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Abstract
The family of secreted Wingless ligands plays major roles in embryonic development, stem cell
maintenance, differentiation and tissue homeostasis. Accumulating evidence suggests that the
canonical Wnt pathway involving nuclear recruitment of β-catenin and activation of Wnt-
dependent transcription factors is also critically involved in development and differentiation of the
diverse reproductive tissues. Here, we summarise our present knowledge about expression,
regulation and function of Wnt ligands and their frizzled receptors in murine and human
endometrial and placental cell types. In mice, Wnt signalling promotes early trophoblast lineage
development, blastocyst activation, implantation and chorion–allantois fusion. Moreover, different
Wnt ligands play essential roles in the development of the murine uterine tract, in cycling
endometrial cells and during decidualisation. In humans, estrogen-dependent endometrial cell
proliferation, decidualisation, trophoblast attachment and invasion were shown to be controlled by
the particular signalling pathway. Failures in Wnt signalling are associated with infertility,
endometriosis, endometrial cancer and gestational diseases such as complete mole placentae and
choriocarcinomas. However, our present knowledge is still scarce due to the complexity of the
Wnt network involving numerous ligands, receptors and non-canonical pathways. Hence, much
remains to be learned about the role of different Wnt signalling cascades in reproductive cell types
and their changes under pathological conditions.
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1. General role of Wnt signalling
A small number of signalling pathways are critically involved in the early development of
complex, multi-cellular organisms controlling early axis formation, limb patterning and
organogenesis. Such crucial and conserved signalling pathways include Hedgehog,
transforming growth factor β(TGF-β)/bone morphogenetic protein (BMP), Notch and
Wingless (Wnt) which are active from drosophila to human [1-3]. Wnt ligands are secreted,
palmitoylated glycoproteins playing central roles in embryogenesis and tissue homeostasis
of adult organisms [3,4]. Maintenance of stem cells and their differentiation processes are
regulated by the particular factors [5-8]. Historically, it was shown that the murine proto-
oncogene Int-1 shares the same origin with the drosophila segment polarity gene Wingless
leading to the creation of the term Wnt (combination of Wg (Wingless) and Int) [9].
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Abnormal Wnt signalling is often associated with severe human diseases, including cancer,
osteoporosis and other degenerative disorders [3,4,10].

Up to now, 19 Wnt ligands, 10 transmembrane, G-protein coupled frizzled receptors (FZD)
and 2 low density lipoprotein receptor-related protein co-receptors (LRP-5 and -6) have
been identified in mammals [11]. In the well studied, canonical Wnt pathway the signal is
transduced by FZD–LRP heterodimeric receptors, regulating stability and nuclear
recruitment of the transcriptional co-activator β-catenin. However, some Wnts also activate
non-canonical, β-catenin-independent cascades such as the Wnt/Ca2+ and the Wnt/planar
cell polarity (PCP) pathway [12,13]. Moreover, Wnt ligands can bind to receptor tyrosine
kinases such as Ror and Ryk the latter playing a role in neuronal development [14]. Hence,
Wnt signalling can be regarded as a highly organised network of different ligands, receptors
and downstream effectors controlling complex cellular responses [15].

1.1. Canonical Wnt pathway
The central player in canonical Wnt signalling is β-catenin. In unstimulated cells β-catenin
is mainly located to adherens junctions where it is critically involved in maintaining
epithelial integrity by binding to E-cadherin and α-catenin. In the absence of Wnt ligands
(off-state) excess, cytoplasmic β-catenin is complexed with APC (adenomatous polyposis
coli) and Axin both facilitating the phosphorylation of the protein by casein kinase Iα
(CKIα) and glycogen synthase kinase 3β (GSK-3β) (Fig. 1). This provokes degradation of
β-catenin through the β-TrCP (β-transducin repeat-containing protein) mediated ubiquitin/
proteasome pathway resulting in low cytosolic levels [16,17]. Binding of a Wnt ligand (on-
state) to the cysteine-rich domain (CRD) of FZD promotes FZD–LRP heterodimerisation
triggering a series of events that disrupt the Axin/APC/GSK-3β/CK1α destruction complex
[12]. In detail, Wnt stimulation induces recruitment of Dishevelled (Dsh) to the FZD
receptor forming a so called signalosome [18]. Moreover Axin, a key negative regulator of
β-catenin stability, translocates to the cytoplasmatic tail of LRP catalysed by CK1γ- and
GSK-3β-dependent phosphorylation of the FZD co-receptor [19,20]. Sequestration of a
critical component (Axin) of the destruction complex and activation of Dsh finally result in
impaired degradation and accumulation of β-catenin in the cytosol [21]. Active β-catenin
then translocates into the nucleus where it functions as a transcriptional co-regulator [4,12].
It displaces transcriptional inhibitors of the Groucho protein family and histone deacetylases
(HDACs) from the T cell-specific factors (TCFs)/lymphoid enhancer-binding factor 1
(LEF-1) and recruits histone acetylases, the Legless family docking proteins (Bcl9) and
CBP/p300 thereby converting TFC/LEF-1 into transcriptional activators [12]. Axin, APC
and other Wnt components can also enter the nucleus, thereby modulating nuclear
trafficking and transcription [22]. For example, APC was suggested to play a critical role in
the exchange of co-activator and co-repressor complexes at Wnt target genes [22]. These
include genes involved in cell proliferation and migration such as c-myc, c-jun, cyclin D1,
CD44, matrilysin, matrix metalloproteinases (MMPs) and urokinase plasminogen activator
receptor (uPAR) as well as others summarised at the Wnt homepage (http://
www.stanford.edu/~rnusse/wntwindow.html). In addition, TCF/β-catenin dependent
expression of Axin-2, FZDs, TCF-1 and other Wnt pathway components was noticed
indicating that feedback control is also a feature of Wnt signalling. In addition, the canonical
Wnt pathway can be negatively affected by endogenous β-catenin inhibitors such as
inhibitor of beta-catenin (ICAT) and Chibby or soluble inhibitors such as secreted frizzled-
related protein (sFRPs) or members of the Dickkopf (Dkk) family [12]. The latter bind to
LRP and induce receptor internalisation leading to downregulation of Wnt signalling [23].
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1.2. Non-canonical Wnt pathways
Non-canonical Wnt pathways have been less well characterized due to the diverse receptors
and downstream effectors involved. They do not operate through β-catenin and may even
inhibit nuclear β-catenin activity [24]. In the Wnt/planar cell polarity (PCP) and the Wnt/
Ca2+ pathway, stimulated by the non-canonical Wnt ligands Wnt5a or Wnt11, signalling is
transduced upon FZD binding and Dsh activation without requiring LRP as a co-receptor
[13]. Signalling through the Wnt/PCP pathway results in activation of the GTPases RhoA
and Rac and their downstream targets ROCK (Rho-associated kinase) and JNK, respectively
(Fig. 2). Originally identified in Drosophila, PCP was also shown to play a crucial role in
developmental processes of higher organisms such as angiogenesis, bone morphogenesis or
convergent extension movements of mesenchymal cells during gastrulation [25].
Interestingly, non-canonical Wnt ligands such as Wnt5a may also act in a canonical manner
(upon binding to FZD4) suggesting that the effects of Wnt stimulation depend on the
cellular receptor context [26].

The Wnt/Ca2+ pathway was discovered by the fact that stimulation with particular Wnt
ligands leads to intracellular Ca2+ release from the ER [27,28]. Wnt-dependent increase in
Ca2+ levels is achieved either through inhibition of cGMP-dependent protein kinase (PKG)
which blocks Ca2+ release in unstimulated cells [29] or through activation of PLC
(phospholipase C) and elevation of inositol 1,4,5-trisphosphate (IP3). Intracellular Ca2+ in
turn activates protein kinase C (PKC), calcium/calmodulin-dependent kinase II (CamKII)
and calcineurin. CamKII activates TGF-β-activated kinase (TAK1) and Nemo-like kinase
(NEMO) which can antagonize Wnt/β-catenin signalling by phosphorylation and
inactivation of TCF [30]. The protein phosphatase calcineurin unmasks nuclear localization
sequences of nuclear factor of activated T cells (NF-AT) allowing NF-AT to enter the
nucleus and to activate gene expression [31]. Wnt/Ca2+/NF-AT signalling, for example, was
shown to control dorsoventral axis formation in Xenopus embryos [32].

Wnts can also signal through the receptor tyrosine kinase Ryk and the receptor tyrosine
kinase-like orphan receptor (Ror) upon binding to their extracellular WIF and CRD
domains, respectively [14]. Ryk activation provokes canonical, TCF/β-catenin-dependent
signalling, activation of Src family kinases and, similar to Notch signalling, cleavage and
nuclear recruitment of the Ryk intracellular domain [33]. Ryk was shown to play a critical
role in neuronal development controlling axon guidance, neurite outgrowth and
synaptogenesis [33]. Wnt5a-dependent Ror activation results in polarised cell movement
involving Dsh and JNK [34]. Also, Ror-2-deficient mice display similar abnormalities as
Wnt5a mutant mice reflecting changes in non-canonical Wnt pathways such as Wnt/PCP
[34].

Moreover, ligands such as Wnt3a or Wnt16b may also activate other β-catenin-independent
cascades such as ERK or PI3K/AKT signalling [35-37], again emphasizing the complexity
of the Wnt signalling network.

2. Wnt signalling in murine reproduction
Implantation of the blastocyst, i.e. apposition, attachment and subsequent invasion of
trophoblast into the uterine luminal epithelium, represents a complex biological process
requiring cross-talk between the fetal and maternal tissues. Most important for implantation
is synchronisation of blastocyst activation with uterine receptivity, the latter being controlled
by ovarian steroid hormones [38]. In mice, estrogen is required for proliferation and
differentiation of the uterine luminal and glandular epithelia whereas the coordinated action
of estrogen and progesterone promotes stromal cell differentiation. Factors governing
blastocyst activation are still poorly understood, however, a range of signalling molecules
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preparing the uterus for blastocyst implantation have been identified [39]. Besides the
steroid hormones, cytokines such as LIF, the Hedhog morphogens and others were
suggested to play critical roles in uterine receptivity of mice. Considering that Wnt
signalling plays a pivotal role in embryonic development, it may not be surprising that the
particular pathway has also been implicated in uterine growth as well as murine blastocyst
activation, implantation and decidualisation [40].

2.1. Uterine development, pre-implantation and decidualisation
In vivo studies using different mouse models support the idea that Wnt signalling is
crucially involved in uterine growth and development. Estrogen, for example, induces Wnt4,
Wnt5a and FZD2 in the mouse uterus as well as nuclear recruitment of β-catenin in the
endometrial epithelium [41]. Inhibition of canonical Wnt signalling trough adenovirus-
mediated expression of sFRP2 inhibited estrogen-dependent activation of β-catenin and
epithelial cell proliferation suggesting that steroid hormone-dependent uterine cell growth
also involves Wnt signalling [41]. Moreover, estrogen was also shown to upregulate the β-
catenin-dependent transcription factors TCF-3 and LEF-1 in an estrogen receptor-
independent manner [42]. Interestingly, the hormone also provokes physical interaction of
ERα with activated LEF-1/TCF-3 and recruits the latter to Wnt/estrogen-dependent target
genes suggesting that cross-talk between estrogen and Wnts could be critical for endometrial
function [42]. Moreover, progesterone was shown to downregulate GSK-3β in rat uteri,
which was suggested as a prerequisite for estrogen-dependent activation of the canonical
Wnt pathway [43].

Knock-out studies demonstrated that Wnt4- and Wnt5a-deficient mice display failures in the
development of the female reproductive tract [44,45]. Mice lacking Wnt7a do not develop
uterine glands and have disorganised uterine smooth muscles [46]. Interestingly, Wnt7a was
also identified as a key regulator of female Müllerian duct development which evolves into
oviduct, uterus and cervix [47]. In males, Wolffian ducts develop and Sertoli cells of the
testes secrete Müllerian-inhibiting substance provoking Müllerian duct regression. In
Wnt7a-deficient male mice, however, Müllerian ducts do not regress due to the absence of
the receptor for Müllerian-inhibiting substance resulting in generation of
pseudohermaphrodites [47]. Wnt7a knock-out mice also lose expression of HoxA10 and
HoxA11 in the endometrial stroma, two genes which upon homozygous deletion in mice
provoke failures in the decidualisation process resulting in infertility [46].

Canonical Wnt signalling was also shown to be critical for the development of Müllerian
duct derivatives. Mice harbouring a conditional deletion of β-catenin in the Müllerian duct
mesenchyme display abnormal uteri after birth and largely lack myometrial smooth muscles
upon adulthood [48]. Finally, FZD4 knock-out mice were shown to be infertile since
formation of the corpus luteum is impaired. Expression of luteal cell-specific genes such as
sFRP4 and the LH/hCG receptor was found to be reduced in these mice [49].

With respect to reproduction different FZD receptors (FZD2, FZD4 and FZD6) and Wnt
ligands (Wnt4, Wnt5a, Wnt7a, Wnt7b, Wnt11, Wnt16) were shown to be expressed in the
mouse uterus before and around the time of implantation as well as during stromal cell
differentiation [50]. Expression of most of these genes was highest at implantation (day 5
after fertilisation). Wnt4 and Wnt7b, for example, strongly increase in stromal cells around
the implanting blastocyst and in the luminal epithelium, respectively, suggesting specific
roles associated with the implantation process [50]. Indeed, Wnt4 has been identified as a
critical gene controlling murine as well as human uterine decidualisation since siRNA-
mediated silencing of its mRNA impaired the differentiation process [51]. Wnt4 is a target
gene of the key regulator BMP2 which is induced upon progesterone treatment of uterine
stromal cells [51].
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Other Wnts and FZDs, however, also undergo dynamic changes upon implantation and
decidualisation and were shown to be regulated by steroid hormones in ovariectomised mice
[41,50]. Expression levels of Wnt7a, Wnt7b, Wnt11 and Wnt16 which are significantly
higher in uterine implantations sites compared to non-implantation sites decrease upon
stromal cell differentiation (days 6 and 7 after fertilisation) [50]. Moreover, non-canonical
Wnt receptors such as Ror-2 are expressed in endometrial epithelial and stromal cells of
non-pregnant mice [52]. During pregnancy stromal expression of Ror-2 increased and also
appeared in uterine NK cells which may suggest a role of the receptor in implantation and
regulation of trophoblast invasion, respectively [52].

2.2. Blastocyst development and implantation
Despite the facts that various Wnts, such as Wnt5a and Wnt11 [53] and FZDs are detectable
in the pre-implanting embryo, different approaches demonstrated that canonical Wnt
signalling is dispensable for blastocyst formation. Gene knock-out studies showed that
mutant embryos lacking β-catenin develop into blastocysts [54]. However, maternal delivery
of β-catenin might have compensated for lack of the zygotic protein during the pre-
implantation period. Hence, mice harbouring a conditional deletion of β-catenin in their
oocytes were also utilised demonstrating that lack of both maternal and zygotic β-catenin
does not impair blastocyst development [55]. In addition, inhibition of the TCF/β-catenin
complex through small molecular inhibitors or overexpression of Dkk1 did not negatively
affect blastocyst formation [56]. Hence, it is likely that the diverse zygotic Wnts and FZDs
expressed operate through non-canonical signalling such as the Ca2+-dependent pathway
which was shown to be necessary for pre-implantation development [40].

Whereas β-catenin might be dispensable during the pre-implantation period, blastocyst
activation critically involves the canonical Wnt signalling pathway. Upon mating of mice
with conditional deletion of β-catenin in oocytes with wildtype male fewer embryos develop
as compared to matings with normal mice [55]. In agreement to that, blocking of canonical
Wnt signalling through Dkk1 or small molecular inhibitors impairs blastocyst’s competency
to implant [56]. Along those lines, a shift from non-canonical signalling in the pre-
implantation blastocyst towards canonical signalling in the trophectoderm of activated
blastocyst could be demonstrated [56].

However, canonical Wnt signalling is not only required for blastocyst activation but also for
successful implantation. Indeed, blastocyst attachment was shown to induce TCF/β-catenin-
dependent signalling in circular smooth muscle cells of the myometrium and subsequently in
the uterine epithelium at the site of implantation [57]. This might involve the blastocyst-
derived Wnt7a which upon uterine intraluminal delivery also activates the pathway in the
absence of a zygote [57]. Inhibition of the pathway upon administration of sFRP2 decreased
the frequency of implantation [57].

2.3. Placental development and trophoblast lineage determination
Although activation of canonical Wnt signalling is not required for blastocyst development,
different Wnt ligands could play a role in early trophoblast lineage determination through
non-canonical pathways. Wnt3a, for example, was shown to promote trophectoderm
formation in embryonic stem cells by inducing Cdx2, one of the critical transcription factors
of early trophoblast development [58,59], in an LEF-1-dependent manner [60].

Several in vivo studies demonstrated that Wnt signalling plays a crucial role in
extraembryonic development, particularly in placental vascularisation, chorion–allantois
fusion and labyrinth function. Mice harbouring a homozygous deletion of R-spondin3, a
soluble activator of the canonical Wnt pathway, die around E10 due to defects in the

Sonderegger et al. Page 5

Placenta. Author manuscript; available in PMC 2010 October 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



labyrinth caused by failures in the interaction between chorion and allantois [61]. Similarly,
mice with deletions of both TCF-1 and LEF-1 display severe defects in placenta formation
due to absence of chorionic–allantois fusion [62]. FZD5 knock-out mice did not survive
beyond E10 since their placentae were less vascularised [63]. Also, defects in yolk sac
angiogenesis and reduced endothelial cell proliferation were noticed in these mice. Wnt2-
deficient mice exhibit reduced birthweight and half of the pups die perinatally [64]. Again,
labyrinths of Wnt2 mutant mice show different defects such as oedema, decreased numbers
of capillaries and fibrinoid deposition. Deletion of Wnt7b results in embryonic death around
midgestation due to placental abnormalities [65]. Chorionic trophoblasts lacking Wnt7b do
not express α4 integrin a critical factor required for chorion–allantois fusion suggesting that
the ligand is important for organisation and function of the chorionic cell layer.

Whereas Dkk1 was shown to inhibit implantation, its role in murine trophoblast cell
invasion might be different. In co-cultivation experiments of ectoplacental cones with
decidual cells recombinant Dkk1 promoted whereas Dkk1 antibodies and antisense
oligonucleotides reduced invasiveness [66]. Since Dkk1 inhibited canonical Wnt signalling
in the in vitro system, the pathway may act antagonistically in murine trophoblast cell
invasion.

3. Wnt signalling in human reproductive tissues
Despite the fact that basic research with human material is limited to in vitro studies,
accumulating evidence suggests that Wnt signalling could also play a role in endometrial
and placental function and undergoes changes in endometrial and gestational diseases.
Clearly, Wnt signalling has also been implicated in development and function of ovaries and
their diverse cell types. Since this is out of scope if this particular review presented here, we
would like to refer to other recent summaries on that issue [67,68].

3.1. Endometrium, decidualisation and endometrial diseases
Various investigators identified ligands as well as different Wnt signalling components in
the endometrium suggesting that the pathway could be involved in the diverse biological
roles of human uterine cell types. Wnt2, 3, 4, 5a, 7a, 8b and FZD1, 4, 6 and 10 mRNAs were
detected in endometrial samples and endometrial epithelial/stromal cells using different
molecular techniques [69,70]. Hormonal control of Wnt2, 3, 4, 5a upon estrogen or
progesterone treatment in vitro could not be detected, however, lack of expression was
noticed in different endometrial carcinoma cell lines [69]. Wnt7a, the regulator of HoxA10
and HoxA11 [71], was found to be exclusively expressed on luminal epithelial cells,
whereas sFRP4, Dkk1 and FZD were detectable in uterine glands and/or stroma [70].

Microarray analyses aiming to analyse global gene expression during the menstrual cycle
also revealed expression of mRNAs of the Wnt pathway as well as their potential regulation
through steroid hormones. Dkk1 and Wnt10b mRNAs, for example, were shown to strongly
increase between early and mid-luteal phases [72]. In contrast, sFRP1 and sFRP4 were
found to be downregulated in endometrial samples taken at the time of the LH surge [73,74],
suggesting that the decline of inhibitors of Wnt signalling could be important for human
implantation and/or decidual differentiation. Indeed, sFRP4 could be involved in
endometrial cell proliferation since elevated levels of the inhibitor were noticed in estrogen-
dependent endometrial and breast cancer [75]. Similarly, sFRP1 expression was found to be
associated with endometrial cell growth and elevated mRNA levels were detected in
endometriotic tissues [76]. Since sFRP1 is known to induce angiogenesis, increased
expression could be a critical factor in endometriotic cell proliferation [76]. Others,
however, found a decrease of sFRP1 [77] and sFRP4 [78] in cultivated endometriotic
stromal cells and endometrial carcinoma cells, respectively, and overexpression of sFRP4
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decreased cancer cell proliferation in vitro [78]. Finally, treatment of women with the
antiprogestin RU486 and subsequent DNA chip analyses revealed elevated expression of
sFRP1, Wnt5a, FZD4, 6, 9, 10, β-catenin and Axin-2 [79]. Since RU486 rapidly provokes
endometrial breakdown a role of the Wnt pathway during menstruation and/or endometrial
repair has been suggested [79].

Whereas Wnt3 was found to be elevated in the proliferative endometrium, Dkk1 increased
in the mid-secretory phase and upon in vitro decidualisation of endometrial stromal cells
suggesting a possible role in endometrial differentiation and/or implantation [70,73]. Indeed,
Dkk1 was shown to be specifically upregulated by progesterone in human endometrial
stromal cells, whereas estrogen or cAMP treatment was not effective [80], and progesterone
receptor knock-down decreased expression of the inhibitor [81]. Since progesterone-
dependent induction of Dkk1 also inhibited Wnt signalling [82], it is likely that repression of
the pathway plays a role in decidualisation. Along those lines, TGF-β1, which could play a
role in menstruation, was shown to impair Dkk1 expression in decidualising endometrial
stromal cells [83]. In addition, Dkk1 mRNA expression is lower in endometriotic fibroblasts
compared to normal endometrial fibroblasts which might be associated with a persistent
proliferative potential and impaired decidualisation capacity in endometriosis [77].
Moreover, elevated expression of Wnt7a, Wnt2 and FZD1 was observed in endometriotic
tissues [84,85]. Abnormal activation of the Wnt pathway in the mid-secretory endometrium,
such as persistent expression of activated β-catenin, may also occur in infertile patients with
endometriosis [86].

Recent evidence suggests that estrogen-dependent proliferation may, at least partly, depend
on activated Wnt signalling since the hormone was shown to induce Wnt pathway
components in endometria of estrogen-treated women [82]. This would be in agreement with
the fact that up to 30% of estrogen-associated cancers exhibit nuclear β-catenin expression,
the hallmark of canonical Wnt signalling [81,87]. Accordingly, reduced levels of Dkk1 were
noticed in endometrial carcinomas and treatment of the cells with recombinant Dkk1
inhibited invasiveness in vitro [88].

3.2. Placental function, trophoblast differentiation and gestational disorders
As mentioned above Wnt signalling seems to be required for blastocyst activation and
implantation in mice. Similarly, several studies using different trophoblast cell models
suggest that the pathway could also be critically involved in human trophoblast implantation
and adhesion to maternal uterine tissues. Dkk1, for example, may negatively affect
implantation/adhesion of trophoblast to the endometrium. Treatment of JAR spheroids with
Dkk1 was shown to impair attachment to endometrial-like Ishikawa cells [89]. Incubation of
primary decidualised endometrial stromal cells with trophoblast supernatants provoked
downregulation of Wnt4 and FZD2 [90] suggesting a role of Wnt signalling in trophoblast-
dependent modulation of the decidualisation process.

However, there is also evidence that Wnt signalling could be critically involved in
differentiation of trophoblasts and contribute to malignant transformation of these cells.
Transient loss of components of adherens junctions, i.e. membrane-bound β-catenin and E-
cadherin [91], was noticed in the proximal invasion zone of anchoring villi. Recent studies
performed in our laboratory revealed nuclear β-catenin expression in a considerable number
of invasive trophoblasts in vivo as well as after in vitro differentiation from chorionic villous
explant cultures [92]. Elevated numbers of β-catenin-positive nuclei were detectable in
invasive trophoblasts of complete hydatidiform mole (CHM) placentae suggesting that
abnormal activation of canonical Wnt signalling could play a role in the gestational disease
[92].
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In normal placentae the Wnt-dependent transcription factors TCF-3 and TCF-4 were
predominantly expressed in extravillous trophoblasts (EVT), the latter being almost
exclusively expressed in non-proliferating, p57/KIP2-positive trophoblasts [92]. Hence,
TCF-4 could be an important transcription factor committing and differentiating the EVT
phenotype. Upon stimulation with the recombinant Wnt ligand Wnt3a elevated migration
and invasion of primary trophoblasts and the extravillous trophoblast cell line SGHPL-5 was
noticed [92]. Moreover, the ligand was shown to increase trophoblast outgrowth from
villous explant cultures and activated the canonical pathway as well as AKT in primary EVT
and SGHPL-5 cells [93]. Dkk1 failed to inhibit AKT phosphorylation suggesting that the
canonical LRP-5/6-FZD receptor is not involved in the activation of the particular kinase. In
other cells AKT may induce canonical Wnt signalling by phosphorylation/inactivation of
GSK-3β and subsequent accumulation of β-catenin [94]. However, this cross-talk may not
exist in trophoblasts since chemical inhibition of AKT did neither affect nuclear abundance
of β-catenin nor luciferase activity of a canonical Wnt reporter [93] which would be in
agreement with a very recent report [95]. However, stimulation of both canonical Wnt
signalling and AKT provoked Wnt-dependent secretion of MMP-2 which could be one of
the critical Wnt targets promoting trophoblast invasion [93]. In addition, Dkk1 treatment of
primary trophoblasts and SGHPL-5 cells not only abolished Wnt-induced cell motility but
also reduced basal migration and invasion suggesting expression of endogenous Wnt ligands
[92,93]. Previous descriptive analyses indeed suggested that 14 out of 19 Wnt ligands and 8
out of 10 FZD receptors are expressed in human placenta [96]. Of interest, gestation-
dependent expression of Wnts and FZDs was noticed. Wnt1, Wnt7b, Wnt10a and Wnt10b
were strongly expressed in first trimester trophoblasts but largely absent in term trophoblasts
suggesting that these ligands could play a role in early placental function and differentiation
[96]. Moreover, cell-specific distribution of Wnt ligands could also be observed. Wnt10 and
Wnt10b were highly expressed in first trimester villous cytotrophoblasts but absent from
differentiated EVT or the syncytium suggesting a role in trophoblast proliferation [96].
Primary EVT express canonical as well as non-canonical Wnts indicating that different Wnt
signal transduction cascades may influence trophoblast invasion in an autocrine manner.
Along those lines, promoters of genes encoding Wnt inhibitors such as sFRP2 were shown
to be methylated in first trimester trophoblasts potentially leading to their reduced
expression and activation of Wnt signalling [97]. APC and sFRP2 were found to be
hypermethylated in choriocarcinomas suggesting that inactivation of negative regulators of
Wnt signalling may contribute to trophoblast cancer cell progression [97,98]. JEG-3 and
JAR choriocarcinoma cells also lack Dkk1 suggesting that downregulation of the inhibitor
could also be involved in tumour formation [99]. Overexpression of Dkk1 in these cells
induced apoptosis and growth arrest involving induction of JNK [99].

Wnts may also modulate other trophoblast processes such as phospholipid uptake and
transport. StarD7, a member of the StAR1 lipid transfer proteins, was identified as direct
target gene of TCF/β-catenin in trophoblasts [100]. Moreover, in addition to Wnts other
ligands and receptors may contribute to β-catenin/TCF-dependent signalling in trophoblasts.
Gene silencing of protease activated receptor-1, PAR1, provoked β-catenin destabilisation
and reduced trophoblast motility [101].

4. Conclusions
In conclusion, Wnt signalling has been identified as an essential signalling pathway
promoting murine uterine development, blastocyst activation, implantation, chorion–
allantois fusion and early trophoblast development. In humans, Wnts promote
decidualisation, endometrial function and trophoblast differentiation and changes in Wnt
signalling components were noticed in cancers of reproductive tissues, in endometriosis and
in gestational diseases (summarised in Fig. 3). Despite the fact that activity of the canonical
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Wnt pathway has been identified in human reproductive cell types many open questions
remain. With few exceptions individual functions of different Wnts and FZDs in
endometrial and placental differentiation have not been elucidated. Specific Wnt–FZD
interactions and their downstream targets are largely unknown. Also, the properties of cell-
restricted Wnts and of Wnt-dependent transcription factors, such as TCF-4, during placental
differentiation remain elusive. Moreover, non-canonical Wnt signalling pathways and their
roles in the cycling endometrium, in decidualisation and in trophoblast differentiation have
not been investigated so far. Hence, given the importance of the pathway in development
and disease Wnt signalling in reproductive tissues remains an interesting research area in the
future.
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Abbreviations

APC adenomatosis polyposis coli protein

Bcl9 similar to B-cell lymphoma 9 protein

BMP bone morphogenetic protein

β-TrCP β-transducin repeat-containing protein

CamKII calcium/calmodulin-dependent protein kinase II

CBP CREB-binding protein

CDC42 cell division cycle 42

Cer cerberus

CKI casein kinase I

CRD cysteine-rich domain

Daam1 dishevelled associated activator of morphogenesis 1

Dkk Dickkopf

Dsh Dishevelled

ER estrogen receptor

EVT extravillous trophoblast

FZD frizzled

ERK extracellular regulated kinase

GSK-3β glycogen synthase kinase 3 beta

hCG human chorionic gonadotrophin

HDAC histone deacetylases

IP3 inositol 1,4,5-trisphosphate

Jnk c-Jun N-terminal kinase

LIF leukemia inhibitory factor

LRP low density lipoprotein receptor-related protein

Sonderegger et al. Page 9

Placenta. Author manuscript; available in PMC 2010 October 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



LH luteinizing hormone

MMP matrix metalloproteinase

NF-AT nuclear factor of activated T cells

NLK Nemo-like kinase

PCP planar cell polarity

PKC protein kinase C

PDE phosphodiesterase

PI3K phosphoinositid-3-kinase

PKG cGMP-dependent protein kinase

PLC phospholipase C

Rac Ras-related C3 botulinum toxin substrate

RhoA Ras homolog gene family member A

Rock Rho-associated, coiled-coil containing protein kinase

sFRP secreted frizzled-related protein

TAK1 TGF-β-activated kinase-1

TCF/LEF T cell-specific factor/lymphoid enhancer-binding factor

TGF-β transforming growth factor β

uPAR urokinase plasminogen activator receptor

WIF Wnt inhibitory factor

Wnt wingless
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Fig. 1.
The canonical Wnt/β-catenin pathway. Off-state; in the absence of a Wnt ligand, β-catenin
is bound in a multiprotein degradation complex containing the scaffold protein Axin, the
tumour suppressor gene product APC, as well as the kinases CKI and GSK-3β, among
others. Upon phosphorylation, β-catenin is ubiquitinated by the β-TrCP–E3-ligase complex
and subsequently degraded by the proteasomes. On-state; Wnt ligand associates with FZD
and LRP-5/6 co-receptors. This leads to the translocation of Axin to the plasma membrane
through direct interaction with LRP-5/6 and Dsh/FZD. β-catenin is released from the
multiprotein complex, accumulates in the cytoplasm in a non-phosphorylated form, and
subsequently translocates into the nucleus where it promotes transcription of Wnt target
genes upon binding to TCF/LEF.
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Fig. 2.
Non-canonical Wnt pathways. Wnt/PCP pathway; the Wnt/PCP pathway is characterized
by asymmetric distribution of FZD receptors resulting in cell polarity and the activation of
RhoA/Rock GTPases and JNK through Dsh and DAAM1. Wnt/Ca2+ pathway; activation
of the Wnt-calcium pathway by interaction of Wnts with Frizzled receptors increases the
intracellular Ca2+ level which subsequently activates calcineurin, CAMKII and PKC.

Sonderegger et al. Page 17

Placenta. Author manuscript; available in PMC 2010 October 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 3.
Wnt signalling in human endometrium and placenta under normal and pathological
conditions. A summary on descriptive analyses and functional studies performed in
endometrial and trophoblast cells is shown.
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