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Genome-wide association (GWA) studies have proved extremely successful in identifying novel genetic loci contributing
effects to complex human diseases. In doing so, they have highlighted the fact that many potential loci of modest effect
remain undetected, partly due to the need for samples consisting of many thousands of individuals. Large-scale
international initiatives, such as the Wellcome Trust Case Control Consortium, the Genetic Association Information
Network, and the database of genetic and phenotypic information, aim to facilitate discovery of modest-effect genes by
making genome-wide data publicly available, allowing information to be combined for the purpose of pooled analysis. In
principle, disease or control samples from these studies could be used to increase the power of any GWA study via judicious
use as “genetically matched controls” for other traits. Here, we present the biological motivation for the problem and the
theoretical potential for expanding the control group with publicly available disease or reference samples. We demonstrate
that a naive application of this strategy can greatly inflate the false-positive error rate in the presence of population
structure. As a remedy, we make use of genome-wide data and model selection techniques to identify “axes” of genetic
variation which are associated with disease. These axes are then included as covariates in association analysis to correct for
population structure, which can result in increases in power over standard analysis of genetic information from the samples
in the original GWA study. Genet. Epidemiol. 34: 319-326, 2010. © 2010 Wiley-Liss, Inc.

Key words: genome-wide association study; expanded control group; population structure; multidimensional scaling;
model selection

Additional Supporting Information may be found in the online version of this article.

Contract grant sponsors: AstraZeneca and the Wellcome Trust; Contract grant number: WT081682/2/06/Z.

*Correspondence to: Joanna J. Zhuang, Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, University
of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. E-mail: zhuang@well.ox.ac.uk

Received 22 April 2009; Revised 14 October 2009; Accepted 21 October 2009

Published online 20 January 2010 in Wiley InterScience (www.interscience.wiley.com).

DOI: 10.1002/ gepi.20482

in 2,000 cases of each of seven diseases and 3,000 shared
controls from the United Kingdom was powered to detect
common variants with allelic odds ratios of the order of

INTRODUCTION

Identifying genetic variants that influence common
complex diseases can provide valuable insights into their
pathogenesis, prevention, and treatment. With well-
defined clinical cohorts and the availability of high-quality
and cost-effective genotyping platforms that capture much
of human genetic variation [Barrett and Cardon, 2006; The
International HapMap Consortium, 2005], the most recent
wave of genome-wide association (GWA) studies have
been well powered to detect “moderate” genetic effects.
The much-publicized Wellcome Trust Case Control Con-
sortium (WTCCC) was established to explore the utility,
design, and analysis of GWA studies, aiming to improve
our understanding of the aetiological basis of several
common diseases, including coronary artery disease
(CAD), type 1 and type 2 diabetes (T1D and T2D), and
rheumatoid arthritis (RA). The main WTCCC experiment
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1.5-1.7 [The Wellcome Trust Case Control Consortium,
2007]. The study identified many novel genetic associa-
tions, the majority of which have now been replicated in
independent samples from the same and/or different
populations [Frayling et al.,, 2007; Parkes et al., 2007;
Samani et al., 2007; Todd et al., 2007; Zeggini et al., 2007].
However, these studies have also highlighted the fact that
many loci of more modest effect (allelic odds ratios below
1.5) remain undetected.

Statistically, this problem can be regarded as “weak
power,” for which the primary solution is to increase the
number of individuals in the study. This is not always
technically or financially feasible. However, more and
more DNA samples from patients with various diseases,
as well as population control cohorts, are being genotyped
and subsequently made publicly available through
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initiatives, such as the WTCCC, the Genetic Association
Information Network (GAIN), and the database of genetic
and phenotypic information (dbGaP). Thus, there is an
opportunity to increase the statistical power of a study at
no extra cost, by using the genotype data from these
external samples to expand the primary “within-study”
control cohort. Figure 1 presents the power of a GWA
study of 500 cases to detect association of a causal SNP
with risk allele frequency of 20% for a disease of
prevalence 0.1%, with the number of control samples
ranging from 500 to 5,000 individuals at a significance
level of 5%. Power is presented as a function of the
heterozygous genotype relative risk under the assumption
of a multiplicative disease model. Improvements in power
diminish as the ratio of controls to cases increases. When
the number of available cases is the limiting factor, a
control-case ratio of 4:1 is often cited as optimal, but this is
a judgement and the exact rate of diminishing return may
vary according to disease risk and allele frequency, as well
as analytical issues, such as investigation of interactions or
subgroup specific effects. However, if additional geno-
types are effectively free, power can be maximized by
including as many controls as possible in the study.

Our thoughts on control sample augmentation were
initially motivated by the emergence of multisample GWA
study designs, such as that employed by the WTCCC, in
which there are multiple disease samples drawn from the
same, largely homogeneous population [The Wellcome
Trust Case Control Consortium, 2007]. Given this internal
“genetic matching” and assuming no unmeasured con-
founders, the greatest theoretical power to detect genetic
effects would be gained by forming an expanded reference
group for each disease cohort by combining the primary
controls with cases of all other diseases. However, in this
type of multisample design, some of the diseases may
have overlapping genetic aetiologies, thus inducing
genotypic correlations between the different phenotypes
due to pleiotropic effects. For example, the main WTCCC
experiment includes cases of multiple autoimmune dis-
eases and metabolic disorders. For pleiotropic genes
influencing correlated traits, such as PTPN22 for T1D
and RA, making use of cases of one disease as controls for
the other can reduce power to detect disease variants, a
“dilution” of the genetic effect due to bias in the control
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Fig. 1. Power of a GWA study of 500 cases to detect association
of a causal variant with allele frequency 20% for a range of
heterozygous genotype relative risks under a multiplicative
model with disease prevalence of 0.1%. Results are presented
for a trend test of association for a significance level of 5%,
with the number of control samples ranging from 500 to 5,000
individuals.
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group. The inclusion of disease samples in an expanded
control group on a genome-wide basis can increase the
false-positive error rate, since we may detect associations
of large effect with these additional diseases, but may also
unexpectedly result in an increase in power for variants
influencing traits in opposite directions. However, these
issues can be overcome by careful selection of appropriate
diseases for expanding the control group and exclusion of
SNPs known to be associated with these diseases.

The WTCCC present “expanded reference group ana-
lyses,” combining controls with all additional disease
samples, increasing the reference group ratio from 1.5:1.0
for each disease to up to approximately 7.5:1.0. Such an
analysis is mutually beneficial to all diseases represented
in the multisample study. To allow for pleiotropic effects,
only nonautoimmune diseases were used in the expanded
reference groups for T1D, RA, and Crohn'’s disease (CD),
and CAD and hypertension were not tested against each
other. Application of these expanded reference group
analyses resulted in more significant evidence of associa-
tion at the most compelling loci identified in the primary
analysis, as well as for established loci for T1D, T2D,
and CD.

The challenge we address here is that of expanding the
control group to include genotyped individuals from a
variety of studies that may not have been ascertained from
the same population, and thus may not be genetically
matched to the primary “within-study” cases and controls.
Inappropriate genetic matching of cases and controls in the
presence of population structure can lead to inflation in
the false-positive (i.e. type I) error rate, unless properly
accounted for in the analysis. A variety of statistical
methods exist for the detection of and adjustment for
population structure in GWA studies [Devlin and Roeder,
1999; Patterson et al., 2006; Price et al., 2006; Pritchard
et al., 2000]. Principal components analysis (PCA) was
originally applied to genetic data to infer worldwide axes
of human genetic variation from allele frequency differ-
ences between populations [Cavalli-Sforza et al., 1993;
Menozzi et al.,, 1978]. The EIGENSTRAT method makes
use of axes of genetic variation, estimated from genome-
wide genotype data, to continuously adjust the genotypes
and phenotypes by amounts attributable to ancestry along
each of these axes [Patterson et al., 2006]. By then, testing
for association between these ancestry adjusted phenotype
and genotype values, cases and controls are effectively
genetically matched, thus correcting for the underlying
genetic population structure and reducing the inflation in
the false-positive error rate [Price et al., 2006].

Here, we make use of a related statistical technique to
adjust for population structure with an expanded control
cohort. Axes of genetic variation are defined by applica-
tion of classical multidimensional scaling (MDS) techni-
ques [Cox and Cox, 1994] to a matrix of identity by state
(IBS) values between all pairs of samples in the study
(cases and the expanded control cohort), using genome-
wide genotype data. Such an approach has been used to
identify population outliers in the WTCCC [The Wellcome
Trust Case Control Consortium, 2007] and for SNP
selection and subsequent visualization of population
structure [Miclaus et al., 2009]. In a logistic regression
framework, we identify which of the resulting axes of
genetic variation are associated with disease. These are
then treated as covariates in the logistic regression model,
providing a basis for testing for association with disease,
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adjusted for the effects of underlying population structure.
We present a simulation study to investigate the false-
positive error rate of this procedure, and provide evidence
that we can correct for substantial population structure
between cases and controls from the original study and the
diverse external reference samples used to expand the
control cohort, certainly to the extent of allele frequency
differences we expect between European populations. We
also demonstrate that the use of an expanded control
group with adjustment for axes of genetic variation can be
more powerful than analysis of the samples from the
original GWA study alone.

METHODS

Consider a population-based sample of cases and
controls, which we expect to be ascertained from a
genetically homogeneous population, or genetically fre-
quency matched for ethnicity or location in a potentially
heterogeneous or admixed population. We assume that we
have a series of genetically unmatched external samples
that are used to expand the control group in our goal to
increase power. All samples are genotyped for the same N
SNPs, genome-wide. We develop a statistical method to
test for association of genetic markers with disease by
comparing genotype frequencies between cases and the
expanded control cohort that corrects for population
structure, when it exists, thus retaining the correct false-
positive error rate.

Assuming a multiplicative model of disease risk, we
denote the genotype of the ith individual at the kth SNP by
Gir, coded as 0, 1, or 2, according to the number of minor
alleles they carry. We calculate the identity by state (IBS)
between each pair of samples, from the original GWA
study and all external cohorts, over the whole genome,
given by

1
IBS;j = 52> (2 1Gik — G
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for the ith and jth samples, where Nj; is the total number of
SNPs with genotype data available for both samples. Note
that for GWA genotyping platforms, suitably thinned
subsets of SNPs should be used to minimize the effects of
linkage disequilibrium (LD) between markers (e.g. SNPs
with #<0.2 between each other). IBS can take values
between 0 and 1, where 1 represents complete identity
between a pair of samples. Classical multidimensional
scaling is then applied to the matrix of distances, 1-IBS, to
identify axes of genetic variation between samples. The
resulting scores for the ith individual on these axes are
denoted as x;j1,xp,...,X;, where x;; corresponds to the axis
with the tth largest eigenvalue.

We begin by testing for association between disease and
the first axis of genetic variation. In a logistic regression
framework, we model the log-odds of disease of the ith

individual as
T
In T = oty Xi

where y; denotes the effect of the first axis. We perform a
likelihood ratio test of association, y; =0, and retain the
effect in the model if P<0.05. We then proceed in a
forward selection manner, testing for association of each
axis of genetic variation, x;, in turn, in order of decreasing

eigenvalue, retaining any effect in the model for which
P<0.05. We define an indicator variable z; taking the
value 1 if the tth axis of variation is associated with disease
(P<0.05) and 0 otherwise. In the absence of population
structure, we would expect no axes of genetic variation to
be retained in the model, and hence z;, =0 for all ¢.

Next, we test for association of each SNP, k, in turn with
disease, adjusting for the effects of population structure by
inclusion of the significant axes of genetic variation as
covariates in the logistic regression framework. Specifi-
cally, we now model the log-odds of disease of the ith
individual as

o
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where By is the allelic log-odds ratio of the minor allele at
the kth SNP, and z; is defined above. A likelihood ratio test
of B = 0 provides a “trend test” of association, adjusted for
the effects of population structure. Within this framework,
we can account for nongenetic (“environmental”) risk
factors as additional covariates in the model and can
incorporate alternative coding of the SNP genotypes to
allow for different models of genetic risk, such as
recessive, dominant, or heterozygote advantage.

SIMULATION STUDY

We carry out simulations to assess the false-positive
error rate and power of the test procedure described
above. For each replicate of data, we generate cases and
controls from the same source population, together with
additional samples from three external cohorts, not
necessarily genetically matched for population. These
external samples will be used to expand the control
cohort, but are not phenotyped for the disease of interest.
We specify the divergence between the case-control source
population and each external cohort by means of Fs [Weir,
1996], where Fsy =0 corresponds to equal allele frequen-
cies at any given SNP across all populations.

For each individual, we simulate genotype data at 10,000
uncorrelated SNPs not associated with disease, but used to
calculate IBS relationships. For each SNP, we simulate a
minor allele frequency, g, in the interval [0.05, 0.5] in the
case-control source population, and generate genotypes
assuming Hardy-Weinberg equilibrium, irrespective of
disease status. We then generate the allele frequency for
the same SNP, in each external cohort in turn, using the
Balding-Nichols model [Balding and Nichols, 1995].
Specifically, the allele frequency is simulated from a
Beta(a,b) distribution, where a=q(1—Fsr)/Fsr and
b= (1—¢9)(1—Fsr)/Fsr [Devlin et al., 2001]. Again, geno-
types are simulated with this allele frequency under the
assumption of Hardy-Weinberg equilibrium.

Next, we simulate genotypes at the disease SNP in each
individual, where the prevalence is fixed at 0.1%. For a
fixed high-risk allele frequency and heterozygous geno-
type relative risk, genotypes are generated for each case-
control sample assuming Hardy-Weinberg equilibrium
and a multiplicative disease model. In the same way as
before, the disease SNP allele frequency is generated in
each external cohort using the Balding-Nichols model.
Given that the external samples are unselected with
respect to the disease phenotype of interest, their
genotypes are generated under the assumption of Hardy-
Weinberg equilibrium, irrespective of the disease model.

Genet. Epidemiol.
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For each replicate of data, we apply classical multi-
dimensional scaling to the IBS relationships between each
pair of samples. Given that we simulate four populations
(the original source population and three external cohorts),
we would expect to require up to three axes of genetic
variation to distinguish between them. We thus utilize the
forward-selection procedure, described above, to deter-
mine which of the first three axes of genetic variation are
correlated with phenotype. Three likelihood ratio trend
tests of association are then performed:

® T _CC: cases against controls from the source popula-
tion, without correction for population structure.

® T F: cases against control cohort expanded by external
samples, without correction for population structure.

® T Fmds: cases against control cohort expanded by
external samples, corrected for correlated axes of
genetic variation determined through MDS.

For simulations, each replicate of data is limited to 100
cases, 100 controls, and 100 samples from each of the
external cohorts. This is to minimize the calculation time for
IBS relationships, which is computationally intensive when
performed in thousands of replicates. Although we recog-
nize that this sample size is unrealistic for GWA studies, it is
sufficient to assess false-positive error rates and compare the
relative power of the three association tests.

RESULTS

FALSE-POSITIVE ERROR RATE

Table I presents the false-positive error rate of the three
trend tests of association over 5,000 replicates of data.
Results are presented for a significance level of 5% over a
range of Fg;, encompassing no divergence in allele
frequencies between the case-control source population
and the external cohorts (Fsy=0), through to the level
of differentiation expected between European and African
populations. Also presented are mean maximum like-
lihood estimates of the allelic odds ratio, together with
5- and 95-percentiles across the 5,000 replicates of data.

As expected, the false-positive error rate of T_CC is
correctly maintained at the significance level, regardless of
Fsr, since these samples are ascertained from the same
population. Expanding the controls with external samples
dramatically inflates the false-positive error rate of T_F, as
the external cohorts become increasingly divergent from
the case-control source population. The test becomes
biased in an anticonservative direction for Fsr, even as
low as 0.002, which we might expect between populations
of Northern and Western European ancestry, for example.
For T_CC and T _Fmds, the mean allelic odds ratios are
unbiased estimates of the heterozygous genotype relative
risk, as expected under a multiplicative disease model,
whilst for T_F there is some inflation for the mean extreme
models of population structure.

Correcting for population structure in the expanded
control group by adjustment for axes of genetic variation
controls the false-positive error rate of T_Fmds, remaining
consistent with the significance level even for the most
extreme population structure. There is some evidence of
inflation of the false-positive error rate for moderate levels
of population structure. For example, for an Fsrof 0.01, the
false-positive error rate is 6.3+ 0.35% at a significance level
of 5%. We hypothesized that with fine-scale population
structure, this could be as a result of insufficient SNPs,
genome-wide, used to assess the IBS relationships between
samples. We thus repeated the simulation using 100,000
uncorrelated SNPs for this calculation, as opposed to
10,000 (supplementary Table I). Based on 5,000 replicates
of data, the false-positive error rate dropped to 4.8 +0.30%
at a significance level of 5%, adequately correcting for the
fine scale structure between samples in the expanded
control cohort.

POWER

Figure 2 presents the power of the three trend tests of
association at a 5% significance level for a high-risk allele
frequency of 20%, as a function of the allelic odds ratio.
Power is estimated over 5,000 replicates of data, with no
divergence between the case-control population and the
external cohorts (Fgyr=0). As expected, both tests that

TABLE 1. False-positive error rate (FPER) of three trend tests of association over 5,000 replicates of 100 cases, 100 controls
and 100 samples from each of three external cohorts: T_CC, cases against controls from the source population, without
correction for population structure; T_F, cases against control cohort expanded by external samples, without correction
for population structure; T_Fmds, cases against control cohort expanded by external samples, corrected for up to three
axes of genetic variation determined through MDS

T CC TF T_Fmds

Allelic odds ratio Allelic odds ratio Allelic odds ratio

Fsr FPER Mean 5-95% FPER Mean 5-95% FPER Mean 5-95%

0 5.0% 1.00 0.66-1.52 5.0% 0.99 0.71-1.36 4.9% 0.99 0.71-1.37
0.001 5.6% 1.00 0.65-1.53 5.4% 0.99 0.70-1.37 5.3% 0.99 0.70-1.38
0.002 52% 1.00 0.65-1.54 5.6% 0.99 0.70-1.39 5.6% 0.99 0.70-1.40
0.005 5.1% 0.99 0.64-1.51 6.9% 0.99 0.69-1.40 6.4% 0.99 0.66-1.45
0.01 5.0% 1.00 0.66-1.53 8.3% 1.00 0.69-1.44 6.3% 1.00 0.65-1.53
0.02 5.3% 1.00 0.65-1.53 11.7% 1.00 0.66-1.50 6.1% 0.99 0.64-1.54
0.05 4.9% 1.00 0.66-1.52 21.5% 1.01 0.60-1.68 5.2% 1.00 0.65-1.54
0.1 5.2% 1.00 0.66-1.52 31.6% 1.03 0.56-1.96 5.5% 1.00 0.65-1.54

Mean maximum likelihood estimates of the allelic odds ratio are presented, together with the 5- and 95-percentiles over 5,000 replicates of
data. Results are presented for varying degrees of population structure, represented by Fsr, for a significance level of 5%.

Genet. Epidemiol.
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Fig. 2. Power of three trend tests of association at a 5%
significance level for a high-risk allele frequency of 20% as a
function of the allelic odds ratio in the absence of population
structure (Fsy = 0): T_CC, cases against controls from the source
population, without correction for population structure; T_E,
cases against control cohort expanded by external samples,
without correction for population structure; T_Fmds, cases
against control cohort expanded by external samples, corrected
for up to three axes of genetic variation determined through
MDS. Power is estimated over 5,000 replicates of 100 cases, 100
controls, and 100 samples from each of three external cohorts.

make use of the expanded control cohort are noticeably
more powerful than T_CC. However, more importantly,
there is no difference in power between T_F and T_Fmds.
Thus, by adjusting only for those axes of genetic variation
that are correlated with phenotype, we take account only
of population structure when it exists, and thus do not
penalize T_Fmds. The same conclusions are reached,
irrespective of high-risk allele frequency (see supplemen-
tary Fig. 1 for a high-risk allele frequency of 5%).

Figure 3 presents the power of the three trend tests of
association at a 5% significance level, this time for external
cohorts which are divergent from the case-control source
population (Fsy = 0.01), otherwise with the same simula-
tion parameters as before. This time, there is some loss of
power for T_Fmds compared to T_F. However, T_F is an
anticonservative test of association in this setting (false-
positive error rate is 8.3%), and thus is inappropriate.
Furthermore, despite the reduction in power of T_Fmds, it
remains more powerful than T_CC. The same conclusions
are reached, irrespective of high-risk allele frequency
(see supplementary Fig. 2 for a high-risk allele frequency
of 5%).

Table II presents the power of the three trend tests of
association at a 5% significance level for a high-risk allele
frequency of 20% and an allelic odds ratio of 1.5,
illustrating in more detail the effect of varying levels
population structure. Power is estimated over 5,000
replicates of data, for a range of Fsy between the case-
control population and external cohorts. Also presented
are mean maximum likelihood estimates of the allelic odds
ratio, together with 5- and 95-percentiles across the 5,000
replicates of data. Clearly, T_F is most powerful for large
Fsr, but it is anticonservative, and thus is not a valid test of
association. T_Fmds is, in principle, more powerful than
T_CC, although the difference between the tests decreases
and approaches zero, as Fsr becomes very large. This is a
result of the fact that the external samples are so
genetically different from the case-control source popula-
tion that they add very little information to the disease
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Fig. 3. Power of three trend tests of association at a 5%
significance level for a high-risk allele frequency of 20%, as a
function of the allelic odds ratio in the presence of population
structure (Fsr=0.01): T_CC, cases against controls from the
source population, without correction for population structure;
T_E, cases against control cohort expanded by external samples,
without correction for population structure; T_Fmds, cases
against control cohort expanded by external samples, corrected
for up to three axes of genetic variation determined through
MDS. Power is estimated over 5,000 replicates of 100 cases, 100
controls, and 100 samples from each of three external cohorts.

association after adjustment for the axes of genetic
variation.

Our previous simulations (Table I and supplementary
Table I) suggest that application of MDS to IBS metrics
calculated from 100,000 uncorrelated SNPs can distinguish
fine-scale population structure, which is not apparent
when only 10,000 SNPs are used. Supplementary Table II
presents the power of the three trend tests of association at
a 5% significance level for a high-risk allele frequency of
20% and an allelic odds ratio of 1.5, this time using 100,000
uncorrelated SNPs in calculating the IBS matrix. Compar-
ing these results to those in Table II, we clearly demon-
strate a noticeable drop in power to detect association for
Fsr<0.01. With more SNPs, we are better able to
distinguish between samples from even relatively closely
related populations, with the result that external samples
provide little additional information, even at modest levels
of population structure. This issue is common to many
methods for detecting population structure: a trade-off
between sensitivity to fine-scale stratification and correc-
tion for its effects in subsequent association analysis.

SENSITIVITY TO SELECTION STRATEGY FOR
INCLUSION OF AXES OF GENETIC VARIATION
IN ADJUSTED ANALYSES

Throughout the simulations presented above, we have
adjusted only for those axes of genetic variation amongst
the first three, which are correlated with disease status
using P <0.05. For example, if only the first and third of
these axes are correlated with disease status, we do not
make adjustment for the second. We have investigated the
sensitivity of our approach to this selection strategy by
repeating simulations: (i) adjusting only for those axes of
genetic variation amongst the first three that are correlated
with disease status using P<0.1 and (ii) all of the first
three axes of genetic variation, irrespective of their
correlation with disease status.

Genet. Epidemiol.
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TABLE II. Power of three trend tests of association for a SNP with minor allele frequency of 20% and a heterozygous
genotype relative risk of 1.5 over 5,000 replicates of 100 cases, 100 controls and 100 samples from each of three external
cohorts: T_CC, cases against controls from the source population, without correction for population structure; T_F, cases
against control cohort expanded by external samples, without correction for population structure; T_Fmds, cases against
control cohort expanded by external samples, corrected for up to three axes of genetic variation determined through

MDS

T _CC

TF T Fmds

Allelic odds ratio

Allelic odds ratio Allelic odds ratio

Fsr Power Mean 5-95% Power Mean 5-95% Power Mean 5-95%

0 40.3% 151 1.03-2.26 59.5% 1.50 1.11-2.02 59.6% 151 1.11-2.03
0.001 41.1% 1.51 1.02-2.28 59.7% 1.50 1.10-2.04 59.5% 1.51 1.10-2.05
0.002 40.5% 151 1.00-2.30 58.7% 1.50 1.08-2.06 58.6% 151 1.08-2.08
0.005 40.5% 151 1.03-2.25 57.2% 1.49 1.09-2.08 50.4% 1.51 1.05-2.18
0.01 40.4% 151 1.00-2.29 58.2% 1.50 1.05-2.13 45.1% 1.53 1.01-2.33
0.02 41.0% 1.51 1.02-2.26 57.3% 1.50 1.01-2.23 42.7% 1.53 1.02-2.31
0.05 41.1% 151 1.03-2.27 57.7% 1.52 0.93-2.48 42.4% 1.53 1.01-2.31
0.1 41.0% 1.52 1.00-2.29 58.0% 1.53 0.82-2.90 41.8% 1.53 1.01-2.31

Mean maximum likelihood estimates of the allelic odds ratio are presented, together with the 5- and 95-percentiles over 5,000 replicates of
data. Results are presented for varying degrees of population structure, represented by Fsr, for a significance level of 5%.

Supplementary Table IIl presents the false-positive error
rate of the trend test for association, T_Fmds, adjusting for
up to three axes of genetic variation, according to the three
selection criteria described above. Results are presented over
5,000 replicates for a range of Fsy, for a significance level of
5%. The selection criteria makes little difference to the false-
positive error rate, presumably because the inclusion of axes
of genetic variation in the logistic regression model that do
not correlate with disease does not impact on the association
analysis, because the additional degrees of freedom required
are small compared to the sample size. A similar conclusion
is reached in terms of the effect of selection criteria on
power, as presented in supplementary Table IV, for a SNP
with minor allele frequency of 20% in the source population
and a heterozygous genotype relative risk of 1.5. However, if
we were to include many more axes of genetic variation
without selection, we would expect larger differences in the
false-positive error rate and power between approaches,
particularly in the absence of population structure. There-
fore, one clear advantage of the selection approach is that we
can test large numbers of axes of genetic variation and
include only those relevant to disease association, thus
minimizing any loss in power.

To address this assertion, we have also investigated the
sensitivity of our approach to the number of axes of
genetic variation, by adjusting only for those axes of
genetic variation, this time amongst the first ten, which are
correlated with disease status using P <0.05. Supplemen-
tary Table V presents the false-positive error rate of the
trend test for association, T_Fmds, adjusting for up to three
or up to ten axes of genetic variation. Results are presented
over 5,000 replicates for a range of Fgy, for a significance
level of 5%. Also presented is the proportion of replicates
of simulated data in which more than the first three axes of
genetic variation were selected to adjust for population
structure. The choice of the number of axes of genetic
variation used for adjustment has little impact on the false-
positive error rate, with less than 10% of replicates of data
utilizing more than the first three axes. There is also little
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effect on power, demonstrated in supplementary Table VI
for a SNP with minor allele frequency of 20% frequency in
the source population, and a heterozygous genotype
relative risk of 1.5.

DISCUSSION

The increasing availability of genome-wide genotype
data from public databases of individuals from a wide
range of disease cohorts offers an exciting opportunity to
increase sample sizes utilized in GWA studies. Provided
that samples are from the same population and assuming
no unmeasured confounders, power can be increased by
expanding the control cohort with disease samples from
other studies. However, in the presence of unobserved
population structure, such an approach can lead to an
increase in the false-positive error rate. Here, we demon-
strate by simulation that correction for axes of genetic
variation from MDS, obtained from IBS metrics calculated
from large numbers of SNPs, genome-wide maintains the
correct false-positive error rate, even in the presence of
genetic differences between samples in the expanded
control group of the magnitude we might expect across
Europe or even further afield. In the absence of population
structure, there is no loss in power compared to a test that
does not correct for axes of genetic variation. Furthermore,
there is a substantial increase in power over studies that do
not make use of external reference samples as controls.
This approach has broad applicability to GWA studies,
making use of the increasing number of raw genotype data
sets which are being made publicly available to increase
the power to detect novel disease loci, whilst remaining
computationally tractable and rigorous to population
structure.

There are a number of potential problems in the
application of our approach to expanding the control
cohort. First, there may be overlapping aetiologies
between cases and the disease cohorts used to expand
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the control cohort, for example, cases of T1D and
additional samples from other autoimmune disease
cohorts. Thus, by including diseases of overlapping
aetiologies in the case and control cohorts, we reduce
our power to detect association with pleiotropic genes. A
second problem arises as a result of strong signals of
association among cohorts utilized to expand the control
group. False-positive signals of association for the
disease of interest will be identified unless sufficiently
large numbers of samples from other reference cohorts
are included as controls. Both of these problems high-
light the need for careful selection of cohorts used to
expand the control group and care in the interpretation
of the results of such analyses. In addition, increases in
the false-positive error rates of association tests applied
to expanded control cohorts can arise as a result of
systematic genotyping error differences between studies.
It is crucial, therefore, to follow up any positive signals of
association with genotyping in independent samples for
replication.

Interpretation of the axes of genetic variation is crucial
before testing their association with disease. In a homo-
geneous population, the first components of genetic
variation may reflect local extended LD patterns rather
than genome-wide structure, such as that reported in the
main WTCCC experiment. Clearly, if the region of
extended LD contains causal variants, regressing out
the corresponding axis of genetic variation will prevent
their detection. This is likely to be true for autoimmune
diseases in the MHC, for example, an extended region of
strong LD harboring many established associations.
Apparent axes of genetic variation may also reflect “batch
effects,” resulting from the use of different genotyping
platforms or calling algorithms between cohorts, which
will be important to take account of in the same way as
population structure, in order to reduce the inflation in
false-positive error rates.

The approach outlined here could be utilized to expand
the case cohort with additional samples of the same
disease, even if not directly matched for population, in the
same way as controls. However, if gene-environment
interaction is likely to exist for the disease under
investigation, it is also important to match cases for
exposure to potential environmental risk factors, or at least
to measure these variables, which may not be possible
with publicly available samples. Furthermore, there may
be allelic- or genetic-heterogeneity between populations,
particularly for complex traits. Under such circumstances,
combining case cohorts would reduce power to detect
association, and thus would not be advised without prior
evidence to the contrary.

Many GWA genotyping platforms are available, mean-
ing that publicly available samples may not always have
been genotyped for the same set of SNPs. However,
imputation techniques [Marchini et al., 2007] allow us to
combine samples, irrespective of genotyping platform, by
making use of reference samples of haplotypes, such as
those in the International HapMap project [The Interna-
tional HapMap Consortium, 2005], and simple models of
population genetics to approximate the distribution of
genotype cells carried by individuals not directly geno-
typed on the GWA array. In this way, samples that are
directly genotyped for one SNP can be combined with
samples for which the same SNP has been imputed, again
leading to an increase in power.
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