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Abstract
Uncx (Phd1, Chx4) is a paired homeobox transcription factor gene. It and its probable functional
partners, Tle co-repressors, were expressed by neurally-fated basal progenitor cells and olfactory
sensory neurons of the olfactory epithelium. Uncx expression was rare in olfactory epithelia of
Ascl1−/− mice, but common in Neurog1−/− mice. In Uncx−/− mice olfactory progenitor cell
proliferation, progenitor cell number, olfactory sensory neuron survival, and Umodl1 and Kcnc4
mRNAs were reduced. Evidence of sensory neuron activity and functional connections to the
olfactory bulb argue that decreased neuronal survival was not due to loss of trophic support or
activity-dependent mechanisms. These data suggest that UNCX acts downstream of neural
determination factors to broadly control transcriptional mechanisms used by neural progenitor cells
to specify neural phenotypes.
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Introduction
Uncx (Unx4.1, Chx4, Phd1) is a paired homeobox transcription factor gene. It is a homolog
of the Caenorhabditis elegans Unc-4, whose encoded protein acts to specify the synaptic
choices made by one type of motor neuron via partnering with UNC-37, a homolog of Gro/
TLE transcriptional co-repressors (Miller and Niemeyer, 1995; Von Stetina et al., 2007;
Winnier et al., 1999). In mammalian development, Uncx is best known for expression in the
caudal half of new somites where it is necessary for proper formation of the axial skeleton
(Leitges et al., 2000; Mansouri et al., 2000). However, it is also expressed in the developing
central nervous system (Leitges et al., 2000; Mansouri et al., 1997). Uncx is expressed in neural
progenitor cells of the dorsal neural tube in regions that give rise to the spinal cord and regions
of the telencephalon (Saito et al., 1996). However, the mouse tissue with the highest level of
Uncx mRNA is the olfactory epithelium (GeneAtlas GNF1M dataset, http://biogps.gnf.org).
In the embryonic epithelium, Uncx is expressed in olfactory sensory neurons (OSNs) and in
basal progenitor cells, where it may be directly regulated by the neural determination factor,
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Ascl1 (Mash1) (Cau et al., 2002; Saito et al., 1996). The continuous neurogenesis that occurs
in the olfactory epithelium provides an advantageous system to test the long-standing
hypothesis (Saito et al., 1996) that Uncx acts downstream of basic helix-loop-helix neural
determination factors to control neurogenesis. Herein we describe results of tests of whether
Uncx is essential for development and homeostasis of OSNs.

The development of OSNs is a lifelong process whereby proliferating basal cells continuously
replace OSNs, presumably because the OSNs become damaged in their uniquely exposed
location. The control of gene transcription in the OSN cell lineage is complex. OSNs alone
express more than 200 transcriptional regulators, not counting the chromatin remodeling genes
that are also overrepresented among the ~10,000 genes they express (Sammeta et al., 2007).
Factors that regulate gene expression in the progenitor cells of the OSN cell lineage have not
been so broadly described, but several critical transcription factors are known. Foxg1, Six1,
and Six4 are necessary for embryonic neurogenesis in the olfactory placode (Chen et al.,
2009; Duggan et al., 2008; Ikeda et al., 2007; Kawauchi et al., 2004). Ascl1 is necessary for
the neural fate decision for nearly all OSNs (Guillemot et al., 1993). The specification and
differentiation of OSNs depends in part on Lhx2, Zfp423 (OAZ), and Runx1 (Cau et al.,
2002; Cheng and Reed, 2007; Hirota and Mombaerts, 2004; Kolterud et al., 2004; Theriault et
al., 2005). Less profound defects in OSNs result from the absence of Neurog1, Emx2, Dlx5,
Klf7, Fezf1, or the Ebf transcription factors (Cau et al., 2002; Cau et al., 2000; Hirata et al.,
2006; Kajimura et al., 2007; Laub et al., 2005; Levi et al., 2003; McIntyre et al., 2008; Wang
et al., 2004; Wang et al., 1997).

Whether Uncx also has irreplaceable roles in the OSN cell lineage was unknown. We found
that Uncx was required for normal levels of basal cell proliferation. In addition, survival of
OSNs was reduced in the absence of Uncx.

Results
Uncx is expressed throughout the olfactory sensory neuron lineage

As expected from studies of mouse embryos and neonatal rats (Cau et al., 2002; Saito et al.,
1996), we observed that Uncx was a highly abundant mRNA in the postnatal mouse olfactory
epithelium (Fig. 1B,C). In situ hybridization detected Uncx mRNA in both mature and
immature OSN layers, as well as in the basal cell layer. We did not detect Uncx in sustentacular
cells, horizontal basal cells, or in cells of the lamina propria. This expression pattern is
consistent with Uncx mRNA localization in the embryonic and early neonatal olfactory
epithelium (Cau et al., 2002; Saito et al., 1996), indicating that Uncx expression is a
developmentally consistent feature of the OSN cell lineage. To verify that Uncx expression
labeled OSNs and basal cells of the OSN cell lineage we turned to Ascl1−/− mice, in which the
neural fate decision is blocked and no OSNs or immediate neuronal precursor cells form (Cau
et al., 2002; Guillemot et al., 1993). As observed previously in Ascl1−/− mouse embryos, Uncx
was absent at birth except perhaps for a few basally located cells (Fig. 1D). Previous studies
have proposed that these faintly labeled cells have managed to transition toward a neural fate
even in the absence of Ascl1 (Cau et al., 2002; Guillemot et al., 1993). If Uncx expression is
dependent (even indirectly) on Ascl1, then it may be less sensitive to the loss of transcription
factors that regulate later stages of the OSN cell lineage. Neurog1 (Ngn1), which is thought to
be involved in neural specification of OSNs, is expressed in immediate neuronal precursor
cells of the OSN lineage downstream of the globose basal cells that express Ascl1 (Calof and
Chikaraishi, 1989; Cau et al., 2002; DeHamer et al., 1994; Gordon et al., 1995). In
Neurog1−/− mice, which do produce OSNs, we detected Uncx expression (Fig 1E). These
findings argue that Uncx expression is not wholly dependent on Neurog1, that Uncx is
expressed in all cell types in the OSN lineage subsequent to the determination of neural fate,
and that Uncx expression may even begin within the transit amplifying cells that express Ascl1.
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Absence of Uncx leads to fewer mature OSNs
To further investigate the role of Uncx in the OSN lineage we analyzed Uncx−/− mice. In these
mice the morphologies of the anterior head structures and the nasal cavity appeared normal.
The respiratory epithelium in the nasal cavity also appeared normal but there was a marked
decrease in the thickness of the olfactory epithelium from 84 ± 3 μm to 68 ± 4 μm (t = 7.0574,
p = 0.0001, n = 5 mice). A decrease in thickness is usually caused by a reduction in the number
of OSNs, which constitute the majority of cells in the epithelium. As predicted, in situ
hybridization and immunohistochemistry detected a 52% reduction in OMP+ mature OSNs in
age P0 Uncx−/− mice (Table 1; Fig. 2A, B). OMP+ mature OSNs were present at embryonic
day 14.5 in the absence of Uncx (Fig. 2C, D), indicating that the lack of Uncx did not prevent
the embryonic development of mature OSNs. Overall, the data suggest that the production and
survival of OSNs might be reduced in Uncx−/− mice.

Uncompensated increase in OSN apoptosis
To determine if the reduction in the mature OSNs was due to increased apoptosis, we did
immunohistochemistry for the active fragment of caspase-3, an indicator of OSN apoptosis
(Carson et al., 2005; Cowan et al., 2001). Nearly all (88%) immunoreactive cells detected were
located in the OSN layers of the olfactory epithelium, irrespective of genotype (Fig. 2G, H).
Quantification revealed a 2.6-fold increase in the number of apoptosing OSNs in Uncx−/− mice
compared to wild type littermates (Table 1). The absence of Uncx, therefore, increased the rate
of OSN apoptosis, thereby contributing to a reduction in the number of OSNs present.

Increased apoptosis of OSNs typically leads to an increase in the proliferation of basal
progenitor cells (Schwob, 2002). We assessed proliferation by immunohistochemistry for
phosphorylated histone-3 to label mitotic cells. Contrary to the normal reaction of the
epithelium to a reduction in mature OSNs, the epithelia of Uncx−/− mice showed 42% fewer
mitotic cells in the basal cell layer than did wild type littermates (Fig. 2I, J; Table 1). Consistent
with this observation, we also detected 26% fewer cells expressing Ccnd1 (Fig. 3A,B; Table
1), a cell cycle mRNA known to increase when basal cell proliferation increases in the olfactory
epithelium (Shetty et al., 2005). These findings indicate that the loss of Uncx reduces
proliferation of basal cell progenitors in the OSN lineage even during increased OSN cell death.

We tested whether transcripts for Bcl2 and Bid, key regulators of OSN apoptosis, were altered
by the absence of Uncx. Bid mRNA, which encodes a pro-apoptotic protein, was unaffected
but the Bcl2 mRNA, which encodes an anti-apoptotic protein, was elevated 25% in olfactory
epithelia of mice lacking Uncx (t = 3.1509, p = 0.0077, df = 13).

Decreased neurogenesis in the absence of Uncx
Decreased basal cell proliferation in Uncx−/− mice suggests that in addition to a reduction in
mature OSNs the olfactory epithelium has fewer cells at each stage in the OSN lineage when
Uncx is absent. We therefore quantified other cell types in the OSN lineage. At birth and at
embryonic day E14.5, Uncx−/− mice had fewer Ascl1+ transit amplifying progenitors (Fig.
2E,F; Fig. 3C,D; Table 1). They also had 28% fewer Gap43+ immature OSNs (Fig. 3E, F;
Table 1). These data argue that Uncx is necessary to support normal rates of olfactory
neurogenesis.

One mechanism by which the absence of Uncx could affect olfactory neurogenesis is to alter
the balance between Gdf11 and follistatin. Gdf11, expressed primarily in olfactory progenitor
cells, inhibits basal cell proliferation while follistatin, expressed primarily in cells of the
underlying lamina propria, stimulates proliferation by inhibiting Gdf11 (Kawauchi et al.,
2009; Wu et al., 2003). However, we did not detect altered amounts of Gdf11 and follistatin
mRNAs in olfactory epithelia of Uncx−/− mice (t = 0.02, p = 0.98 and t = 0.53, p = 0.61,
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respectively, df = 13). This finding argues that altered Gdf11/follistatin signaling cannot
explain reduced neurogenesis in Uncx−/− mice.

Sustentacular cell density and survival is unaffected by the loss of Uncx
One mechanism by which Uncx could contribute to olfactory neurogenesis is by cooperating
with Ascl1 in cell fate determination. The absence of Uncx might then lead to diversion of a
subset of early progenitors into an alternative fate. The most likely alternative fate would be
the sustentacular cells, glial-like cells that form the apical surface of the epithelium and
surround the OSNs. However, we observed no increase in the number of sustentacular cells
(Fig 3G,H), nor did we notice either a compensating increase in apoptosis in the sustentacular
cell layer via labeling for active caspase-3 or a compensating decrease in mitosis within the
sustentacular cell layer.

Uncx−/− OSNs make functional connections in the olfactory bulb
To begin to test whether the OSNs produced in Uncx−/− mice could be functionally normal,
we first observed their axonal projections to the olfactory bulb (Fig. 4A-D). The overall
organization of the OSN nerve layer and glomeruli was similar in Uncx−/− and wild type mice.

We also assessed whether the OSNs of Uncx−/− mice could be active. We observed normal
patterns of odorant receptor expression in OSNs, normal patterns of immunoreactivity for
ADCY3 in the cilia layer above the epithelium, and normal identification of OSN dendritic
knobs by CROCC, a component of the basal body of OSN cilia (see supplemental data)
(McClintock et al., 2008). These indications of a capacity to respond to odors led to tests of
expression of activity markers. Tyrosine hydroxylase expression in the periglomerular neurons
of the olfactory bulb is controlled by OSN activity (Baker et al., 1983; Nadi et al., 1981). We
detected robust expression of tyrosine hydroxylase in periglomerular neurons of the olfactory
bulb, an indication that OSNs make functional connections to the bulb in Uncx−/− mice (Fig.
4E,F; supplemental data). We further confirmed OSN activity by detecting phosphorylated
CREB immunoreactivity in OSNs (Fig. 4G,H), an even more direct indicator (Hagglund et al.,
2006). In addition, we observed robust expression of Kirrel2, an activity-dependent gene in
OSNs (Serizawa et al., 2006), in Uncx−/− mice (Fig. 4I, J). Importantly, both CREB
immunoreactivity and Kirrel2 expression were the same mosaic patterns that occur in wild-
type mice where odor stimulation is the major source of OSN activity.

Altered expression of Kcnc4 and Umodl in OSNs that lack Uncx
If UNCX functions similarly to its invertebrate homologs, it works through the TLE family of
transcriptional co-repressors (Miller and Niemeyer, 1995; Winnier et al., 1999). To determine
whether UNCX has access to TLE proteins in OSNs, we confirmed expression of Tle3 mRNA
in OSNs and basal cells (Leon and Lobe, 1997; Sammeta et al., 2007) and then determined that
Tle proteins are also present in these cells. The intensity of labeling for both mRNA and protein
was greatest in the basal half of the neuronal layer of the olfactory epithelium (Fig. 5A - B),
occupied by immature OSNs (Fig. 1A).

Given that UNCX and its putative partners, TLE proteins, are transcription factors we should
detect altered gene expression in OSNs and their progenitors in Uncx−/− mice. Indeed, we
found that the mRNAs for Kcnc4, a potassium channel subunit, and Umodl1 (N8), a secreted
cell adhesion-like protein, were decreased in Uncx−/− mice (Fig. 5C-F). Both of these mRNAs
are expressed specifically in mature OSNs (Sammeta et al., 2007; Yu et al., 2005). The degree
of reduction of these mRNAs was disproportionately greater than the 52% reduction in the
number of mature OSNs in Uncx−/− mice. Kcnc4 mRNA was reduced 4.5-fold (t = 5.19, p =
0.0013, df = 6). Umodl1 mRNA was reduced 3.9-fold (t = 4.54, p = 0.00274, df = 6).
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Discussion
Uncx expression was detected in the cells of the OSN lineage, from basal progenitor cells to
mature OSNs. UNCX proved to be necessary for normal levels of olfactory neurogenesis,
specifically for maintaining basal cell proliferation and for survival of OSNs. The OSNs of
Uncx−/− mice showed evidence of activity and functional connections with neurons of the
olfactory bulb, indicating that these OSNs were either functionally normal or nearly so.
Signaling events known to regulate olfactory neurogenesis and survival in vivo (Gdf11/
follistatin, trophic support from the bulb, activity dependent survival) appeared normal in
Uncx−/− mice, so these results are more consistent with cell-autonomous defects in the OSN
lineage of Uncx−/− mice than with changes in external factors. The data argue that Uncx
stimulates the proliferation of basal progenitor cells either directly or by facilitating the
specification of cell types that proliferate. Similarly, increased OSN apoptosis in the absence
of Uncx might indicate that Uncx contributes directly to apoptotic control or that Uncx makes
broad contributions to the specification of the OSN phenotype that are necessary for cell
homeostasis.

We suspect that a neural specification function is the general role for UNCX in mammalian
neural tissues, consistent with evidence that Uncx and its nonmammalian homologs participate
in the specification and differentiation of other cell types (Buscarlet and Stifani, 2007;
Gasperowicz and Otto, 2005; Miller and Niemeyer, 1995; Winnier et al., 1999). The expression
pattern of Uncx in the mouse central nervous system is potentially consistent with specification
functions. Uncx is expressed there only during development, where it is limited to neurally-
fated progenitor cells in certain regions of the neural tube (Saito et al., 1996). UNCX also
appears to have molecular functions that would allow it to broadly regulate gene expression,
a property useful for specification functions. It probably partners with TLE co-repressors given
that UNCX contains Eh1 domains known to bind TLE proteins and that nonmammalian
homologs of UNCX work through TLE homologs (Buscarlet and Stifani, 2007; Copley,
2005; Gasperowicz and Otto, 2005; Swingler et al., 2004). TLE proteins act broadly through
chromatin modification mechanisms to regulate cell fate decisions and differentiation (Sekiya
and Zaret, 2007; Sierra et al., 2006). If neural specification is indeed the function of UNCX its
continued expression into differentiated OSNs is unusual, but OSNs are also unusual in that
they evolved to apoptose, a feature that proved to be sensitive to the absence of Uncx.

UNCX acts in all cells with a neural fate in the OSN lineage
Uncx is expressed in basal progenitor cells (Saito et al., 1996). We confirmed that a few Uncx
expressing cells remain in Ascl1−/− mice and we concur with the previously proposed
explanation that low levels of Uncx expression might arise in a few cells that begin an abortive
progression toward a neural fate (Guillemot et al., 1993; Saito et al., 1996). We also found that
in the absence of Uncx, fewer Ascl1 positive cells exist. These observations suggest that Uncx
expression is triggered immediately by the neural fate decision in basal progenitor cells. This
is consistent with the ability of chicken Uncx to be induced by intrinsic fate decisions within
presomitic mesoderm (Schragle et al., 2004), and with Notch signaling control of Uncx
expression in mouse somitic mesoderm (Sewell et al., 2009). Whether Uncx transcription is
driven directly by Ascl1 or by independent mechanisms is uncertain, but once the neural fate
decision is made Uncx expression is continued in all subsequent cell types in the OSN lineage.

Basal cell proliferation and OSN survival in the absence of UNCX
The response of basal progenitor cells to the absence of UNCX was reduced proliferation. This
defect was not due to increased basal cell apoptosis. Perhaps UNCX regulates a signal that acts
upon the basal cells to enhance their proliferation. Tests of a known signal of this type, the
Gdf11/follistatin signaling system, did not detect changes, however. A more parsimonious
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explanation is that basal cells depend on Uncx to stimulate their progression through the cell
cycle, perhaps by contributing to the transcriptional regulation of basal cell phenotypes, such
as the expression of other transcription factors or of cell cycle control genes.

The reduction in basal cell proliferation in Uncx−/− mice slowed the rate of production of
immature OSNs. This contributed to a 28% reduction in Gap43+ immature OSNs and, along
with increased apoptosis of OSNs, resulted in a 52% reduction in mature OSNs. The mature
OSNs that do arise in Uncx−/− mice make functional synaptic connections in the olfactory bulb
and express activity-dependent markers. Our data do not support explanations for increased
OSN apoptosis that involve loss of trophic support from the bulb or reduced activity of OSNs
(Cowan et al., 2001; Hayward et al., 2004; Robinson et al., 2003; Sultan-Styne et al., 2009).

The evidence implicating UNCX in neural specification, though circumstantial, raises the
possibility that increased apoptosis of OSNs in the absence of UNCX results from specification
defects. This hypothesis would require that while UNCX might not be uniquely responsible
for the regulation of any critical gene, its absence would be sufficient to cause minor imbalances
in the networks of proteins that make up the OSN phenotype and thereby decrease the ability
of OSNs to maintain homeostasis. Alternatively, UNCX might be directly involved in the
control OSN apoptosis. However, we found no evidence that the absence of UNCX shifts the
balance of apoptotic factors toward expression of pro-apoptotic genes. The available data do
not yet rule out either hypothesis but do point toward further study of the repression of apoptosis
genes and basal cell-specific genes by Uncx.

Oldest OSNs most affected by the absence of UNCX?
At present we have identified only two mRNAs whose abundance was affected
disproportionately to changes in the number of OSNs in the absence of Uncx: Umodl1 and
Kcnc4. While it is possible that these genes are regulated by Uncx, we are skeptical of this
explanation. We have previously demonstrated that Umodl1 mRNA is specific to mature OSNs
and that its abundance increases along a gradient from basal to apical across the mature OSN
layer (Yu et al., 2005). Kcnc4, the other mRNA whose abundance was disproportionately
reduced in Uncx−/− mice, showed the same gradient of abundance within the mature OSN layer.
If position within the olfactory epithelium controlled expression of these genes, then they
should not have been so sensitive to the loss of Uncx. However, early studies of mammalian
olfactory anatomy suggest that increased OSN age may correlate with apical position
(Graziadei and Monti Graziadei, 1978). If so, then the most apically located OSNs would be
the oldest. If OSN age, or an age-related factor such as damage from chemical and pathogen
exposure, stimulates expression of Umodl1 and Kcnc4 then the increased rate of OSN apoptosis
we observed probably shortens the average lifespan of OSNs, potentially explaining the
disproportionate reduction in Umodl1 and Kcnc4 transcripts. This idea is consistent with
evidence that Kcnc4 expression is sensitive to neuronal damage - specifically that Kcnc4
expression increases in neurodegenerative structures during Alzheimer's disease (Angulo et
al., 2004). The neonatal lethality of Uncx−/− mice has impeded our ability to directly test
whether their OSNs are more sensitive to damage.

Experimental Procedures
Mice

Mice carrying a targeted deletion of Uncx were obtained from Dr. Ahmed Mansouri (Max-
Planck Institute for Biophysical Chemistry, Gottingen, Germany) (Mansouri et al., 2000).
Uncx−/− mice die within the first day of life, so only newborn and embryonic mice were used
for experiments testing the effects of the absence of Uncx. Mice carrying a targeted deletion
of Ascl1 were obtained from Dr. Randall Reed (Johns Hopkins University, Baltimore, MD).
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Mice carrying a targeted deletion of Neurog1 were obtained from Dr. David Anderson,
California Institute of Technology, Pasadena, CA). Except where indicated, all samples were
obtained from mice less than 24 hours old, postnatal day 0 (P0). Mice were housed in the animal
facility at the University of Kentucky. All procedures with mice were done according to
approved Institutional Animal Care and Use Committee protocols and conformed to NIH
guidelines.

Genes and Uncx cDNA
Mouse genes and mRNAs are displayed according to the gene symbol conventions of Entrez
Gene (National Center for Biotechnology Information), and the gene symbol is capitalized
when referring to the protein product of the gene. To avoid ambiguity, the Entrez Gene IDs,
gene names, gene symbols, and common synonyms for all mouse genes mentioned herein are
listed in Supplemental Table S1.

In situ hybridization and immunohistochemistry
In situ hybridization was done on 10 μm coronal cryosections of the anterior head as described
previously (Sammeta et al., 2007). For each gene, cDNA fragments (400-500 bp) were
amplified by PCR from olfactory epithelium cDNA and cloned into pBluescript. The primer
positions are listed in Supplemental Table S1. The fragments chosen were selected to have less
than 80% identity to any other mouse gene. Sense and antisense recombinant RNA probes
(approximately 500 bp in length) labeled with digoxygenin were prepared and used for
hybridization against the tissue sections. Sense controls were invariably negative. A detailed
protocol, which follows the methods of Ishii and colleagues (Ishii et al., 2003; Ishii et al.,
2004), is available from the authors.

Immunohistochemistry was also done on 10 μm coronal cryosections. The frozen sections were
thawed and permeabilized in PBS with 1% Triton X-100. Antigen retrieval was done by boiling
the slides in 10 mM citrate buffer for 10 min. The slides were allowed to cool to room
temperature and incubated for 1h at room temperature in blocking buffer (2% BSA and 0.4%
Triton X100 in PBS), followed by overnight incubation in primary antibody diluted in the
blocking buffer at 4°C. Sections were washed with 0.05% Tween-20 in PBS for 30 min and
then incubated with Cy3 conjugated secondary antibody diluted in PBS. Nuclei were
counterstained with Hoechst 33342 (# H1399, Invitrogen, Carlsbad, CA). Primary antibodies
were a rabbit polyclonal pan-TLE antiserum (# 4681, Cell Signaling Technology, Danvers,
MA) used at a dilution of 1:200, a rabbit polyclonal antibody against the active fragment of
cleaved caspase-3 (# 9661S, Cell Signaling Technology Inc.) at a dilution of 1:200, a goat
polyclonal OMP antibody (544-10001, Wako Chemicals USA, Richmond, VA) at a dilution
of 1:500, a rabbit polyclonal antibodies against phosphorylated histone-3 and phosphorylated
CREB (#06-570 and #06-519, Millipore, Billerica, MA) at dilution of 1:200 and 1:1,000,
respectively, a rabbit polyclonal antibody against Crocc supplied by Dr. Tiansen Li (Harvard
University) at a dilution of 1:5,000, a mouse monoclonal against ASCL1 (MAB2567, R & D
Systems, Minneapolis, MN), a rabbit polyclonal against ADCY3 (#sc-588, Santa Cruz
Biotechnology, Sant Cruz, CA) at a dilution of 1:200, and a mouse monoclonal antibody against
tyrosine hydroxylase (# ab11, Abcam, Cambridge, MA) at a dilution of 1:200. The specificities
of these antibodies are documented in publication (Blount et al., 2008; Buiakova et al., 1996;
Cheong et al., 2003; Hendzel et al., 1997; Hu et al., 2000; Huang et al., 2007; Kaiser et al.,
2008; Rodriguez-Gil and Greer, 2008; Yang et al., 2005; Yang et al., 2002), or via data made
available on-line in the case of the pan-TLE antiserum
(http://www.cellsignal.com/products/4681.html). A Cy3-conjugated donkey anti-rabbit
secondary antibody and a donkey anti-goat antibody (#711-165-152, #705-165-147, Jackson
ImmunoReseach) were used at a dilution of 1:1000.
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Wide-field images were obtained on a Nikon Diaphot 300 inverted microscope using a Spot
2e camera and Spot software version 4.0.6 through a 40x/0.75 numerical aperture Plan Fluor
objective or a 4x/0.13 numerical aperture Plan objective. Images were processed in Adobe
Photoshop (version 7.0) by adjusting size and brightness. Images were combined and labeled
in Deneba Canvas (version 8.0). The mRNAs and antigens detected for this project are
expressed similarly across all regions of the olfactory epithelium, so only high magnification
images are used to display their distributions across the layers of this pseudostratified
epithelium.

Cell counts were done on images of coronal sections, matched for anterior-posterior position
between the genotypes, three mice per genotype. Three sections per mouse were counted at
three positions along the epithelium (dorsal recess, dorsal septum, and ventral septum) and
normalized to the length of epithelium in each image. Cells were included in the count if their
nuclei were contained in the sections. Abercrombie's correction of over-counting of profiles
in sections was applied (Abercombie, 1946). Student's t-tests were applied to counts. The
observation that the epithelium was thinner implied that fewer cells were present, so one-tailed
tests were done for counts of specific cell-types. Counts of markers of proliferation and
apoptosis were done as two-tailed tests. Correction for multiple testing was done in cases where
more than one marker were tested on the same three mice (Benjamini and Hochberg, 1995).

Quantitative RT-PCR
Reverse transcription was performed on 0.5 μg of total RNA using SuperScript II and random
hexamers (Life Technologies, Rockville, MD) in a 50 μl reaction. Primers were designed using
Primer Express software (Applied Biosystems, Foster City, CA) and purchased from Integrated
DNA Technologies (Coralville, IA). Amplification was performed on triplicate samples in an
ABI Prism 7700 Sequence Detection System using 1 μl of the cDNA reaction and the Sybr
Green Core Reagent Kit under conditions prescribed by the manufacturer (Applied
Biosystems). Thermal cycler conditions were 50°C for 2 min, 95°C for 10 min, followed by
40 cycles of 95°C for 15 s and 60°C for 1 min. Whole olfactory epithelium cDNA was used
as a template for standard curves, which were required to exceed a criterion correlation
coefficient of 0.98 before being accepted for analysis. Melt curves were performed on each
sample to verify that each reaction produced a single product. Results were normalized to the
geometric mean of four relatively stable common mRNAs in each sample: Gapdh, Actb, Ubc,
and Hprt1. Seven heterozygous mice were compared against eight knockout mice using
Student's t-test at for α = 0.05. Adjustment of the p-values to correct for unequal variance was
necessary for two mRNAs that had large differences in abundance between the genotypes. In
addition, correction for multiple testing was done using the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995) to obtain adjusted p-values for α = 0.05. All data are reported
as means ± standard errors of the mean.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Uncx is expressed in all cells of the OSN lineage. (A) A guide to the cell layers of the olfactory
epithelium at age P0 using in situ hybridization for cell-type specific markers: Tyro3 for
sustentacular cells, Omp for mature OSNs, Gap43 for immature OSNs, and Ascl1 (Mash1) for
basal cells. (B,C) In situ hybridization for Uncx in C57Bl6 mice at ages P0 and P21. (D) In
situ hybridization for Uncx in Ascl1−/− mice at age P0 faintly labels a few cells. (E) In situ
hybridization for Uncx in Neurog1−/− mice at age P0. (F) Negative control: in situ hybridization
for Neurog1 in Neurog1−/− mice at age P0. Dashed lines, basal lamina. Scale bars, 20 μm.
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Fig. 2.
The absence of Uncx increases OSN apoptosis and reduces basal cell proliferation. Mature
OSNs appeared to be less abundant in Uncx−/− mice according to immunofluorescence for
OMP protein (A – D). (E, F) Cells immunoreactive for ASCL1 appeared to be less abundant
in Uncx−/− mice at age E14.5. (G, H) Caspase 3 immunoreactivity in the OSN layer appeared
to be increased in Uncx−/− mice. (I, J) Fewer cells appeared to be immunoreactive for
phosphorylated histone-3 in Uncx−/− mice. Blue: Hoechst labeling of nuclei. Scale bars: A-F,
I-N, 20 μm; G, H, 50 μm.
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Fig. 3.
Fewer basal cells and immature OSNs were apparent in Uncx−/− mice. (A, B) In situ
hybridization for Ccnd1 to label proliferating basal cells detected fewer cells in Uncx−/− mice.
(C, D) In situ hybridization for Ascl1 to label transit amplifying basal cells detected fewer cells
in Uncx−/− mice. (E, F) In situ hybridization for Gap43 to label immature OSNs detected fewer
cells in Uncx−/− mice. (G, H) In situ hybridization for Tyro3 to label sustentacular cells was
unaffected by the absence of Uncx. Scale bars, 20 μm.
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Fig. 4.
Evidence of OSN activity and functional connections to the olfactory bulb (OB) in Uncx−/−

mice. (A - D) Detection of OSN axons by OMP immunoreactivity revealed an olfactory nerve
layer (ONL) and innervation of glomeruli (e.g, circles) in Uncx−/− mice that were positioned
normally. (E, F) Immunoreactivity for the activity marker, tyrosine hydroxylase (TH), detected
similar numbers of periglomerular neurons in the olfactory bulbs of Uncx−/− and Uncx+/+ mice.
Some glomeruli are marked in the images (asterisks). (G - J) Two activity markers of OSNs,
phosphorylated CREB (pCREB) and Kirrel2 were detected in OSNs of Uncx−/− mice, though
they appeared to be fewer. Kirrel2 expression was detected by in situ hybridization, pCREB
by immunofluorescence. Blue, Hoechst 33342 nuclear stain, Dashed lines, basal lamina; GL,
glomerular layer. Scale bars: A, B, E, F, 50 μm; C, D, 500 μm; G - J, 20 μm.
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Fig. 5.
Expression of Tle, Umodl1, and Kcnc4. (A) In situ hybridization detected Tle3 mRNA
primarily in the immature OSN and basal cell layers of the olfactory epithelium. (B) A pan-
TLE antibody detected TLE proteins primarily in the immature OSN layer. (C - F) Kcnc4 and
Umodl1 mRNAs were abundant in Uncx+/+ mature OSNs but difficult to detect in Uncx−/−

mature OSNs. Scale bars, 20 μm.
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Table 1

Cell counts per 0.1 mm width of olfactory epithelium.

Marker
Uncx−/−

(mean ± SD)
Uncx+/−

(mean ± SD) t-statistic p-value

Omp (P0) 13.1 ± 1.3 26.9 ± 4.5 −5.06675 0.00357

Gap43 (P0) 17.6 ± 1.6 24.6 ± 2.0 −4.69757 0.00466

Ascl1 (P0) 4.4 ± 0.6 7.6 ± 0.4 −7.81419 0.00072

Ascl1 (E14.5) 8.7 ± 2.5 14.2 ± 2.1 −2.9174 0.04335

Casp3 (P0) 1.1 ± 0.2 0.4 ± 0.1 5.28902 0.00613

phosphoH3 (P0) 1.4 ± 0.2 2.5 ± 0.4 −4.09878 0.01487

Ccnd1 (P0) 6.8 ± 0.3 9.1 ± 1.0 −3.71585 0.02055

Omp, mature OSNs; Gap43, immature OSNs; Ascl1, transit amplifying basal progenitor cells; Casp3, active fragment of caspase-3 to identify apoptosis;
phosphoH3, phosphorylated histone-3 to identify mitosis; Ccnd1, cyclin D1. N = 3 mice in each case. Ages: postnatal day 0 (P0) and embryonic day
14.5 (E14.5).
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