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Abstract
Recent years have witnessed a renewed interest in using oscillatory brain electrical activity to
understand the neural bases of cognition and emotion. Electrical signals originating from pericranial
muscles represent a profound threat to the validity of such research. Recently, McMenamin et al
(2010) examined whether independent component analysis (ICA) provides a sensitive and specific
means of correcting electromyogenic (EMG) artifacts. This report sparked the accompanying
commentary (Olbrich, Jödicke, Sander, Himmerich & Hegerl, in press), and here we revisit the
question of how EMG can alter inferences drawn from the EEG and what can be done to minimize
its pernicious effects. Accordingly, we briefly summarize salient features of the EMG problem and
review recent research investigating the utility of ICA for correcting EMG and other artifacts. We
then directly address the key concerns articulated by Olbrich and provide a critique of their efforts
at validating ICA. We conclude by identifying key areas for future methodological work and offer
some practical recommendations for intelligently addressing EMG artifact.

Recent years have witnessed a renewed interest in using neural oscillations to understand the
substrates of mental function and dysfunction (Uhlhaas & Singer, 2010). Electrical activity
generated by the pericranial musculature, electromyogenic (EMG) artifact, is one of the most
profound threats to the validity of such studies. The danger is intrinsic to the cardinal features
of EMG, particularly its high amplitude, broad spectral and anatomical distributions, and
sensitivity to psychologically interesting processes. Consequently, even subtle EMG artifact
can generate spurious effects and can mask or otherwise alter genuine ones across virtually the
entire spectrum of the electroencephalogram (EEG).

A number of tools for EMG correction have been developed, however, the pace of algorithm
development and dissemination has outstripped work to rigorously assess the sensitivity and
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specificity of such tools. Collectively, these issues motivated several recent methodological
publications by our group (McMenamin et al., 2010; McMenamin, Shackman, Maxwell,
Greischar, & Davidson, 2009; Shackman, 2010; Shackman, McMenamin, Maxwell, Greischar,
& Davidson, in press; Shackman et al., 2009). In particular, in McMenamin et al. (2010), we
examined the validity of the extended Infomax independent component analysis (ICA)
algorithm (Jung et al., 2000a,b; Onton, Westerfield, Townsend, & Makeig, 2006).

It was this report that sparked the accompanying commentary by Olbrich (Olbrich, Jödicke,
Sander, Himmerich & Hegerl, 2010). Our response is organized as follows. We begin by briefly
summarizing the EMG problem and then outline recent research, including our own, assessing
the utility of ICA for correcting artifacts. Next, we directly address the key concerns articulated
by Olbrich and critique their efforts at validating ICA. We conclude by identifying key areas
for future methodological work and offer some practical recommendations for dealing with
EMG artifact.

Nature of the EMG Problem
The difficulty encountered when addressing EMG artifact can be attributed to three key factors:
a) its spatial and spectral distribution, b) its exquisite sensitivity to a variety of psychologically
interesting processes, and c) its lack of stereotypy. The EMG signal has remarkable spatial
extent and spectral breadth. Although the EMG power spectrum peaks at relatively high
frequencies (~100Hz), it is sufficiently broad to overlap with all EEG frequencies of interest.
Goncharova, McFarland, Vaughan, and Wolpaw (2003) report reliable myogenic effects as
low as 2 Hz. They also demonstrated that EMG can be detected anywhere on the scalp due to
volume conduction of activity generated by muscles across the head, face and neck.
Comparably widespread effects were observed by McMenamin (Figure 1).

These problems are further complicated by the fact that EMG is sensitive to a variety of
experimental manipulations. Facial EMG, in particular, is sensitive to numerous cognitive and
affective processes, including cognitive load (Cohen et al., 1992; Waterink & van Boxtel,
1994), facial mimicry (Dimberg et al., 2000), vocalization (Brooker & Donald, 1980), and
induced emotional states (Borden et al., 1991; Coan and Allen, 2001; Bradley et al., 2001).
Such effects are not limited to the face: activity generated by the muscles of the neck, for
instance, has been shown to closely track performance motivation (Roesch & Olson, 2007). A
consequence of such effects is that changes in neurogenic and myogenic activity are often
confounded, allowing muscle activity to masquerade as EEG or fundamentally alter the
magnitude or topography of genuine neurogenic effects. Indeed, McMenamin showed that
when changes in neurogenic and myogenic activity negatively covaried, alpha-blocking
associated with eye-opening was attenuated at locations across the scalp and source-space,
including posterior locations far removed from peak myogenic activity. These effects did not
reflect an artificially extreme degree of EMG contamination. In fact, the statistical effect-size
for the alpha-blocking contrast was three times larger than the myogenic contrast. Together,
these observations underscore that even low-intensity myogenic activity represents a serious
risk to validity.

Lastly, EMG exhibits a poorly stereotyped response, making removal difficult. EMG arises
from the activity of spatially distributed, functionally independent muscle groups, with distinct
topographic and spectral signatures. For instance, frontalis activity peaks around 25 Hz,
whereas temporalis has a lower peak (~20 Hz) and broad plateau around 40–80 Hz
(Goncharova et al., 2003). The spectral composition of myogenic activity can vary with
contraction intensity (Goncharova et al., 2003) and fatigue (Chung et al., 2002). This is
compounded by the fact that the relative contributions of each muscle can vary substantially
across elicitors and individuals (Tassinary et al., 2007). Consistent with this, McMenamin
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demonstrated that even carefully instructed myogenic activity is characterized by marked
individual differences (Table 1). Across participants (n = 17), anywhere from 3% to 67% of
the 64 independent components that were extracted were classified as ‘pure’ myogenic activity.
Likewise, myogenic components accounted for as little as 1.5% and as much as 78.5% of the
variance in EEG activity (see Figures 6–7 in McMenamin). Given such individual differences
in the spectral and topographic profile of myogenic activity, canonical spatial or spectral filters
or templates of the kind that have been fruitfully applied to the correction of ocular artifact
(e.g., Viola et al., 2009) probably are not suitable for correcting typical EMG artifacts.

Validating the use of Infomax ICA for EMG Correction
The Infomax ICA algorithm has rapidly become one of the most prominent techniques for
removing EMG and other contaminants from the EEG. Conceptually, ICA-based correction
entails three steps. First, ICA is used to perform an unsupervised decomposition of the EEG
into temporally independent components (Onton et al., 2006; Onton & Makeig, 2006). Next,
components are classified, and those categorized as artifact are discarded (for a detailed
classification protocol, see the Supplement to McMenamin). Classification is typically
performed manually, although algorithmic techniques have been developed (Shackman et al.,
2009). Finally, the ‘artifact-free’ time-series is reconstructed from the remaining components.
ICA’s ability to reconstruct the time-series is a key advantage over artifact correction
techniques that cannot do so, such as those based on the general linear model (McMenamin et
al., 2009). Although ICA shows great promise for correcting EMG and other artifacts (e.g.,
Jung et al., 2000a,b), attempts to assess its validity have been limited (reviewed in McMenamin
and in Shackman et al., 2009). Moreover, few studies have gauged the impact of ICA-based
EMG correction on source modeling (‘localization’), an increasingly popular technique for
maximizing the anatomical information yielded by the EEG (Pizzagalli, 2007).

Accordingly, McMenamin quantitatively assessed the sensitivity and specificity of ICA on the
scalp and in the cerebral source-space using a dataset in which neurogenic and myogenic
activity were independently manipulated. Critically, this design allowed us to examine ICA-
based EMG correction under conditions in which neurogenic and myogenic activity covaried,
as they do in many experimental settings. The degree to which artifact correction produced
spurious effects in the absence of artifact was also assessed. Finally, given earlier work
suggesting the importance of varying the procedures for discarding non-myogenic artifacts
(Shackman et al., 2009), McMenamin tested whether varying these procedures affected the
quality of EMG correction1. Importantly, our validation analyses made use of both mean
difference and mean equivalence tests (Seaman & Serlin, 1998)—the latter are essential for
rigorously demonstrating the sensitivity and specificity of a particular correction technique.

Results revealed that some, but not all, of the correction procedures exhibited adequate
sensitivity and specificity on the scalp (see also Shackman et al., 2010). The most sensitive
and specific procedure was among the strictest of the nine examined, entailing the rejection of
any component showing evidence of EMG, in addition to those reflecting gross or ocular
artifacts, noise, or unclassifiable low-variance signals. None of the procedures consistently
showed excellent performance on the scalp. That is, a modest number of ‘worst-case’ electrodes

1Nine procedures for filtering classified components were examined by McMenamin, reflecting the factorial crossing of procedures for
discarding myogenic vs. non-myogenic artifacts (see Table 1 and the Supplement to McMenamin). Three procedures for discarding
myogenic components were assessed: Minimal-EMG: Myogenic components; Intermediate-EMG: Myogenic and Myogenic >
Neurogenic (‘Myogenic-Dominant’ heterogeneous) components; Maximal-EMG: Myogenic, Myogenic > Neurogenic, and Neurogenic
> Myogenic (‘Neurogenic-Dominant’ heterogeneous) components. Three procedures for discarding non-neurogenic/non-myogenic
(NNNM) components were assessed: Minimal-NNNM: Gross or Ocular components; Intermediate-NNNM: Gross, Ocular or Noise
components; Maximal-NNNM: Gross, Ocular, Noise or Low Variance components. Application of the different filtering procedures led
to marked differences in the percentage of scalp variance that was discarded (range: 26%–73%; see McMenamin, Figures 6–7).
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evinced under- or over-correction. This residual error on the scalp resulted in poor sensitivity
and specificity in the cerebral source-space. This conclusion was not entirely unexpected, given
other work highlighting the potential limitations of Infomax ICA (Crespo-Garcia et al., 2008;
Fitzgibbon et al., 2007; Wallstrom et al., 2004; Romero et al., 2008; Castellanos & Makarov,
2006; Debener et al., 2008; Hyvärinen, Ramkumar, Parkkonen & Hari, 2010; Klemm, Haueisen
& Ivanova, 2009; Lindsen & Bhattacharya, 2010; Vanderperren et al, 2010).

Rebuttal of Olbrich
We next address the three key concerns articulated by Olbrich. Although they raise several
conceptually and methodologically important points, none of their specific concerns
fundamentally change the implications of our research.

Too Few Components?
Olbrich suggests that the inadequate performance of ICA-based EMG correction reported by
McMenamin might reflect the procedures used for extracting independent components, rather
than an intrinsic limitation of the Infomax ICA algorithm. In particular, they expressed concern
that an insufficient number of components may have been extracted to adequately separate
neurogenic and myogenic sources. There are two reasons for rejecting this possibility. First,
as noted by McMenamin (their footnote 5), preliminary visual inspection of the 128
components extracted from the native electrode array indicated over-fitting, evidenced by the
fission of artifactual signals across components (e.g., ocular and cardiac artifacts loaded onto
an excessive number of components; see also Viola et al., 2009). Based on these exploratory
analyses, we ultimately elected to use principal components analysis (PCA) to extract 64
components for validation testing. Qualitatively, reducing the number of components
attenuated the amount of ‘splitting’ or ‘leakage’ of artifacts across multiple components.
Second, using information theoretic procedures, McMenamin demonstrated that extracting 64
components always exceeded the Bayesian estimate of the minimum number required to
describe the data (Table 1), providing quantitative evidence against underfitting.

Olbrich also suggested that it might have been more appropriate to compute ICA separately
for each condition (i.e., quadrupling the number of components available for separating
sources). There are several potential problems with this suggestion, aside from the strong
possibility of overfitting the data. First, everything else being equal, reducing the amount of
data used to decompose the EEG will tend to degrade the quality of the source separation
(Makeig & Onton, in press). Put simply, given fewer exemplars of a particular artifact, ICA
will be less able to cleanly separate it from other sources. A second problem with this suggestion
is that generating separate ICA-based artifact filters for each condition has the potential to
confound errors introduced by artifact correction with differences in neurogenic activity.
Artificial correlations between condition and correction errors, like correlations between
condition and EMG artifact, pose a direct threat to inferential validity. Fortunately, it is easy
to eliminate this artificial threat simply by performing component extraction and classification
on the complete dataset for each participant (i.e., all conditions considered simultaneously).

Classification Biases?
Olbrich suggested that our results might reflect problems with component classification, rather
than a failing of Infomax ICA. But this concern appears to be entirely theoretical. To our
knowledge, a reasonably well-validated algorithm for classifying components simply does not
exist. Instead, prior work to develop classification algorithms has largely relied on simple
heuristics (e.g., EMG components display more activity >40Hz than <20Hz) or training
datasets that were pre-classified by ‘expert’ raters (e.g., Mammone & Morabito, 2008). By
contrast, we provided a detailed classification protocol that relied on a comprehensive
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inspection of each component, including its time-series, spectra, and topography (see the
Supplement to McMenamin). This classification protocol proved highly reliable across two
independent human raters (αs = .93–.98). Notably, we also systematically examined the
influence of 9 different procedures for rejecting myogenic and non-myogenic artifacts (see
Footnote 1). Systematic biases in the classification or rejection of components cannot explain
the combination of low sensitivity and low specificity in the source-space. Had we been too
strict, rejecting all but the most prototypical neurogenic components, we would expect to find
excellent sensitivity and poor specificity. Conversely, had we been too liberal, rejecting only
the most egregious artifacts, we would expect to find the reverse pattern. The bottom line is
that systematic procedural biases cannot readily account for our results, whereas a failure to
cleanly separate myogenic and neurogenic sources does.

Confounding Myogenic and Neurogenic Activity?
Finally, Olbrich raise the possibility that our results may reflect the fact that one of our
simplifying assumptions, namely that neurogenic activity is consistent across periods of muscle
tensing and quiescence, is wrong. The key contrast for testing the sensitivity of ICA-correction
technique in McMenamin was comparing the eyes-open, tense condition (OT) after EMG-
correction to the uncorrected eyes-open, relaxed condition (OR). Significant differences in this
contrast were interpreted as the presence of residual myogenic artifact—an interpretation that
hinges on the assumption there is no systematic variation in neurogenic signals during the
tensing of facial muscles. Olbrich et al (2010) cite several ways in which this assumption may
fail, and we agree that basic neurophysiology dictates that there will be greater neuronal activity
in regions innervating the pericranial musculature during the Tense condition. Empirically,
however, the observed effects in the Corrected OT-OR contrast are far more consistent with
residual artifact.

In particular, McMenamin did not observe effects in the lateral precentral gyrus for the OT-
OR contrast (Figure 1), so these regions were not incorporated into the ‘myogenic’ region of
interest (ROI) that was relied on for testing the sensitivity of ICA-based EMG correction.
Primary motor regions were also not incorporated into the ‘neurogenic’ ROI that were used to
test specificity. Thus, neither validation test was likely to have been confounded by differences
in neurogenic activity associated with the tensing manipulation2.

A further argument against Olbrich’s interpretation stems from the remarkable similarity
between the topography of the corrected and uncorrected myogenic contrasts (OT vs. OR;
Figures 1–2 in McMenamin). The distribution of the myogenic contrast is nearly identical
before and after ICA-based correction. This implies one of two possibilities. Either ICA-based
correction failed to wholly correct the artifact, leaving a substantial residual, or it unmasked a
neurogenic signal that was temporally and spatially coincident with EMG. The frontal
topography renders the latter suggestion implausible. Collectively, these observations indicate
that neural activity associated with muscle tensing had little effect on our conclusions.

2Similar logic allows us to rule out a significant contribution from between-condition differences in gross arousal—as one might expect
if muscle tensing was associated with greater arousal or cognitive workload than quiescence. Olbrich and colleagues (2009) recently
used source modeling to show that such differences are associated with altered alpha-band (8–12 Hz) cortical current density in posterior
regions of the cingulate, occipital, and temporal cortices. None of these regions contributed to the ROI we used to evaluate the sensitivity
of ICA-based artifact correction (i.e., attenuation of myogenic activity). Such regions did overlap with the ROI used for evaluating
specificity (i.e., the preservation of neurogenic activity; see Figure 9 in McMenamin), but differences in alpha-band activity associated
with tensing could not have influenced the primary test of specificity, which examined the impact of ICA-based correction on the
neurogenic contrast (eyes-open/muscles-relaxed vs. eyes-closed/muscles-relaxed) in the absence of EMG artifact.
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Critique of Olbrich’s Simulation
Quantitatively validating any EMG correction tool requires data in which the presence and
absence of EMG is definitive or can be reasonably assumed. McMenamin generated such a
dataset by instructing participants to tense or relax facial muscles. An alternative approach is
to build a synthetic dataset in which the experimenter mathematically ‘injects’ artifact into
otherwise artifact-free data. Simple simulations can provide proof-of-principle, but may not
be very informative about real-world performance given the substantial variability that is a
hallmark of the pericranial EMG (see above and Table 1) and some other kinds of artifact (e.g.,
Gwin, Gramann, Makeig & Ferris, 2010). A related concern is that the assumptions underlying
simple generative models (e.g., the degree of temporal and spatial correlation with neurogenic
signals) probably do not characterize real EMG contamination, leading to low external validity
(Grouiller et al., 2007;Hoffmann and Falkenstein, 2009). Of course, it is possible to create more
complex simulations that can yield a more detailed understanding of the conditions under which
a particular correction algorithm is valid (e.g., Delorme, Sejnowski & Makeig, 2007;Fitzgibbon
et al., 2007).

But the simulation conducted by Olbrich was not of this kind. Instead, they simulated EMG
contamination by superimposing EMG from a single extracranial muscle on the artifact-free
EEG at three adjacent channels. The magnitude, spectral characteristics, and topography of
simulated artifact was held constant across participants (n = 10). No attempt was made to
examine conditions in which neurogenic and myogenic signals covaried. It is not clear what
protocol was used for classifying components or even whether rater(s) were blind to the
simulation protocol. Analyses were restricted to testing the null, a significant limitation that
could have been circumvented using the sorts of equivalence tests employed by McMenamin.
This concern is magnified by the strict threshold used for examining mean differences. Given
these limitations, it is unlikely that the conclusions drawn by Olbrich from this simulation will
accurately predict the real-world performance of ICA-based EMG correction.

Future Challenges
Several factors could plausibly account for the inability of Infomax ICA to fully separate
myogenic from neurogenic sources. Testing these hypotheses represents a profitable avenue
for future research. First, inadequate separation might reflect the extraction of too many
components. Consistent with this possibility, Bayesian estimates of ‘model order,’ the
minimum number of components necessary to describe each participant’s EEG, indicated a
moderate degree of overfitting that varied substantially across individuals (Table 1).
Overfitting could explain poor source separation (Naeem et al., 2009;Ryali et al., 2009). This
possibility could be more systematically investigated using information theoretic approaches
(Beckmann and Smith, 2004;Calhoun et al., 2001;Li et al., 2007;Moraux and Iannetti, 2009),
deflationary approaches (http://www.cis.hut.fi/projects/ica/fastica;Mantini et al., 2008), or
stepwise ICA (Hesse and James, 2004) to objectively identify the optimal model order for each
participant. Doing so might also facilitate the development of criteria for discarding
problematic participants (e.g., those with an unusual number of components).

Second, source modeling was not incorporated into the component classification protocol.
Classification was instead based on the visual inspection of time-series, power spectrum, and
topography. While this is a conventional approach, it is possible that inspection of component
dipoles would have facilitated more accurate classifications, particularly in the case of ‘mixed’
components (e.g., Myogenic dominant). This possibility could be evaluated by modeling
dipoles for each independent component3. Those characterized by dipoles at the edge or outside

3This could be readily accomplished using the dipfit2 or besafit plug-ins for EEGLAB (http://sccn.ucsd.edu/eeglab/).
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of the brain could, in combination with other criteria, then be classified as artifactual (myogenic
or otherwise; Onton and Makeig, 2006,2009; Milne et al., 2009) and the impact on sensitivity
and specificity assessed.

Third, inadequate separation might reflect EMG violating key assumptions of the Infomax
algorithm (Bell and Sejnowski, 1995; James and Hesse, 2005; Makeig & Onton, in press). The
lengthy blocks of neurogenic and myogenic activation in the present study—and in many
studies of emotion (e.g., Coan and Allen, 2001; Davidson et al., 1990; Shackman et al.,
2006)—may not adequately satisfy the assumption that component activation is non-Gaussian.
Furthermore, if neurogenic and myogenic activity are too closely coupled in the time-domain
they would violate the assumption that sources are mutually temporally independent (but cf.
Ohla et al., 2009). Future studies should test whether second-order separation algorithms,
which do not make such assumptions, yield better separation (Joyce et al., 2004; Romero et
al., 2008; Tang et al., 2005). It might also prove fruitful to investigate signal-space projection
methods (Nolte and Curio, 1999; Tesche et al., 1995; Uusitalo and Ilmoniemi, 1997) or source
separation in the frequency-domain (Anemuller et al., 2003; Hyvärinen et al., 2010; Lee et al.,
2008), which may improve the separation of sources with overlapping spectra.

A fourth promising direction is to validate correction techniques using data obtained in the
presence and absence of neuromuscular blockade (Whitham et al. 2008, 2007). Doing so would
avoid the assumptions necessitated by simulated, scripted, and ad hoc datasets (Shackman et
al., 2009).

Recommendations and Conclusions
Although ICA cannot be viewed as a panacea for EMG contamination, careful application is
a useful means of rejecting the most dubious results on the scalp. Nevertheless, in cases where
myogenic activity is plausible, we cannot recommend the use of source modeling techniques
for hypothesis testing. Likewise, the results of McMenamin and others indicate that findings
in the upper frequency bands (i.e., beta, gamma) should be interpreted with extreme caution,
particularly when they occur in the vicinity of scalp muscles. At minimum, scalp topography
plots should be presented (Shackman, 2010; Shackman et al., in press). We recommend that
investigators adequately describe the procedures used for classifying and filtering artifactual
components and, where relevant, quantitatively assess inter-rater reliability.

There is increasing interest in using scalp-recorded and source-localized EEG to answer
fundamental questions about how the mind arises from and interacts with the brain (Makeig
et al. 2004; Pizzagalli 2007). The development and careful validation of novel tools for
separating myogenic from neurogenic signals will have substantial benefits for this endeavor.
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Figure 1. Myogenic activity
A. Cranial muscles. Nearly all cephalic electrodes lie atop or adjacent to muscle, making EMG
artifact a concern for the entire head—not just anterior electrodes. Key generators of myogenic
artifact include the corrugator along the brow, orbicularis oculi around the eyes, frontalis
above the brow, masseter on the jaw, the peri-auricular muscles surrounding the ear, and
occipitalis at the base of the skull. Lower engraving depicts temporalis. Inset shows the 128-
channel EEG array. Engravings adapted from Gray’s Anatomy (Gray, 1918/2000). B. Low
intensity myogenic activity on the scalp. Spline-interpolated topographic plots of the
thresholded myogenic contrast (Tense minus Relaxed, Eyes Open; n = 17). One-third of the
128-channel array reached threshold (p = .05) and one-half showed trends (p = .10). C. Low
intensity myogenic activity increased activity in large regions of the cerebral source-space.
Images depict the thresholded myogenic contrast. Note the absence of suprathreshold voxels
in primary motor cortex (M1; precentral gyrus). Data were modeled using LORETA, as
detailed in McMenamin. Additional images are presented in the Supplement to McMenamin.
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