with a range from 26-87
years. Female subjects seem to be predominant (about 75%) in our data, which is not
uncommon in this population[27]. About 70% of subjects are obese (BMI >= 30) and 65%
are with Hba1c >= 7, an indicator of high glycemic level.

3. Statistical Model and Bayesian Inference
3.1. Skew-normal independent distributions

We start with the definition of the SN distribution proposed in [14] as an alternative to [15]
for straightforward Bayesian inference. A p × 1 random vector Y follows a SN distribution
with p × 1 location vector μ, p × p positive definite dispersion matrix Σ and p × p
asymmetry matrix Λ = Diag(λ) where Diag(·) is a diagonal matrix, λ = (λ1,…, λp)⊤, written
as Y ∼ SNp,p(μ, Σ, Λ), if its pdf is given by

(1)

where Ω = Σ + ΛΛ⊤, Δ = (Ip + Λ⊤ Σ−1 Λ)−1 = Ip − Λ⊤ Ω−1 Λ, Ip is the p × p identity
matrix, ϕp(.; μ, Σ) and Φp(.; Σ) are, respectively, the probability density function (pdf) of
Np(μ, Σ) and cumulative distribution function (cdf) of Np(0, Σ). Following [22], we use the
notation SNp,p since both the symmetric kernel ϕp and the skewing function Φp are p-
variates. Note that for Λ = 0p×p (or λ = 0p×1) where 0p×p and 0p×1 are respectively a p × p
matrix and a p × 1 vector of zeroes, (1) reduces to the symmetric Np(μ, Σ)-pdf, while for non
zero values of Λ, it produces a perturbed (asymmetric) family of Np(μ, Σ)-pdf's.

Following [21], we define a SNI distribution as a process of the p-dimensional random
vector

(2)

where U is a positive random variable with cdf H(u∣ν) and pdf h(u∣ν), which is independent
of the SNp,p(0, Σ, Λ) random vector Z. Here the parameter ν is a scalar or vector indexing
the distribution of U. Given U = u, Y follows a multivariate skew–normal distribution with
location vector μ, scale matrix u−1Σ and asymmetry matrix u−1/2Λ, i.e., Y∣U = u ∼ SNp,p(μ,
u−1Σ, u−1/2Λ). Thus, U is affecting both Σ and Λ. From (1), the marginal pdf of Y is:

(3)

The notation Y ∼ SNIp,p(μ, Σ, Λ, H) will be used when Y has pdf (3). When Λ = 0, the SNI
distributions reduces to the respective normal-independent (NI) [28], represented by the pdf

. We will use the notation Y ∼ NIp(μ, Σ, H) when Y has
distribution in the NI class. The asymmetrical class of SNI distributions includes the skew-t,
the skew-slash and the skew contaminated normal distributions, all of which accommodates
heavy tails than the SN and can be used for robust inference. Further technical details on
skew-normal and skew-normal/independent distributions can be downloaded from the
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Supplementary Material available at
http://people.musc.edu/∼bandyopd/SupplementSNIDental.pdf

3.2. Skew-normal/independent linear mixed models
Now, we summarize the linear mixed model (LMM) for our periodontal progression data

with bivariate correlated responses. Let  and 
be the measurements (in mm) of tooth-level mean PPD and CAL, respectively, for subject i
(i = 1, …, n). Here, mP and mC denotes the number of teeth accounted for within a particular
mouth, without loss of generality which is 28 (excluding the third molars). Any missing
tooth measurements were not included in the study. Let  and  be the mP × p1 and mC ×
p2 design matrix associated with the fixed effects βP and βC of the two markers respectively
and  and  be the corresponding mP × q1 and mC × q2 design matrices associated with
the random effects  and  respectively. Thus, we have our bivariate LMM:

(4)

where  and  are the within-subject residuals for the mean PPD and mean CAL,
respectively. For robust estimation, we model bi and ei simultaneously as

(5)

where Σbei = Diag(D, Σi) and  with Diag(A, B) denoting a block
diagonal matrix whose elements are the square matrices A and B; q = q1 + q2, ,
the matrix D = D(α) is the dispersion matrix corresponding to within-subject variability and
depending on the unknown parameter α, Λbei = diag(Λ, 0ni×ni), with Λ = Diag(λ) and λ = (λ1,
…, λq)⊤. Thus the vector λ is the only parameter involved in the asymmetry matrix. Finally,
H = H(·∣ν) is the cdf-generator that determines the specific SNI model that we are assuming.
Integrating out the variable ui, it follows from (2) and the stochastic representation S-1 in the
Supplementary Material, that

In this modeling, we consider a bivariate generalization of the classical NLMM where the
random errors are assumed to follow a NI distribution (with mean zero) and the random
effects are assumed to follow a multivariate SNI distribution. As in [21], since for each i = 1,
…, n, bi and ei are indexed by the same mixing factor Ui, they are not independent in
general. The independence corresponds to the case when Ui = 1 (i = 1, …, n), so that the
SNILMM reduces to the SNLMM as defined in [20]. However, from (2) and S-1 in the
Supplementary Material, conditional on Ui, bi and ei are uncorrelated, since

.
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Our main focus is to provide inference for . Under the
SNILMM proposition defined in (4)–(5), the marginal distribution of Yi is given by

(6)

where , , β = (βP, βC)⊤ and Λ̄i = ZiΛ, with Ω = D + ΛΛ⊤,
Λ = Diag(λ1, …, λq), where Xi = diag(X1i, X2i), . The proof follows from
Theorem 1 given in [20]. We call attention to the fact that the marginal distributions of the
response vectors given in (6) does not belong to the SNI class introduced in (3), since in
general ni ≠ q, i.e. the SNI is not closed under linear transformations. The specific forms of
the marginal distributions of Y for the sub-classes of our SNILMM are presented in
Appendix A.

3.3. Priors and joint posterior distributions
In this sub-section, we describe our choice of priors and associated posterior distributions of
model parameters to implement Bayesian inference for our SNILMM. A key feature of this
model is that it can be formulated in a flexible hierarchical representation. From (2) and the
marginal stochastic representation of a SN random vector (see S-1 in the Supplementary
Material), it follows that the SNILMM defined by (4) and (5) can be written hierarchically
as:

(7)

(8)

(9)

(10)

i = 1, …, n, where Xi = Diag(X1i, X2i), β = (βP, βC)⊤, ,  denotes the
Euclidean vector space of all p-tuples of positive real numbers and TNp(μ, Σ; A) denotes a
p-variate truncated normal distribution for Np(μ, Σ) lying within the hyperplane A. Defining

, , t = (t1, …, tn)⊤, u = (u1, …, un)⊤ and {A}(.) to be the
indicator function of the set A, it follows that the complete likelihood function associated
with (y⊤, b⊤, t⊤, u⊤,)⊤ is given by

(11)
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Now, to complete the Bayesian specification of the model, we need to put prior distribution
on all the unknown parameters in θ. Since we have no prior information from historical data
or from previous experiments, we assign conjugate but weakly informative priors to obtain
well defined and proper posteriors. A popular choice to ensure posterior propriety in a LMM
is to consider proper (but diffuse) conditionally conjugate priors like non-informative
Normal priors (with large variance) for the fixed-effects, inverse gamma priors for a single
variance components and inverse Wishart priors for the variance-covariance matrix, as
suggested in [32,33]. In general, we choose:

where N(., .) is the multivariate normal density, IG(a, b) is the inverse gamma density with
parameters a and b and IWq(Tb, τb) is the q-variate inverse Wishart distribution where Tb is
a q × q positive definite scale matrix and hyperparameter τb is the degrees of freedom. The
prior distribution of ν, with density π(ν), depends on the particular SNI distribution we use.
For the specific SNI distributions discussed in this work, i.e. skew-t (ST), skew-slash (SSL)
and skew contaminated normal (SCN) models, our choice is

a.
For the skew-t model: . That is, the degrees of freedom parameter
ν has a truncated exponential prior distribution on the interval (2, ∞), with mean 2/
ϱ before truncation. The truncation point was chosen to assure finite variance.

b. For the skew-slash model: A Gamma(a, b) distribution with small positive values
of a and b(b ≪ a) is adopted as a prior distribution for ν.

c. For the skew-contaminated normal model: A U(0, 1) distribution is used as a prior
for ν1, and an independent Beta(a, b) is adopted as prior for ν2 to achieve
conjugacy.

Assuming elements of the parameter vector to be independent, the joint prior distribution of
all unknown parameters is given by

(12)

Combining the likelihood function (11) and the prior distributions, the joint posterior
distribution for θ is now,

(13)

Distribution (13) is analytically intractable but MCMC methods such as the Gibbs sampler
and Metropolis-Hastings algorithm can be used to draw samples, from which features of
marginal posterior distribution of interest can be inferred. Given u, all conditional posterior
distributions are as in a standard SNLMM and have the same form for any element of the
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SNI class. An outline of the conditional posteriors of all model parameters including u and ν
(for specific SNI distributions) are given in Appendix B.

3.4. Model selection and goodness-of-fit
To select our best fitting model and related goodness of fit assessments, we compare among
the SN, ST, SSL and SCN models as well as the NLMM using Bayesian model selection
tools. Specifically, we consider both deviance-based criterion [29] and measures based on
posterior predictive performance [31].

The DIC [29] is a deviance-based measure appropriate for Bayesian model selection and is
defined as DIC = D ̄ + pD, where D ̄ is the posterior expectation of the deviance summarizing
model-fit, pD is a measure of model complexity defined as D ̄ − D(Θ̄), where D(Θ̄) is the
deviance computed at the posterior mean of parameters and Θ denote the parameter space.
Analogous to the AIC, the DIC summarizes the relative fit between a model and the ‘true
model’ generating the data conditional on the data clusters, i.e, the study subjects using a
single number summary with smaller values indicating better fit.

We also consider model selection based on predictive performance of competing models. If
ypr denotes the predictive data vector, then the posterior predictive distribution is given by:

(14)

One can obtain predictive data easily from a converged posterior sample and samples from
the posterior predictive distribution are replicates of the observed model generated data.
Using a squared-error loss function [30], we compare competing models based on the
expected total predictive deviance (ETPD) defined by

where, yij,Pr denote a replicate of the observed yij, the summations are taken over all
observations and the expectations taken over the full posterior of all model parameters.
Similar to DIC, this criterion chooses the model where the predictive values are centered
near observed values, i.e. with the lowest predictive variation.

To determine model adequacy after selecting the best model, we use a discrepancy measure
based on (14). If the observed value is extreme relative to the reference distribution (the
posterior predictive distribution), there is some concern with respect to assessment of model-

fit to the data. Define  and  to be the observed data on tooth-level mean CAL and PPD
scores respectively. The discrepancy measure between model and data is computed as a
summary statistic [31] using model parameters and data defined as

(15)
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The Bayesian p-value/posterior predictive p-value [31]  is defined as the number of times

Tk(ypr, Θ) exceeds Tk(y, Θ) out of L simulated draws i.e. ,
where ypr denotes a simulated draw from (14). A very large p-value (> 0.95) or a very small
(< 0.05) both signals model misspecification, i.e. the observed pattern would be unlikely to
be seen in replications of the data under the true model [31]

4. Data analysis and findings
In this section, we apply our method to the periodontal data described in Section 2. Our SNI
class of distribution allows continuous variation from symmetry to asymmetry and
accommodates practical values of kurtosis. We posit 5 competing models with latent
(unobserved) random effects and random errors from the SNI class. The models are as
follows:

Model 1 (N): Normal distribution for the latent random effect and random error.

Model 2 (SN): Skew-normal distribution for the latent random effect and normal
distribution for the random error (SN).

Model 3 (ST): Skew-t distribution for the latent random effect and Student-t
distribution for the random error.

Model 4 (SSL): Skew-slash distribution for the latent random effect and slash
distribution for the random error.

Model 5 (SCN): Skew contaminated normal distribution for the latent random effect
and contaminated-normal distribution for the random error.

In the absence of historical data/experiment, we specify practical weakly-informative priors
for all model parameters to obtain well-defined (proper) posteriors following the
recommendations in [32,33]. The components of βP and βC were assigned independent
Normal(0, Precision = 0.01) priors. For the scale parameter , k = 1, 2, we assign a
moderately diffuse IG(0.01, 0.01), so that the distribution has mean 1. The prior for the
variance-covariance matrix D is taken to be weakly-informative Inverse-Wishart with
covariance Tb = Diag((0.01, 0.01)⊤) and τb(degrees of freedom) = 6. For the asymmetry
parameters λ1 and λ2, independent Normal(0, Precision = 0.01) are used to accommodate
either positive or negative skewness and allow the data to determine it, although histogram
plots reveal right skewness. Prior choice for ν follows exactly as in [34]. For the ST
distribution, we choose ν as Exp(0.1) {(2,∞)} (i.e. exponential density truncated at 2) to
reflect a prior on ν (the t degrees of freedom parameter) with a well defined and finite
variance of Y. For the SSL distribution, the prior for ν is a Gamma(a, b) with small positive
values of a and b (a = 0.01, b = 0.001), primarily to ensure conjugacy. For the SCN
distribution, ν = (ν1, ν2)T and once again for posterior conjugacy, ν1 is chosen as U(0, 1) and
ν2 as Beta(1, 1)(= U(0, 1)).

For each of the models, we ran 2 chains with widely dispersed initial values. For all the 4
models, viz. N, SN, ST and SSL, we used 80000 iterations with an initial burn-in of 30000.
However for the SCN model, convergence was achieved at 60000 iterations. The complexity
of the SNI structure is manifested in the relatively high burn-in size. However, this is
straightforward to program within WinBUGS and associated code is available from the first
author on request. Posterior convergence was assessed using trace plots, autocorrelation
plots and the Gelman-Rubin scale-reduction factor R̂ [31]. To reduce autocorrelation among
successive Markov draws, we used a spacing of 5. After discarding the initial burn-in
samples, we used the remaining samples to compute the posterior parameter estimates.
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Table 1 presents the comparison among the 5 competing models using Bayesian model
choice criterion. Note that all the skewed versions produced better fit (in terms of DIC and
ETPD) than the NLMM. In particular, the skew-t (ST) model (with the smallest D ̄) produces
the best fit among the competing skew models. The SSL model is a close competitor with a
lower pD. Comparing ETPD values, the ST model outperforms all other models, though not
substantially. We select Model 3 (ST) as our best fitting LMM. Figure 1 shows the
smoothed posterior predictive densities overlayed on raw data histograms for our competing
models. From there, it is also quite clear that our class of SNI densities provide a substantial
better fit to our data over the NLMM. Also among the 4 competing models, the density for
the ST model seems to produce a better fit to the raw data histogram for both the responses.

The posterior mean of  and  for the ST model are 0.494 and 0.517 respectively,
indicating no overall lack of fit using our omnibus statistic (15). Table 2 provides posterior
estimates of asymmetry parameters (λ1, λ2), the variance components of random errors

, the variance-covariance matrix (D) and ν specific to ST, SSL and SCN
distributions. In particular, we provide estimates of posterior mean, standard deviation (SD)
and 95% credible intervals (CI) for the ST (our best fitting model) and mean and SD for the
other models. Interestingly, both λ1 and λ2 are significant and positive for all the 4 fitted
models providing evidence of moderate right-skewness for our data. Figure 3 shows the
box-plots for the parameters λ1 and λ2 for all the 4 models. Note that the CI does not include
zero for all the models, confirming positive asymmetry of the bivariate responses with mean
CAL to be more right-skewed than mean PPD. In particular, estimate (95% CI) of λ1 and λ2
for the ST model is 0.3965 (0.3359, 0.4981) and 0.5959 (0.5431, 0.6637) respectively.
Figure 4 plots the marginal posterior densities of the parameter ν for ST and SSL densities
and ν = (ν1, ν2) for the SCN density. All density plots shows some degrees of right
asymmetry confirming non-normal nature. For the ST and SSL, as ν (the t degrees of
freedom) → ∞ (say 30), it approaches the normal density. However, the posterior mean
estimate of ν for ST and SSL model are 3.82 and 1.04 respectively, which confirms its
sufficient disparity from the normal framework. Also, the contaminated normal density →
normal density when the proportion of contaminants (posterior estimate of ν1) is 0. For the
SCN model, the posterior mean of ν1 is about 0.34 while the posterior density of ν2 has a
mode around 0.247. The estimate of the within-subject variances  and  for both mean
PPD and mean CAL are smaller in the skewed class of models as compared to the NLMM
(not shown here), primarily because of interrelation between high variability, heavy tails as
well as skewness. Table 3 provides posterior estimates of the fixed-effects parameters
obtained by fitting our SNI models. Similar to Table 2, we provide posterior mean, SD and
95% CI's for the ST model and the posterior mean and SD for the other models. For the ST
model, the glycemic control (as determined by Hba1c) is positive and significant, indicating
that mean PPD and mean CAL values seems to be higher for elevated levels of Hba1c
controlling for the other covariates. Although Hba1c is not significant in all other competing
models, it was significant in the mean PPD regression for the SL model. Estimates of 95%
CI's for almost all fixed effects parameters (for both PPD and CAL regressions) in the ST
model were tighter as compared to all other competing models. This is expected, because the
ST density seems to provide the most precise fit to this data set. The estimated overall
posterior correlation between mean PPD and mean CAL obtained from fitting the ST model
is 0.378 which also confirms some degree of positive association between the two measures.
For hierarchical GLMMs, use of weakly-informative priors can lead to inference which are
sensitive[33,35] to the choice of priors on hyperparameters. To investigate this issue, we
conducted sensitivity analysis on the routine use of inverse-gamma prior [36] on variance
components as well as the inverse-Wishart prior of the variance-covariance matrix. In all the
results, we focused our attention on the estimation of the fixed effects parameters βP and βC.
We considered an array of weakly-informative to highly non-informative choice of priors. In
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particular, we took , i = 1, 2, where κ1 ∈ {−4, −3, −2, −1, 0, 1, 2} and the
prior choice on the scale matrix D to be Inverse-Wishart with covariance T = Diag((k, k)⊤),
where k = 0.001 and 0.0001. Although we notice slight changes in the values of fixed effects
estimates as well as model comparison measures, results were quite robust on the overall
and did not change any conclusions regarding our best fitted model, the posterior estimates
of λ and ν and the strength of correlation between mean PPD and mean CAL.

5. Conclusions
Using a Bayesian linear mixed model framework, this paper considers a class of multivariate
skew-normal/independent (SNI) regression models to jointly analyze mean PPD and mean
CAL as determinants of periodontal progression. Our class of SNI models contains as a
subclass some interesting family of models, viz. skew-t, skew-slash and skew contaminated
normal densities. The nice hierarchical representation given in (7-10) provides easy model
implementation using conventional Bayesian software like WinBUGS and thus might appeal
to an applied researcher. Using suitable model choice criterion, the skew-t model provided
the best fit to this data among other competing models. Since the data exhibit some degree
of right-skewness in both components of its bivariate response, substantial improvement in
model fit is observed by shifting away from the traditional normality assumptions.

Our approach motivated by a parametric class of skew-densities are relatively easy to
implement and provides an interesting alternative to other computationally challenging
semiparametric or fully nonparametric models [11,37]. Although the wonderful memoir [19]
provides many alternative expositions of skew-elliptical models, we specifically choose the
skew-elliptical distributions starting from the skew-normal representation of [14] due to
straightforward Bayesian analysis through hierarchical representations.

Our current analysis is focussed on exploring a ‘clustered’ cross-sectional periodontal
progression data. However, often subjects who are brought in for periodontal assessments
are subjected to randomized treatments and subsequent longitudinal followups. We plan to
explore our class of SNI linear mixed models under these longitudinal framework. Also,
periodontal progression is often believed to be associated with latent (within-mouth) spatial
structures [38] and a diseased tooth seem to influence its neighboring tooth more than the
non-neighbors while accounting periodontal progression. Methods to incorporate spatial
dependencies in our class of SNI linear mixed models will be considered elsewhere.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: Marginal distribution of Y in our LMM for specific SNI cases
For the ST, SL and SCN sub-classes within our SNILMM, we have the following results for
the marginal pdf of Yi as defined in (6).

• The ST distribution

(A-1)

where .

• The SSL distribution

(A-2)

• The SCN distribution

(A-3)

APPENDIX B: Outline of conditional posterior distributions

Under the full model as described in (13), given u, the full conditional distribution of β, ,
, D, λ, bi, ti, i = 1, …, n, are given as

(B-1)

where  and ;

(B-2)

where , ,  and ;

(B-3)

where , ;
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(B-4)

(B-5)

where  and , i = 1, … n;

(B-6)

where At = (Iq + Λ⊤D−1Λ), ati = Λ⊤D−1bi.

Conditional posteriors for specific SNI cases follows.

• The ST distribution

The density of the conditional posterior distribution takes the form:

where .

The full conditional posterior density of ν is:

where π1(ν) = (2ν/2Γ(ν/2))−n, which does not have a closed form but a Metropolis-
Hastings or rejection sampling step can be utilized to obtain draws from ν.

• The SSL distribution

In this case, the full conditional posterior density of each ui is:

and the conditional posterior density of ν is

• The SCN distribution

The full conditional posterior of the proportion of outliers ν1 is:
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and the conditional posterior density of ν2 is:

Similarly, a Metropolis–Hastings proposal [12] can be used to update ν2.
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Figure 1.
Histograms of tooth-level observed mean PPD and mean CAL scores overlayed with
posterior predictive density estimates using normal linear mixed model (NLMM) and skew-
normal (SN), skew-t (ST), skew-slash (SSL) and skew contaminated normal (SCN) densities
as members of the SNILMM
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Figure 2.
Panel (a): Graphical illustration of PPD and CAL measures for a tooth. This figure was
published in ‘Dental Hygiene: Theory and Practice’, 1st edition, Michele L. Darby and
Margaret M. Walsh, Chapter 17 Page 471, Copyright W.B.Saunders Company (1995); Panel
(b): Scatter plot of mean PPD vs mean CAL values
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Figure 3.
Box plot of asymmetry parameter for the 4 fitted models. The upper row is for λ1 and the
lower row for λ2.
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Figure 4.
Marginal posterior densities estimates of parameter ν for all 4 distributions. The upper panel
display plots for skew-t and skew-slash densities and the lower panel for skew contaminated
normal density.
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