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Abstract
We consider using observational data to estimate the effect of a treatment on disease recurrence,
when the decision to initiate treatment is based on longitudinal factors associated with the risk of
recurrence. The effect of salvage androgen deprivation therapy (SADT) on the risk of recurrence
of prostate cancer is inadequately described by existing literature. Furthermore, standard Cox
regression yields biased estimates of the effect of SADT, since it is necessary to adjust for
prostate-specific antigen (PSA), which is a time-dependent confounder and an intermediate
variable. In this paper, we describe and compare two methods which appropriately adjust for PSA
in estimating the effect of SADT. The first method is a two-stage method which jointly estimates
the effect of SADT and the hazard of recurrence in the absence of treatment by SADT. In the first
stage, PSA is predicted in the absence of SADT, and in the second stage, a time-dependent Cox
model is used to estimate the benefit of SADT, adjusting for PSA. The second method, called
sequential stratification, reorganizes the data to resemble a sequence of experiments in which
treatment is conditionally randomized given the time-dependent covariates. Strata are formed,
each consisting of a patient undergoing SADT and a set of appropriately matched controls, and
analysis proceeds via stratified Cox regression. Both methods are applied to data from patients
initially treated with radiation therapy for prostate cancer and give similar SADT effect estimates.
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1. Introduction
Prostate cancer is the most commonly diagnosed cancer among American men; however, the
issue of determining the best course of treatment after initial diagnosis is relatively
controversial [1]. Often, patients diagnosed with clinically localized prostate cancer undergo
either external beam radiation therapy (EBRT) or radical prostatectomy, sometimes in
combination with hormone therapies [2]. After initial treatment, patients are actively
monitored for elevated and/or rising levels of prostate-specific antigen (PSA), which
indicate an increased risk for the clinical recurrence of prostate cancer [3]. In these cases,
patients sometimes receive additional new treatment (called salvage therapy) in order to
prevent or delay recurrence.
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One such additional salvage therapy treatment is androgen deprivation therapy (ADT).
Salvage ADT (SADT) consists of either surgical or medical castration, although surgical
castration (orchiectomy) is less prevalent due to the availability of safe medical alternatives,
such as gonadotropin-releasing hormone agonists (GnRH-As). GnRH-As are administered
as an injection or implant, and can last between one and six months according to dosage.
GnRH-As produce testosterone levels comparable to those found after surgical castration
within about three weeks [4]. Although SADT is generally thought to be beneficial in
delaying the recurrence of prostate cancer, the magnitude of the benefit of SADT is not well
quantified. A small number of randomized trials have been conducted to test the efficacy of
early versus deferred androgen suppression, but these trials took place prior to the use of
PSA and yielded inconclusive results [5]. Moreover, little attention has been given to
evaluating the extent to which the effect of SADT depends on the current health status of the
patient (e.g., on PSA or slope of PSA) or on other patient characteristics (e.g. age). Better
understanding of this may help doctors decide when to initiate SADT.

For at least the first few months after initiation of SADT, patients experience considerable
decreases in PSA levels [6,7]. Figure 1 shows typical log(PSA) patterns for two patients
who received SADT. The first patient subsequently experienced a clinical recurrence of
cancer, while the second patient was lost to follow-up.

Since elevated and/or rising PSA levels are a risk factor for recurrence of prostate cancer but
are also a predictor of treatment by SADT, PSA and slope of PSA are (time-dependent)
confounders in the relation between SADT and the prostate cancer recurrence hazard. In
general, this type of relation between a time-dependent confounder and a time-varying
treatment is typically present whenever there is “treatment by indication” [8]. Standard Cox
regression [9] can be used to estimate the effect of a treatment on survival time in the
presence of treatment by indication, as long as the covariates representing the ‘indication’
are not also intermediate variables (i.e., variables on the causal pathway between treatment
and outcome), even if the covariates are time-dependent.

However, since PSA levels decrease after initiation of SADT, PSA and slope of PSA are
also intermediate variables in the relation between SADT and recurrence of prostate cancer.
Therefore, using standard time-dependent Cox regression to model the prostate cancer
recurrence hazard as a function of SADT history would yield biased estimates of the causal
effect of SADT on recurrence, whether or not adjustments were made for past confounder
history [10,11]. An analysis which adjusted for the observed time-dependent PSA values
after SADT would estimate only the benefit of SADT beyond that due to the decrease in
PSA at the time of initiation of SADT, rather than the recurrence-free survival benefit itself.

The methodological issues concerning adjustment in the case of treatment by indication are
well-described in the causal inference literature. Since Rosenbaum (1984) examined the
possible bias resulting from adjustment for ‘post-treatment’ variables in observational
studies [10], a number of possible approaches have been proposed. Robins developed the g-
computation algorithm estimator [12], structural nested models (SNMs) [11], and marginal
structural models (MSMs) [13] to address the problem of adjustment for time-dependent
confounders which are also intermediate variables. However, the g-computation algorithm
does not include parameters which represent the treatment having no effect, thereby
complicating the interpretation of corresponding confidence intervals for the estimated
treatment effect [12]. SNMs and MSMs do include such parameters; however, SNMs do not
estimate the effect of treatment on dichotomous outcomes (e.g., recurrence-free survival).
Extensions of these methods (for example, dynamic treatment MSMs and history-adjusted
MSMs) have also been developed [28,27,26]. More recently, propensity score and other
related methods have been adapted for longitudinal observational studies [14,15,16,17].
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In this paper our goal is to investigate alternative approaches to estimating the treatment
effect in a longitudinal study with treatment by indication. We will develop and compare
two methods which appropriately adjust for time-dependent PSA and slope of PSA in
estimating the causal effect of SADT on the risk of recurrence of prostate cancer. The first is
a two-stage method which uses a linear mixed model to predict PSA and slope of PSA in the
absence of SADT [18], and then uses a time-dependent Cox model to estimate the
recurrence-free survival benefit of SADT, adjusting for predicted PSA and slope of PSA.
This approach conditions on the latent SADT-free PSA process which, by construction, is
unaffected by SADT. The observed PSA process, however, is of course affected by the
receipt of SADT. Hence, this method eliminates the ‘intermediate variable’ status of the
time-dependent PSA covariates, thereby allowing the use of a standard Cox regression
analysis in the second stage. The second proposed method has been termed sequential
stratification [16,17] and is related to the approaches suggested in [14,15]. This method
reorganizes the observed data to resemble a sequence of randomized experiments occurring
at the ordered SADT initiation times. Estimation is implemented via a stratified Cox model,
with each stratum consisting of a SADT patient and a set of controls, matched on PSA-
related covariates at the time of SADT.

Both methods can be extended to allow for the estimation of interaction effects between
SADT and other fixed or time-dependent covariates. From a clinical perspective, the
estimation of these interaction effects is very useful. Although SADT is thought to be
beneficial, it also has potentially serious side effects [21]; thus, the decision about when to
initiate the therapy is difficult. Any information about when SADT is likely to be most
beneficial would aid in that decision.

The remainder of this article is organized as follows. In Sections 2 and 3, we describe the
motivating data set and the basic model of interest, respectively. In Sections 4 and 5, we
detail parameter estimation for the two-stage method, and then for the sequential
stratification method. Section 6 is devoted to the estimation of interactions between SADT
and fixed or time-dependent covariates. The prostate cancer data are analyzed in Section 7,
and we compare and contrast the two methods and provide some concluding remarks in
Section 8.

2. Prostate Cancer Data
The data consist of 2,781 patients with clinically localized prostate cancer, all of whom were
initially treated with EBRT. Patients came from four cohorts: University of Michigan
(Michigan, USA), Radiation Therapy Oncology Group, Peter MacCallum Cancer Centre
(Melbourne, Australia), and William Beaumont Hospital (Michigan, USA). PSA (ng/ml), T-
stage, and Gleason score were recorded prior to initial EBRT, with PSA monitored at
periodic visits throughout follow-up. PSA, T-stage, and Gleason score are the three
commonly measured variables in prostate cancer, with higher values of all three associated
with worse prognosis. Table 1 describes the pooled data, a more complete description of
which is given in Proust-Lima et al. (2008) [18].

Note that only a small fraction of the patients received SADT (11.0%), and only a slightly
larger fraction experienced a recurrence of prostate cancer (12.2%). In addition, there were
280 recurrences among the 2,476 patients who did not receive SADT (11.3%), and 58
recurrences among the 305 people who did receive SADT (19.0%). Therefore, the data is
capable of providing information about the hazard of recurrence for both those who did and
those who did not receive SADT.
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3. Basic Model
For the ith subject (i = 1, …, n), let Ti be the possibly unobserved time to prostate cancer
recurrence, and let Ci be the censoring time due to end of study observation period, loss to
follow-up, or death from other cases. We then let Xi = Ti ∧ Ci be the observation time, and
Δi = I(Ti < Ci) be the recurrence indicator. Let Si be the (possibly unobserved) time to
treatment by SADT, so that the SADT status indicator at time t for subject i is I(Si ≤ t). Time
t is measured from the date of end of EBRT. Further, let Zi be the ith subject’s value of a
vector of various fixed baseline covariates (such as initial PSA level, T-stage, Gleason score,
etc.), and P SAi(t) the PSA level at time t. P SAi(t) is observed at discrete times ti1, ti2, …,
tini. Cohort membership is denoted by Li, and is a categorical variable taking 4 values.

Note that death is a competing risk for cancer recurrence, since death precludes observing
cancer recurrence [9]. Since the hazard function of interest is the cause-specific hazard of
recurrence (i.e., the hazard of recurrence among subjects while alive), pre-recurrence death
can be aggregated with the other censoring mechanisms in order to compute a likelihood (in
the context of the two-stage method) or to write down generalized estimating equations (in
the context of sequential stratification). For these data, competing risks mostly serve as
distractions from the main ideas presented in the article, and further discussion is postponed
until Section 8.

Let  be the unknown hazard of recurrence for subject i in the absence of treatment by

SADT. Consider  a fixed but unknown function of time that defines the natural disease
progression (‘natural’ meaning free from intervention via SADT). We assume that SADT
acts multiplicatively on this natural hazard function, with the model then given by:

(1)

where γ serves as the parameter of interest. In both the two-stage and the sequential
stratification methods, γ can be generalized to depend on t, Zi, P SAi(Si), or other factors.
Equation (1) defines the parameter γ of interest. Note that it is defined conditionally and at
the individual level, i.e., it is the change in the person’s log-hazard effective immediately

upon administration of SADT conditional on the function . Thus it has a mechanistic
interpretation. This contrasts with the definitions of causal effects implied by MSM
methodology, which are based on average population or marginal effects of interventions.
Since the parameter γ of interest in this paper is a subject-specific quantity, we do not
necessarily expect the MSM methods to be estimating γ.

In the two-stage approach we estimate γ by utilizing parametric models for  and thus
the appropriateness of the estimates for γ will be contingent on how well the models

approximate the true . In the sequential stratification approach we use a matching and

adjustment strategy so that, within each strata,  are similar and thus differences in
outcome between those who did and did not receive SADT can be used to estimate γ. The
appropriateness of this approach for estimating γ will rely on the quality of the matching and
adjustment strategies that we use. MSM approaches to estimating the effect of interventions
use weighted estimating equations, with weights determined by models for the probability of
the intervention. For our example, the use of such weights would require building models
for the probability of SADT.
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A naive approach to estimating γ would be to adjust for baseline covariates Zi only, with the
model given by . However, the relationship between risk of
recurrence and SADT is confounded by time-dependent PSA (since elevated/rising PSA
levels are a risk factor for recurrence of prostate cancer but are also a predictor of treatment
by SADT). This suggests that a better approach would be to use a time-dependent Cox
model which adjusted for baseline covariates and time-dependent PSA, such as:

(2)

However, since PSA is both a time-dependent confounder and an intermediate variable
(because PSA levels decrease after initiation of SADT), model (2) yields biased estimates of
γ, the causal effect of SADT [11]. In model (2), γ only represents the benefit of SADT
beyond that due to the decrease in PSA at the time of initiation of SADT, rather than the
recurrence-free survival benefit itself. Using the data from all 2,781 prostate cancer patients,
the estimated hazard ratio from model (2) is exp(γ) = 1.40, with a 95% confidence interval
(CI) of (1.03, 1.89). This suggests that SADT is harmful with respect to prostate cancer
recurrence, contrary to common belief. In contrast, both the two-stage method and
sequential stratification overcome the problem of bias in the estimation of the causal effect γ.

4. Two-Stage Method
In this approach to estimation of γ it is necessary to specify a parametric form for the natural

hazard  in the model , and then jointly estimate γ and .

A naive form for the natural hazard, in which , assumes that the shape

of the natural hazard  is the same for subjects with the same baseline covariates, and
thus does not allow for much heterogeneity among patients. However, since time-dependent
PSA and slope of PSA are strongly associated with recurrence, a better approach (and one
that allows for heterogeneity in the shapes of the natural hazard curve among patients) is to

let  be linked to the time-course of PSA in the absence of SADT for each person, as if
that time-course were subject-specific, i.e., determined at time zero by a finite number of

subject-specific latent variables. Specifically, we could assume a model for  of the

form , using the observed PSA and slope
of PSA data for subject i at time t in the absence of treatment by SADT. However, there are

a number of complications in assuming this form for  to fit model (1). First, PSA is not
measured continuously in time. Second, PSA is measured with error, and thus it is not
realistic to assume that it is determined by a finite number of subject-specific latent
variables. And lastly, even if PSA was measured continuously and without error, it would be
impossible to observe PSA in the absence of treatment by SADT for subjects who did in fact
receive SADT. This suggests a two-stage approach in which we first obtain a smooth
continuous path for PSA in the absence of treatment by SADT, and then use this continuous
counterfactual PSA in fitting the hazard model.

Following Proust-Lima et al. (2008), log(PSA) in the absence of SADT for subject i was
described by a model with three phases (0: post-therapy, 1: short-term evolution, 2: long-
term evolution) using the following linear mixed model [18]:

(3)
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(4)

where Pi(t) represents ‘true’ PSA, which when added to measurement error εi gives the
observed data. In this model, (μ0, μ1, μ2), (u0, u1, u2), (Z0, Z1, Z2), and (α0, α1, α2) are
phase-specific intercepts, random effects, baseline covariates, and parameter coefficients,
respectively. The functions f1(t) = (1 + t)−1.5 −1 and f2(t) = t capture the short-term and
long-term evolution, respectively, and were determined using a profile likelihood method.
Note that the form f2(t) = t corresponds to exponential growth of PSA, which is well-
justified in the context of tumor growth. Throughout the text we write log(PSA), although
the actual transformation of PSA used is log(PSA+0.1).

Figures 2(a) and (b) show the log(PSA) patterns from Figures 1(a) and (b), respectively (for
two subjects who received SADT), along with the subject-specific estimated log Pi(t)
patterns given by the linear mixed model (4). Note that, since only data prior to instances of
SADT are used in fitting model (4), the corresponding estimated log Pi(t) patterns are not
affected by initiation of SADT. For values of t which are greater than the time of initiation
of SADT, Si, these estimated patterns represent log Pi(t) had SADT not been given.

Using the estimates of μ, u, and α, the BLUP estimates for log Pi(t) and slope of log Pi(t)
(given by log P̂i(t) and , respectively) are obtained. We then obtain the estimates of β
and γ in the model:

(5)

where γ is the parameter of interest, and l references the cohort. Note that model (5) is
stratified by cohort; this allows for non-proportional baseline hazards across the four
different cohorts.

Parameter and covariance estimates are given by the usual maximum partial likelihood
estimates and the corresponding inverse information matrix, respectively. Note that the two-
stage method described in this section can be fit using standard software (e.g., in SAS,
PROC MIXED for model (4) and PROC PHREG for model (5), or in R/S-PLUS, lmer()
from the ‘lme4’ package and coxph() from the ‘survival’ package).

5. Sequential Stratification Method
5.1. Estimation

The sequential stratification method reorganizes the observed data set in an attempt to mimic
a sequence of conditionally randomized SADT assignments (i.e., assigned randomly, given
the covariate information). At the time of each instance of SADT initiation, a stratum is
created which includes the patient undergoing SADT (the “index case”) and matched
patients at risk who are ‘similar’ to the index case, but who have not yet undergone SADT.
Note that if the matching is set up such that “similar” subjects have similar natural hazards

 in equation (1), then this method will be estimating the parameter γ in equation (1).
After strata are defined, a stratified Cox proportional hazards model (which allows for
different baseline hazards across strata) can be used to estimate SADT benefit without
adjusting for time-dependent variables.

Let S(j) be the jth ordered time of SADT initiation, with j = 1, …, nS and S(1) < S(2) < … <
S(nS), where nS is the total number of patients undergoing SADT. With respect to the (j)th
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patient to initiate SADT (index patient (j)), the stratum-inclusion indicator for patient i is
given by:

(6)

where Ai(j) equals 1 if patient i meets the criteria to warrant matching to patient (j) and 0
otherwise, and Li denotes cohort membership. For the sequential stratification method we
chose to restrict matches to those from the same cohort, although this may not be necessary.
Therefore, the (j)th stratum will include the index case undergoing SADT at time S(j), as
well as all matched patients {i: eij = 1}. For all patients with eij = 1, we fit a model given by:

(7)

for (j) = 1, …, nS, where I{i = (j)} is an indicator for patient i being the index case. Using the
survival analysis analog of generalized estimating equations [19], γ from model (7) can be
estimated with the estimating equations from a stratified Cox model, where all nS index
cases define a total of nS strata. A robust variance estimator is used in order to account for
the inclusion of the same patients in multiple strata. Note that t in this model represents time
from the end of radiation therapy, the same time axis used for the two-stage approach.
However, if time t was measured from S(j) for each strata in model (7), the relative ordering
of the failure times within strata (and hence the resulting estimator of γ) would be
unchanged. As with the two-stage method, the sequential stratification method can be fit
using standard software (e.g., by using the start/stop, or counting process, input file
structure, with PROC PHREG in SAS or coxph() in R/S-PLUS).

In addition, the sequential stratification method is intended for observational data, with the
absence of randomization requiring that unbiased contrasts between treatment groups be
obtained through covariate adjustment. Accurate covariate adjustment is achieved through
the combination of factors used to determine Ai(j) and factors incorporated into Zi. In
practice, it would be desirable to adjust for all factors which affect the hazard function,
whether or not these factors were associated with treatment assignment. Due to the non-
linearity of the hazard model, substantial bias in the Cox model could result if an important
hazard predictor were omitted, regardless of whether or not such a predictor was
independent of treatment. The practitioner needs to make decisions regarding which
adjustment factors should be included in the covariate vector, and which should be included
as matching criteria. Factors which are very strong predictors of treatment and/or the hazard
function are prime candidates for matching, as are factors which would be difficult to
accurately model (e.g., a categorical covariate with 50 levels).

Finally, non-index-case patients who later undergo SADT are censored at the time of their
SADT. As outlined in detail in Schaubel et al. [17], the sequential stratification method
assumes that treatment (SADT, in this case) is assigned randomly given the matching variate
and the time-dependent covariates. Depending on the application, inverse probability of
censoring weighting (IPCW) may be required [20]; however, in this case, inverse weighting
is not required since (as mentioned previously) only a small fraction of patients received
SADT.

5.2. Analysis of prostate cancer data
We now describe the application of the sequential stratification method to the prostate
cancer data set. The most important factors with respect to generating comparable sets of
patients are time-dependent PSA and slope of PSA, factors for which we adjust using the
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matching indicator, Ai(j). Three different sets of PSA-related covariates were used with the
indicator Ai(j) for this data set. For each, it was required that the location for patient i be
equal to that of patient (j) (i.e., Li = L(j)). Method (1) uses only estimated log(PSA), method
(2) uses estimated log(PSA) and slope of log(PSA), and method (3) uses estimated
log(PSA), estimated slope of log(PSA), and the long-term phase (LTP) coefficient α̃2i,
which is the BLUP estimate for the  term in model (4). In addition, both
thresholding and nearest-neighbor methods were used with the indicator Ai(j) to define which
patients could be considered sufficiently similar with respect to the three different sets of
PSA-related covariates.

Method (1), which does not match on slope of PSA, is probably not sufficient to ensure that
the matched set is similar enough with respect to variables that are associated with the
decision to initiate SADT. However, method (2), which matches on slope of PSA in addition
to PSA, should provide a suitably similar set of matches to each index case. Method (3) adds
the criterion of matching on expected future slope of PSA, which is a determinant of disease
progression. This could provide improved efficiency for the sequential stratification method.

5.3. Matching criteria
Note that, as we have implemented them, all three matching methods require longitudinal
modeling of PSA in order to obtain estimates of log(PSA), slope of PSA, and LTP. Similar
methods based only on the observed PSA data could be devised, thus avoiding the need to
specify a longitudinal model.

Let  be the standardized estimated log(PSA):

(8)

where  and . Similarly, let the
standardized estimated slope of  and LTP coefficient α̃2i be  and ,
respectively, obtained from the longitudinal model.

The threshold-based Ai(j) indicator functions used were:

(9)

(10)

(11)

for threshold values c = 0.2, 0.5, and 1.0, and for time t = S(j).

The nearest-neighbor indicator functions , and  equal one for the 10 patients
nearest to the index case (with respect to Euclidean distance) in 1-dimensional log(PSA)
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space, 2-dimensional log(PSA) and slope of log(PSA) space, and 3-dimensional log(PSA),
slope of log(PSA), and LTP coefficient space, respectively. For example, for patient i,

 if  is among the 10 smallest values
across all patients i such that Si ∧ Xi ≥ S(j) and Li = L(j).

Matched patients who subsequently received SADT were censored, and such censoring was
treated as independent. This should not be a gross violation of the independent censoring
assumption since, within strata (for matching methods 2 and 3), all subjects have similar
PSA and slope of PSA. In a separate analysis of time to SADT, it was determined that the
only factors which were strongly and consistently associated with initiation of SADT were
PSA and slope of PSA. Thus, within each stratum, there is approximately independent
censoring.

6. Estimation of Treatment-by-Covariate Interactions
Both the two-stage method and the sequential stratification method allow for easy
generalization of γ to depend on covariates (such as time of SADT, age at time of SADT,
estimated PSA or slope of PSA at time of SADT, T-stage, time, etc.). This allows for the
estimation of interaction SADT effects. For example, it may be of interest to determine
whether the effect of SADT is constant with respect to age. Since androgens in men tend to
decrease after the age of approximately 40, SADT might be expected to have less benefit for
older men, who have less androgens present to modify [22].

We consider a number of different extensions of equation (1) to represent different types of
interactions. In the case of non-time-varying covariates, such as age, we extend equation (1)

to be . In the case of time since SADT extend equation (1) to be

. In the case where the interacting variable of interest is based on

PSA, we extend equation (1) to be  where Pi(Si) represents the
true value of PSA for subject i at time Si. For estimation purposes we would replace Pi(Si)
by P̂i(Si).

For the two-stage method, the approach for estimating the interaction effect of SADT with
categorical age would be to assume the model (in place of model (5)):

(12)

where γ is the parameter of interest, l references the cohort, and ai(Si) is the age of subject i
at the time of SADT.

For the sequential stratification method, the corresponding model (in place of model (7)) for
estimating the interaction effect of SADT with categorical age would be:

(13)

where I(i = (j)) is an indicator for whether patient i is the index case, and ai(Si) is the age of
subject i at the time of SADT. Similar generalizations of γ can be made for other, possibly
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time-dependent, covariate interactions, for both the two-stage and sequential stratification
methods.

7. Results
Table 2 shows the estimates (and corresponding 95% CIs) of the hazard ratio of recurrence
for the two-stage and sequential stratification methods. For the sequential stratification
method, results are given for each of the three sets of matching variables, and for each of the
three threshold values along with the 10 nearest-neighbor method; in addition, strata size
statistics (median, and 5th and 95th percentiles) are given for each combination of matching
variables and matching technique.

Using the two-stage method, SADT is associated with an estimated 76% decrease in the
hazard of recurrence of prostate cancer (HR = 0.24, 95% CI: (0.17, 0.33)). Using the
sequential stratification method, the estimated benefit ranges from a 56% decrease, matching
on location and log(PSA), and using a threshold of c = 1.0 (HR = 0.44, 95% CI: (0.32,
0.61)), to a 76% decrease, matching on location, log(PSA), slope of log(PSA), and LTP
coefficient, and using a threshold of c = 0.5 (HR = 0.24, 95% CI: (0.15, 0.38)). Each
estimate from the sequential stratification method gives wider confidence intervals than that
from the two-stage method.

Note that for the sequential stratification method using the thresholding technique, strata size
decreases as the number of matching variables increases. This is expected since the
matching criteria are more restrictive with additional matching variables (as long as the
threshold value c is constant), so fewer patients are defined as matches to the index cases
undergoing SADT. Although precision decreases, the estimated benefit itself increases as
the number of matching variables increases (again keeping the threshold value constant),
except for the analyses using the 0.2 threshold.

Conversely, the estimated benefit decreases as the threshold value increases (keeping the
number of matching variables constant), except in the case of matching on all of PSA, sPSA,
LTP, and location. This is reasonable since the matching criteria are less restrictive with
increasing threshold values, therefore less similar patients are matched to index cases. In an
unadjusted analysis (similar to a sequential stratification method which matched index cases
to all patients at risk), SADT would be associated with an increase in the risk of recurrence
of prostate cancer [18], since treatment assignment is not randomized, and patients who are
at risk for recurrence are more likely to receive treatment by SADT than patients who are
not at risk. For the nearest-neighbor technique, the estimated benefit and the corresponding
precision are roughly constant across varying sets of matching variables.

Table 3 shows the SADT interaction effect estimates (hazard ratios), along with 95% CIs.
Results are presented for the two-stage method and the sequential stratification method
using 10 nearest-neighbors, with matching based on location, PSA, and slope of PSA.
Cutpoints for interaction covariates were chosen so as to ensure roughly equal subgroup
sizes, while also allowing for easy interpretation.

In general, the hazard ratio estimates from both the two-stage method and the sequential
stratification method are similar. However, as was the case for the results displayed in Table
2, the sequential stratification method gives slightly wider confidence intervals than the two-
stage method.

For both the two-stage method and the sequential stratification method, a Wald test of the
null hypothesis of no interaction effect suggests that there is insufficient evidence for
significant interaction effects between SADT and the time at which SADT is given, the age
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at which SADT given, predicted PSA at the time of SADT, and time (p-values range from
0.14 to 0.76).

However, both methods suggest significant interaction effects between SADT and slope of
PSA at the time of SADT (p=0.04 and p=0.02 for the two-stage and sequential stratification
methods, respectively), and marginally significant interaction effects between SADT and
PSA and slope of PSA jointly (p=0.06 and p=0.10, respectively). SADT appears to be most
beneficial for patients with higher slopes of PSA (at the time of SADT), and least beneficial
for patients with lower slopes of PSA. When interaction effects for PSA and slope of PSA
are explored jointly, patients with log(PSA) less than 2 and with slope of log(PSA) greater
than 0.7 receive the most benefit from SADT, with an estimated 93% decrease in the hazard
of recurrence using the two-stage method (HR = 0.07, 95% CI: (0.02, 0.22)), and an
estimated 87% decrease using the sequential stratification method (HR = 0.13, 95% CI:
(0.05, 0.34)).

8. Discussion
We have proposed two methods which appropriately adjust for time-dependent PSA and
slope of PSA in estimating the causal effect of SADT on the risk of recurrence of prostate
cancer. The first is a two-stage method which uses a linear mixed model to predict PSA and
slope of PSA after EBRT, and then uses a time-dependent Cox model to estimate the
recurrence-free survival benefit of SADT, adjusting for predicted PSA and slope of PSA.
This method eliminates the ‘intermediate variable’ status of the time-dependent PSA and
slope of PSA covariates, thereby allowing the use of a standard Cox regression analysis. The
second method, sequential stratification, attempts to mimic a sequence of randomized
experiments, occurring at the initiation times of SADT. After strata are defined by SADT
patients who are matched with appropriate controls, a stratified Cox model can be used to
estimate the benefit of SADT.

Although the methods developed in this paper were targeted to prostate cancer applications,
they have broader applicability to other situations where the goal is to estimate a treatment
effect which is given ‘by indication’ in an observational dataset. For the two-stage method,
the key ingredient is a time-dependent marker of a disease which is associated with the
outcome of interest, and which lends itself to longitudinal modeling. In most situations this
marker will also be a strong determinant of when treatment is initiated. The sequential
stratification method is applicable whenever there is a marker that determines the initiation
of treatment. While longitudinal modeling of the marker is not strictly necessary for
sequential stratification, it does facilitate matching.

The sequential stratification method does require choices to be made regarding the
composition and size of strata. We recommend matching on variables that are strongly
associated with the initiation of treatment and with the hazard of the event. In the prostate
cancer application, the first matching criteria did not include the slope of PSA. Since the
slope of PSA is probably the single most important determinant of recurrence and of the
decision to start SADT, this is not ideal and may explain the larger variability in the
estimated hazard ratio as the strata size changes. If multiple factors define the strata then
there are many possible ways of combining the factors, some of which could be designed to
give more weight to the factors that are considered more important. In the prostate cancer
application, we used Euclidean distance on normalized covariates, but that could potentially
be optimized.

The longitudinal model plays a crucial role, particularly for the two-stage method.
Misspecification of that model could certainly cause bias in the estimate of the treatment
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effect. The model is explicitly used for extrapolation of marker values, which makes it even
more important to have a model that can be trusted. In the prostate cancer application, the
large longitudinal dataset did allow for a considerable amount of model building before
arriving at a final form that fits the data well. In this application, extrapolation is somewhat
justified since, once PSA starts to increase, the pattern is quite deterministically driven and
linear (on a logarithmic scale) for typical patients. The sequential stratification approach also
uses the fit of the longitudinal model, but in a far weaker way. Specifically, this model helps
define ‘similar’ subjects for each stratum; thus, minor or even moderate misspecifications of
the longitudinal model will not be crucial in the sequential stratification setting. In applying
the two-stage and sequential stratification methods to the prostate cancer data, estimates
were quite similar; this suggests that misspecification of the longitudinal model is not a
major concern. In other applications with less longitudinal data and more heterogeneous
patterns, the longitudinal model may be more critical.

In practice, assuming no unmeasured confounders, the decision to initiate the treatment can
only be based on measured variables; however, there are some subtle deviations from this
principle in the approaches described in this paper. First, the longitudinal model smoothes or
interpolates the observed data, and it is implicitly assumed that it is this smoothed fit which
determines the treatment initiation, rather than the observed data itself. In practice, the
person making the decision to initiate treatment may be implementing their own form of
smoothing, so the longitudinal model smoothing and interpolation could be similar to what
happens in a clinical setting. A second subtle deviation is that the longitudinal model is fit to
all the data (not just past data), and the prediction P̂i(t) is based on this fit. This can be
viewed as an advanced form of smoothing [25], but it could also lead to bias.

For the sequential stratification method, a choice must be made regarding the size of each
stratum. Smaller sizes give strata for which matched patients are more similar, but this could
also result in a loss of efficiency. In this paper, we utilized two approaches in determining
the strata, one based on a distance measure and the other using a fixed stratum size. While
the results did vary, the differences between the two approaches were not substantial. Other
methods of choosing strata could certainly be developed.

One limitation of the work presented in this paper is related to covariance estimation for the
two-stage model. Covariance estimates for the parameters in model (5) are given by the
usual inverse information matrix values; however, such an approach does not take into
account the variance of the estimated log(PSA) and slope of log(PSA) quantities from model
(4). Thus the standard errors from the two-stage method may be underestimates. One
solution to this problem would be to use the bootstrap for inference (i.e., by iteratively
fitting models (4) and (5) to bootstrap samples of the data). Another solution would be to use
a joint longitudinal-survival modeling approach [23,24], which is flexible but considerably
more computationally complex. Joint modeling could also eliminate some of the possible
bias in the parameter estimates when the longitudinal and survival analyses are performed
separately.

In this paper we have focused on the relative hazard as the summary measure of the
effectiveness of the SADT treatment. In practice, SADT is often thought of as delaying
recurrence by a year or more, or by stretching the time to recurrence by a factor of two or
more. Both methods presented in this paper could be adapted to provide these kinds of
summary measures of the effect of SADT. For example, model (7) in the sequential
stratification method could be replaced by an accelerated failure time model. The
corresponding modification could potentially be more complex for the two-stage method,
but a time-dependent accelerated failure time model could be used in place of equation (5).
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Figure 1.
Typical log(PSA) patterns
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Figure 2.
Typical log(PSA) patterns
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Table 1

Description of Data

Patients (#) 2,781

PSA Measures (#) 25,688

Age (years) 71.0 (57.5, 80.5)

Pretherapy PSA (ng/ml) 8.0 (2.5, 33.8)

Clinical T-stage

 1 1,016 (36.5%)

 2 1,571 (56.5%)

 3–4 194 (7.0%)

Gleason Score

 2–6 1,846 (66.4%)

 7 735 (26.4%)

 8–10 184 (6.6%)

PSA Measures/Patient 9 (3, 18)

SADT 305 (11.0%)

Time to Salvage

 ADT (years) 4.0 (1.5, 8.2)

Clinical Recurrence

 With prior ADT 58 (2.1%)

 Without prior ADT 280 (10.1%)

 Total 338 (12.2%)

Time to Clinical

 Recurrence (years) 4.0 (1.4, 9.2)

Time to Last

 Contact (years) 5.2 (1.6, 10.6)

For continuous data: median (5th, 95th percentiles)

For categorical data: number (percentage)
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Table 2

Estimated Effect of SADT

Method and Matching Variables Strata Size* Hazard Ratio 95% CI

Two-Stage:

 NA NA 0.24 (0.17, 0.33)

Sequential Stratification:

PSA, location

 0.2 Threshold 11.0 (1.0, 112.2) 0.29 (0.19, 0.43)

 0.5 Threshold 28.0 (3.0, 281.4) 0.33 (0.23, 0.47)

 1.0 Threshold 73.0 (7.2, 508.4) 0.44 (0.32, 0.61)

 10-NN 11.0 (11.0, 11.0) 0.28 (0.20, 0.40)

PSA, sPSA, location

 0.2 Threshold 3.0 (1.0, 30.0) 0.26 (0.15, 0.45)

 0.5 Threshold 13.0 (1.0, 159.2) 0.25 (0.17, 0.38)

 1.0 Threshold 42.0 (4.0, 370.8) 0.31 (0.22, 0.45)

 10-NN 11.0 (11.0, 11.0) 0.29 (0.21, 0.41)

PSA, sPSA, LTP, location

 0.2 Threshold 1.0 (1.0, 6.0) 0.37 (0.16, 0.87)

 0.5 Threshold 5.0 (1.0, 71.8) 0.24 (0.15, 0.38)

 1.0 Threshold 28.0 (2.0, 297.8) 0.31 (0.21, 0.44)

 10-NN 11.0 (11.0, 11.0) 0.27 (0.19, 0.39)

*
Strata size is given by: median (5th, 95th percentiles)

Abbreviations: PSA indicates matching on standardized log(PSA + 0.1), sPSA indicates matching on standardized slope of log(PSA + 0.1), and
LTP indicates matching on standardized long-term phase coefficient.
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