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Abstract
A quantitative description of the relationship between protein expression levels and open reading
frame nucleotide sequences (ORFs) is important for understanding natural systems, designing
synthetic systems, and optimizing heterologous expression. Codon identity, mRNA secondary
structure, and nucleotide composition within ORFs markedly influence expression levels.
Bioinformatic analysis of ORF sequences in 816 bacterial genomes revealed that these features
show distinct regional trends. To investigate their effects on protein expression, we designed 285
synthetic genes and determined corresponding expression levels in vitro using E. coli extracts. We
developed a mathematical function, parameterized using this synthetic gene dataset, which enables
computation of protein expression levels from ORF nucleotide sequences. In addition to its
practical application in the design of heterologous expression systems, this equation provides
mechanistic insight into the factors that control translation efficiency. We found that expression is
strongly dependent on the presence of high AU content and low secondary structure in the ORF 5′
region. Choice of high-frequency codons contributes to a lesser extent. The 3′ terminal AU content
makes modest, but detectable contributions. We present a model for the effect of these factors on
the three phases of ribosomal function: initiation, elongation, and termination.
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Introduction
Quantitative description of the factors that determine protein expression levels is central to
understanding natural systems 1, designing synthetic systems 2–3, and optimizing
heterologous expression 4. Protein expression is a complex, multi-step process involving
transcription, mRNA turnover, translation, post-translational processing, and protein
stability. Although much of the information controlling expression levels is encoded in
untranslated regions (UTRs) of bacterial genes 5–6, sequence variation in open reading
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frames (ORFs) also can have profound effects 7–9. The latter is mediated through the
presence or absence of recognition sequences for stimulatory or inhibitory factors such as
RNA-binding proteins 10–11 or non-coding RNAs 12 and, more generally, through variation
of three features: codon identity, levels of mRNA secondary structure, and nucleotide
composition.

A quantitative description of the relationship between protein expression levels and ORF
sequence features has remained elusive. An average ORF in Escherichia coli potentially can
adopt ~10159 iso-coding sequences (this study). Experimental exploration of such enormous
sequence spaces to define the relationship between sequence and protein expression levels is
very challenging 9. Powerful computational algorithms have been developed to solve the
class of huge discrete combinatorial searches that arise in optimizing codon choice, and can
be applied to design synthetic sequences for testing critical sequence features that contribute
to protein expression 13–17. However, before the advent of affordable large-scale DNA
synthesis together with gene assembly automation methodologies 18–19, it has been
impractical to experimentally test large number of synthetic genes. In an effort to address
these issues, we integrated four approaches: we undertook a bioinformatic analysis of
available prokaryotic genomic sequences to identify ORF sequence features that potentially
influence protein expression; developed a gene sequence design program (OrfOpt) that tunes
regional nucleotide composition, codon choice, and mRNA secondary structure to design
synthetic sequences that test critical values and combinations of such features; used gene
assembly automation to construct synthetic genes; and used coupled in vitro transcription
and translation (TnT) in E. coli extracts to measure their protein expression levels.

The genomic frequency distribution of codons that encode the same amino acid is often very
uneven (codon bias), and can differ dramatically between organisms 20. The presence of
infrequently used codons in an ORF can significantly depress protein expression levels 9 and
may even affect the fidelity of translation 21. There has been considerable speculation on the
origin and biochemical consequences of codon bias, including correlation with tRNA
populations 22 and metabolic load 20. Codon biases can affect translational elongation step
rates and ribosomal movement 23, and may provide pausing points during protein folding 24.
Optimization of codon bias is a common strategy to improve heterologous protein
expression using synthetic genes 4. Nevertheless, the importance of codon bias relative to
other factors in optimizing protein expression remains unresolved: one recent study suggests
that codon bias does not correlate well with high levels of heterologous protein expression in
E. coli 7, whereas another identifies it as a critical determinant by controlling the choice of
metabolically available aminoacylated tRNAs 8.

RNA secondary structure at the 5′ end of an ORF also has been recognized to be important
for protein expression, acting through a variety of mechanisms. One effect involves
‘masking’ of ribosome binding sites (RBS) by inverted repeats in the mRNA that cover part
of the ORF itself 25. A second effect involves mRNA secondary structures encoded entirely
within the 5′ end of the ORF, which are likely to hamper loading of the mRNA onto the
ribosome at initiation of translation 26. Bioinformatic analysis indicates that mRNA
secondary structure content decreases toward the 5′ end of genes in several Eubacteria 27.
Furthermore, it has been suggested that absence of secondary structure in the 5′ end of ORFs
is more important than codon choice in determining expression levels 7,28.

There is considerable anecdotal evidence that the AU composition within the 5′ end of an
ORF may also play a role in expression levels 16,23,29–35. Expression patterns of
computationally designed genes with elevated 5′ AU composition suggest that the impact of
this parameter can be profound 16. Nevertheless, the influence of regional nucleotide
composition in ORFs on protein expression levels remains poorly characterized.
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Our bioinformatic analysis of 816 fully sequenced bacterial genomes revealed that there are
two readily discernible canonical ORF sequence features within the 5′ and 3′ ends relative to
the middle regions of ORFs: AU content is elevated, and secondary structure is depressed.
To test the contributions of these features together with high-frequency codon usage, we
developed a computational algorithm that enables their systematic variation in synthetic
gene sequences. We constructed 285 synthetic genes distributed over three proteins differing
in species origin, gene length, and protein fold. We find that the resulting experimental
expression levels can be calculated from the ORF mRNA sequence by a non-linear scoring
function. This function comprises a set of sigmoidal thresholds in which each feature
transitions through a critical region below which it fully or partially inhibits expression,
above which its contribution plateaus, and within which expression levels are sensitive to its
quantitative value. This mathematical model provides important insights into the relative
contributions of the three ORF sequence features: protein expression levels are strongly
dependent on the presence of high AU content and low secondary structure in the N-
terminal segment, and that codon choice contributes when favorable.

The bioinformatic analysis together with the experimental characterization of synthetic
genes and resulting mathematical model provides a quantitative mapping between ORF
mRNA sequence and protein expression levels. This quantitative model has also enabled us
to develop a predictive gene design method that has yielded synthetic ORF sequences with
high levels of protein expression for a variety of proteins (Allert et al., in preparation). Most
importantly, it shows that the properties of the 5′ ORF region play a critical role in
determining bacterial protein expression levels.

Results
Statistical analysis of bacterial ORFs

We analyzed regional nucleotide composition, mRNA secondary structure, and codon
choice in the 2.5×106 ORFs of 816 fully sequenced bacterial genomes that span genomic AT
contents ranging from 25% to 83% (Supplementary Table 1). Computational algorithms and
definitions of the statistical measures are described in Experimental Procedures. The mean
AU content of the first and last 35 base regions within ORFs is significantly higher than the
middle section (Figure 1A). Of the two terminal regions, the 5′ end tends to have a higher
AU bias than the 3′ end. mRNA secondary structure content also shows significant regional
differences, with the two ends having lower mean structural content and higher variance
than the middle (Figures 1C & 1D). Again, the trend is stronger in the 5′ than the 3′
terminus. The trends in these two sequence features are present regardless of genomic
nucleotide composition, but the signal is more pronounced in GC- than AT-rich genomes.
The variances of the nucleotide composition and secondary structure content also is much
higher at the two termini than the middle region (Figures 1B,D). Such increased variance
suggests that some aspect of control might be encoded in these regions: an increased level of
variance in a parameter indicates that genes differ from one another in this respect, as would
be expected for features with regulatory functions.

Codon choices can be quantified as the codon adaptation index (CAI), which varies from 0
to 1, reflecting choice of low- or high-frequency codons respectively 36. Codon frequencies
were calculated over all the ORFs for each genome individually. The means and variances
of CAI values averaged over a genome exhibit a complex, but well-defined pattern (Figure
1E), precluding identification of clear canonical rules governing codon bias by this
approach. The CAI pattern shows some regional variation. At genomic AT contents below
~50%, the 5′ regional CAI tends to be significantly lower than that observed in either the
middle or 3′ regions, which are indistinguishable from one another. The variance of the 5′
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regional CAI values are always higher than that of the other two regions (Figure 1F), again
suggesting the presence of regulatory function in this region.

Construction and expression patterns of synthetic genes in E. coli
Our bioinformatic analysis indicates that regional AU content and secondary structure at the
beginning and end of ORFs are important features that are conserved across bacterial
species. However, this analysis provided no further information on their functional
importance, nor does it provide guidance on codon usage. To test experimentally which
features effect protein expression levels and to assess their relative contributions, we
developed a computer algorithm (OrfOpt; see Experimental Procedures) that enables us to
specify quantitatively all six parameters (AU content in the 5′ and 3′ ORF termini;
secondary structure in 5′, 3′, and middle segments; and the CAI calculated over the entire
ORF) in synthetic genes. We designed and constructed 285 synthetic genes distributed over
three test proteins that vary in size, structure, species origin, and heterologous expression
levels of their wild-type ORF sequences: asparate aminotransferase (~43 kDa, (αβα)-
sandwich, Thermus thermophilus, no expression), fatty acid binding protein (~15 kDa, β-
clam, Gallus gallus, good expression), and triose phosphate isomerase (~28 kDa, (αβ)8-
barrel, Leishmania mexicana, poor-to-no expression). Genes were assembled from synthetic
oligonucleotides by an automated, robust, PCR-mediated gene construction scheme 19. Full-
length linear PCR fragments containing synthetic ORFs flanked by invariant, untranslated
control regions encoding a T7 promoter, ribosome binding site, and T7 terminator were
tested for protein expression using a TnT extract prepared from the E. coli BL21 Star strain.
The in vitro expression approach provides a standard, well-defined set of conditions for
protein expression, which can correlate with in vivo expression levels 37. Furthermore, the
BL21 Star strain lacks the C-terminal portion of RNase E 38, thereby disentangling
complexities associated with endonucleolytic mRNA cleavage 39 within the variable portion
of the designed ORF sequences from effects on translation.

The contributions and interplay of the six parameters are illustrated qualitatively by 42
synthetic alleles (Figure 2 and Figure S1). These alleles were designed using seven different
calculation conditions in which values for the six parameters were targeted individually and
in combination; the values of parameters that were not explicitly targeted were left
unconstrained. The resulting seven conditions were tested in all three proteins. For each
condition in vitro expression levels of two alleles differing by at least 10 iso-codon changes
were evaluated using Coomassie-stained gels. To distinguish between effects on
transcription or translation, we measured radiolabeled RNA levels in the reactions after one
hour (at which point the RNA levels are highest; Fig 2B–D), and found that these varied by
less than 20–30% in two cases (Figure 2F,G) and less than three-fold in the third case
(Figure 2E), whereas protein expression levels in the Coomassie-stained gels showed much
greater variation in all three cases (Figure 2A) suggesting that the differences are due to
effects on translation. The pattern of observations indicates that expression levels are most
strongly influenced by high AU content in the 5′ region, followed in importance by low
secondary structure content. Optimization of the CAI by itself is less effectual. Typically,
the highest expression levels are obtained if all three factors are optimized simultaneously.

To build a dataset that might enable a quantitative mapping to be established between ORF
mRNA sequence and protein expressions, we constructed a total of 285 synthetic genes
(Figure S1, Supplementary Table 2). With exception of the CAI, which was not sampled
below 0.45, ORF features were sampled over a wide range (Figure 3, right column). The
experimental expression levels of all synthetic genes were classified into four categories
determined by inspection of band intensities in 4–12% gradient SDS-PAGE gels: zero (no
band), one (weak band), two (medium band), three (strong band). The intensities of the
strongest bands are comparable across all three proteins, indicating that the categories can be
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compared directly between different proteins. The dataset samples all four experimental
categories (Figure 4B). We found that the experimental observations could not be mapped
well to their corresponding ORF mRNA sequences using linear combinations of the ORF
parameters. We chose to represent each of the six parameters as a sum of two sigmoidal
curves corresponding to penalty (inhibitory) and reward (stimulatory) contributions,
respectively. This function was parameterized against the entire 285 synthetic gene dataset,
using a simulated annealing algorithm with 10,000 independent optimization calculations
(see Experimental Procedures). In addition to obtaining an optimal parameter set, this
ensemble provides a Monte Carlo sampling of near-optimal solutions (Figure 3, left
column). The resulting function (Figure 3, middle column) accurately calculates
experimentally observed expression categories for 69% of the dataset, with the remainder
being calculated to their closest neighboring category (Figure 4A). The highest and lowest
expression levels fit the most precisely (91% and 85% respectively).

The distribution of near-optimal solution values gives an indication of how well the
parameters are determined (Figure 3, left column). The 5′ regional AU content (Figure 3A)
and secondary structure dependencies (Figure 3D) are well determined. The effect of 5′
regional nucleotide composition is very pronounced and centered around a critical point at
53–55% AU content, above which it is strongly stimulatory and below which it is equally
strongly inhibitory. Low secondary structure content in this region is stimulatory, and does
not become strongly inhibitory until high levels are reached. Features in the 3′ region are
less well defined by this dataset. Nevertheless, AU composition has both a reward and
penalty contributions above and below ~57% respectively, but their numerical weights
remain ill determined (Figure 3B). By contrast, 3′ regional secondary structure does not
appear to play a significant role (Figure 3F). Contributions of secondary structure in the
middle region are fairly well determined (Figure 3E): a high structural content has a modest
negative impact, whereas near-absence of secondary structure is moderately favorable. The
contributions of the CAI are qualitatively well determined, but uncertainty regarding the
precise weight of penalty and reward remain (Figure 3C). The CAI can significantly
enhance expression levels if above ~0.8; conversely, if below ~0.5, it is inhibitory although
the precise numerical value of this latter effect is not well determined by our sampling.

The fits for the dependence on regional nucleotide composition and the CAI behave as
thresholds (Figure 3, middle column), in which these parameters below a critical value are
inhibitory (e.g. 5′ nucleotide composition), or do not contribute much (e.g. 3′ nucleotide
composition), and above which their contributions plateau. The effect of transitioning
through a critical value can be very abrupt (e.g. 5′ nucleotide composition), or gradual (e.g.
5′ secondary structure). The overall expression level is the sum of all contributions. For
strongly contributory parameters, such as the 5′ regional nucleotide composition, inhibitory
threshold effects can dominate, even when other parameters adopt favorable values. Such
threshold effects and interplay between parameters are demonstrated by a series of alleles in
which the 5′ regional AU content was systematically varied (Figure 5) while maintaining the
other five parameters close to constant, slightly favorable values (Figure 5A–F). For the
ttAST alleles 52a–53b (Figure 5G top) and the lmTIM alleles 34a–35b (Figure 5G bottom),
there is a sudden increase in expression levels on transitioning from 48.6% to 54.3%
(compare ttAST alleles 52a,b and 53a,b, lmTIM alleles 34a and 34b, or lmTIM 35a and 35b)
as the 5′ regional composition transitions through its critical threshold. The four alleles
lmTIM 36a–37b with 57.1% to 60.0% AU content illustrate that if this threshold is
exceeded, there is not much apparent further gain in expression.

It is difficult to distinguish between changes in nucleotide composition and RNA secondary
structure, because these are inter-related. However, analysis of the ttAST 52a–53b and the
lmTIM 33a–34b alleles, which constitute examples of carefully paired low- and high-
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expression alleles in which N-terminal composition was changed while minimizing changes
in secondary structure as much as possible, suggests that nucleotide composition, not
secondary structure is primarily responsible for the control of protein expression levels by
the 5′ ORF region. The ttAST alleles 52a,b have lower secondary structure content (−82.7,
−94.8; see Supplementary Material), lower AT content (48.6%), and lower expression level
than ttAST 53a,b (−103.3,−117.3; 54.3%). Thus the expression level changes dramatically
(1→3) despite a gain, rather than loss, in secondary structure. The situation for the paired
low- (34b,35b) and high-expression (34a,35a) alleles constructed in lmTIM is less clear,
because a large increase in protein expression (1→3) is accompanied both by a transitioning
through the nucleotide composition critical region (48.6→54.3%), and a slight loss of
secondary structure content (−63.8,−59.2→−45.8,−49.2). However the magnitude of the
loss of secondary structure score in the lmTIM pair (~15), is less than the gain in the ttAST
pair (~20), suggesting that the effects are due to changes in nucleotide composition, not
secondary structure. This dominance of compositional effects over secondary structure
content is also reflected by the contributions of these terms in the expression function,
established using the entire set of synthetic alleles (Figure 3).

Discussion
Our bioinformatic analysis revealed that bacterial genes have distinct regional trends in
nucleotide composition and RNA secondary structure content within the first and last 35
bases of ORFs, which are present regardless of genomic nucleotide composition. Our
experimental analysis of synthetic genes shows that protein expression levels are strongly
dependent on the presence of high AU content and low secondary structure in the 5′ region,
and that choice of high-frequency codons contributes to a lesser extent. Furthermore, we
find that the 3′ regional AU content makes a modest, but detectable contribution to protein
expression, an effect not previously observed.

The size of the synthetic gene data set and the range of values of the parameters enabled us
to develop a mathematical function that calculates protein expression levels from ORF
sequences. The nonlinear character of this equation emphasizes the complexity of the
multifactorial effects, illustrates why it is so difficult to unravel these factors, and further
emphasizes that correlation between protein and mRNA levels should be approached with
caution 40. Even with the use of computer algorithms, we have not been able to obtain many
examples in which variation in one parameter is cleanly separated from changes in others.
We note a few caveats to our approach. First, it is likely that as more data becomes
available, the parameterization of the equation will change. Second, the OrfOpt computer
algorithm addresses neither message transcription levels, nor mRNA lifetimes, nor specific
sequence elements that bind factors which affect protein expression. Finally, the method is
silent on aspects of post-translational processing and physico-chemical properties of proteins
that affect solubility and turnover, as these require optimization of the amino acid sequence.

The universe of mRNA iso-coding sequences is vast, as illustrated by the 10159 variations
that can be encoded by an average ORF in E. coli. It is therefore remarkable that
quantitatively predictive rules which map mRNA ORF nucleotide sequence to protein
expression levels can be obtained in relatively limited experimental explorations of this
sequence space. This achievement indicates that the encoding of the factors determining
expression levels is based on highly degenerate mRNA sequence features, which can be
captured mathematically to a first approximation. Quantitative mapping between ORF
mRNA sequences and protein expression enables the development of computer programs for
the design of synthetic genes optimized for heterologous protein expression, which is an
important goal for biotechnology and synthetic biology 13–17. The success of our approach
is illustrated here by the design of well-expressed genes for Leishmana mexicana
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triosephosphate isomerase and Thermus thermophilus asparate aminotransferase, of which
the wild-type sequences express barely, if at all. The OrfOpt program also has been used
successfully to predict synthetic gene sequences that express a variety of proteins at high
levels (Allert et al. in preparation).

The contributions of the mRNA sequence features in the open reading frame region affect
the three phases of translation: initiation, elongation, and termination 41–43. Initiation
involves the highly regulated loading of mRNA onto the ribosome 26. Similarly, termination
is a carefully orchestrated process, involving recognition of the stop codon by release factors
44. In addition to its practical application in the design of heterologous expression systems,
the equation that predicts expression levels from sequence features may provide mechanistic
insight into factors that control translation efficiency. Its functional form and the numerical
weights of its terms can be qualitatively interpreted in terms of control logic and the
importance of individual factors. Depending on its paramerization (σ, μ, W; see Material and
Methods) a sigmoidal representation encodes different logic, ranging from a switch (very
high sigmoidicity), linear response (no sigmoidicity), to absence of contribution (zero
weight). The penalty and reward components of the function could be interpreted as
representing inhibitory or stimulatory effects.

With these notions in mind, the empirical function linking sequence and protein expression
level (Figure 3, middle column) could be interpreted in terms of a descriptive model for
control of prokaryotic protein expression levels through modulation of basal ribosomal
activity by sequence features within an ORF mRNA. We distinguish between two effects:
passive, inhibiting basal ribosomal activity; and active, stimulating ribosomal activity
through recruitment of extrinsic factors or activation of intrinsic ribosomal function. The
parameterization of the function suggests that compliance of codon choice with available
tRNA populations (set by availability of tRNA transcript 22–23, metabolic control of
aminoacylation 8, and which in this study is approximated by the CAI) provides passive
control: choice of non-compliant codons is inhibitory, and mildly stimulatory only if very
compliant (Figure 3C). Control presumably emerges from the effect of the concentration of
the available tRNAs on the rate of their complex formation with the ribosome. Secondary
structure also exercises largely passive control, with mild stimulatory effects observed only
at low levels of structure (Figure 3D–F). These inhibitory effects presumably arise from the
need to unwind secondary structure as the single-stranded mRNA is threaded through the
ribosome 41–43. By contrast, the effect of nucleotide composition at the 5′ end (Figure 3A),
and, to a lesser extent, at the 3′ end (Figure 3B), appears to have a strong active component,
suggestive of recruitment of an extrinsic or intrinsic stimulatory function.

The critical contribution of the 5′ ORF end has been noted also by others 16,23,29–35. The
interrelationships between nucleotide composition, secondary structure, and codon
compliance remain open to debate and are challenging to dissect. We and others 28 find that
elevated secondary structure in this region tends to diminish protein expression, but that this
effect does not dominate. It has been proposed that choice of low-compliance codons in this
region is a dominant effect universally conserved in all domains of life 23. The hypothesis is
that regional low-compliance codons locally slow down ribosome progress, thereby
regulating downstream traffic and preventing downstream abortive translation events arising
from multiple stalled ribosomes or inter-ribosomal collision. However, regional codon non-
compliance and regional nucleotide composition are inter-related, because one affects the
other. If regional non-compliance is the dominant cause, and nucleotide composition a side-
effect, we should observe regional non-compliance independent of genomic composition,
which in turn should result in AT-rich 5′ regions in GC-rich organisms, and GC-rich 5′
regions in AT-rich organisms. We observe a different pattern, however (Figure 1E): regional
non-compliance is observed only in GC-rich organisms (up to ~50% genomic AT content),
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whereas elevated regional AT can be detected even within AT-rich organisms. This suggests
strongly that it is nucleotide composition which is the dominant factor and codon non-
compliance a side-effect. The latter is observed only in GC-rich organisms where
maintenance of elevated AT-content skews codon choice to non-compliance. We note,
however, that this conclusion is based on the use of the CAI, which is only a crude estimate
of codon compliance; a definitive analysis requires the use of the tRNA adaptation index
used in other studies 22–23 (work in progress).

If nucleotide composition is the primary determinant of the stimulatory properties of the
5′ORF, and, to a lesser extent, the 3′ORF regions, what molecular mechanism(s) could
account for this effect? As we noted above, the nucleotide composition contributions appear
to have the hallmarks of an active rather than passive effect, and therefore are likely to arise
from recruitment of an extrinsic factor, or stimulation of intrinsic ribosomal function. One
possible mechanism could involve binding of RNA helicases which catalyze the unfolding
of secondary structure. Nucleotide composition could encode semi-specific recognition by
such a helicase activity, giving rise to threshold effects through binding events. For instance,
the DEAD-box protein superfamily includes prokaryotic RNA helicases that recognize AU-
rich sequences 45, and in E. coli are involved in the RNA degradosome 39, or ribosomal
RNA maturation 46. DEAD-box helicases play a role in eukaryotic initiation of translation,
but no such function has been reported in prokaryotes 45. The ribosome itself contains an
mRNA helicase activity that acts on a position within eleven bases from the codon that is
being read 47. We hypothesize that local nucleotide composition could influence this
activity. If this is the case, the patterns of nucleotide composition variance observed in all
prokaryotes reflects increased ribosomal helicase activity at the beginning and end of ORFs,
respectively to enhance post-initiation threading of the mRNA into the ribosome, and access
of release factors at termination. The involvement of a composition-sensitive helicase
activity (extrinsic or intrinsic), also could account for the difficulty in separating out
contributions from nucleotide composition and RNA secondary structure. Both factors
contribute to substrate recognition, and the latter additionally determines catalytic
efficiency.

Translation and mRNA unwinding are tightly coupled in the elongation phase 48, accounting
for the observed boost in expression levels observed at low secondary structure content for
the middle segment. The lack of penalty at intermediate structural content again may reflect
RNA helicase activity. The CAI also affects the elongation phase as it tends to reflect the
relative concentrations of available tRNA pool 20. In our TnT reactions, the tRNA
concentrations relative to each other are probably similar to in vivo ratios, because a total E.
coli tRNA extract is added to the reactions, but their absolute concentration is higher than in
vivo levels. Even so, we find that favorable CAI values influence protein expression levels,
but that this effect drops off at values below ~0.8. The lowering of the regional CAI in the
N-terminal region of GC-rich bacteria presumably reflects the dominance of AU content
over CAI at initiation, because in those genomes, AU-rich codons are less frequent and
therefore have a lower CAI.

Regardless of its detailed mechanistic origin, the sequence of the 5′ORF region plays a
dominant role in determining prokaryotic protein expression levels 16,23,29–35. This and
other studies 23,28 have proposed different hypotheses for the underlying molecular
mechanism(s) of this effect, many of which are open to direct experimental testing. We look
forward to learning the answer to this important riddle.
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Materials and Methods
Bioinformatics

Annotated sequence files for 816 complete bacterial genomes were downloaded from
http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi. Custom software was developed to
calculate nucleotide composition, RNA secondary structure, and codon adaptation indices.
Limits for the open reading frames were taken from the annotations in the genome sequence
files. Regional nucleotide composition is calculated as the ratio of A and T content in the
region relative to the segment length. RNA secondary structure is represented by a scoring
function based on inverted repeats in a region, weighted by their base-pairing character, and
loop or bulge sizes. This score was calculated by centering a recursive search of maximally-
sized inverted repeats within 100 bp from a given nucleotide; duplexes are allowed to
contain 10 bp bulges, 10 bp gaps, and a maximum 30–base loop. The score for such a
maximally-sized inverted repeat is determined using stem-loop base-pairing energies 49–50

and assigned to each nucleotide encompassed within the calculated stem-loop. The
secondary structure score of a region is the summed score for all stem-loops assigned to
each base, normalized by the region length. Codon adaptation indices 36 are calculated
according to codon tables constructed independently for each genome as the frequency
distribution of codons in that genome. The CAI value for an ORF or region is the geometric
mean of all the codons in such segments. Arithmetic means and standard deviations for
genomic CAI values are calculated over the CAI values determined for each ORF in a
genome. The number of possible iso-coding sequences for an ORF is calculated as the sum
of the logarithm of the number of possible codons at each position. The mean genomic iso-
coding sequence diversity is the arithmetic mean of the diversities of all the ORFs.

Computational design of synthetic ORF sequences
A simulated annealing algorithm was used to minimize an objective function capturing
sequence features of interest within the available degrees of freedom in the ith trial Ei = Σν
wrνr + Σs wrsr + cwc where νwr, swr are the relative weights assigned regional nucleotide
composition (νr) and RNA secondary structure (sr) respectively (r: 5′, middle, 3′); cw, c are
the ORF codon adaptation index weight and value, respectively. For minimizations in which
only subsets of parameters were optimized, the weights for the unconstrained parameters
were set to zero. Two types of calculations were run: absolute minimization of the objective
function, or achievement of a target value. For target value optimization, the objective

function was modified to  where it represents weights, pi the parameters,
and ti the target values. Sequence trial configurations were generated by randomly choosing
two iso-codons per trial. At the beginning of the simulation, a cut-off of 0.45 was applied to
remove low-frequency codons (this is the reason why synthetic ORFs with low CAI values
were not sampled). Alleles were generated by maintaining a dynamic list of ~100 sequences
differing by at least 10 mutations from the current best sequence and each other. A dynamic
cooling schedule was used to drive the simulated annealing progress: to determine whether
the ith trial is acceptable, ΔEi = Ei − Ei−1 was calculated and i accepted either if ΔEi ≤ 0 or
in a Boltzmann decision if pi < e−ΔEi/T where pi is a random number [0,1] and T a control
parameter. After 1,000 trials, the acceptance rate r was assessed, and T changed if r >
0.250,Tn+1 = 0.8Tn or r < 0.225, Tn+1 = 1.3Tn.

Final outcomes of such minimizations are critically dependent on the choice of weights. We
used two approaches to address this problem. In one method we assigned weights
empirically in a successive number of trial and error calculations. In a second method we
developed a new Boltzmann decision scheme that circumvents the issue of weights and
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enables parameters with different numerical magnitudes to be combined. In this method, we
used three independent Boltzmann decisions for each of the parameter classes, respectively,
resulting in a ‘vote’ vi = νβi+sβi+cβi where βi = {1,0} and captures the outcome of a
Boltzmann decision for a given parameter class (ν, regional nucleotide composition; c,
codon preference; s, regional secondary structure). Unanimous votes (vi = 3) are always
accepted; majority votes (vi = 2) are accepted half the time, and minority rule (vi=1) is
accepted only if the overall acceptance rate has dropped below a 5% threshold value.
Between two and 20 runs were executed in parallel on a Beowulf cluster and merged to
construct the final set of alleles. All synthetic ORFs were optimized within the context of the
invariant 5′ and 3′ UTR regions. The resulting sequences were fed into an automated
experimental gene assembly pipeline (see below).

Parameterization of a function that predicts protein expression levels from ORF sequence
We developed a function in which an expression score is given as a sum of a series of
thresholds applied to the composition, structure, and codon usage values of a sequence E =
τν(5′)+τν(3′)+τs(5′)+τs(middle)+τs(3′)+τc where τν, τs are regional thresholds of nucleotide
composition and structure respectively, and τc, the CAI threshold. A given threshold score
for a feature value x is the sum of two sigmoids τ = Wp(1 + e−3(x−μp)/σp)−1 + Wr(1 +
e−3(x−μr)/σr)−1 where p and r denote parameters for penalty and reward phases, respectively;
W, weight, μ midpoint, σ sigmoidicity of each curve. The final value of the scoring function
is the sum of all six components, and is mapped onto the expression level categories as ≤
−100→0 (no expression), [−100, 0]→1 (weak expression), [0,100]→2 (medium
expression), >100→3 (high expression). Parameters were fit as a minimization of the sum of
the absolute differences between observed and calculated expression categories using a
simulated annealing algorithm.

Oligonucleotide synthesis and synthetic gene assembly
Full-length genes (0.65 – 1.40 kb) encoding a synthetic ORF flanked by 5′ (122 or 131 bp)
and 3′(103 or 112 bp) regulatory regions were assembled from oligonucleotides (80 – 100
bases) synthesized in-house (Mermade 192 DNA Synthesizer, BioAutomation) using an
automated PCR-mediated gene assembly procedure 19,51. Full-length products were verified
by agarose gel electrophoresis and reamplified with biotinylated flanking primers that
provide some protection against endogenous exonuclease activity in the subsequent TnT
reaction. Oligonucleotide synthesis and ORF assembly are detailed in the Supplementary
Information.

In vitro coupled transcription and translation reactions
We used a TnT system based on the PANOxSP E. coli S30 lysate system 52–53. Lysate was
prepared from BL21 Star (DE3) E. coli cells (Invitrogen) grown to mid-log phase in shaking
culture flasks, rinsed of medium, flash-frozen, thawed, lysed in a French press, centrifuged
to remove cellular debris, and incubated to facilitate a ‘run-off’ of any mRNA still bound to
ribosomal complexes. The lysate was dialyzed, centrifuged to remove precipitate, and stored
in flash-frozen aliquots. Reactions were initiated by adding biotinylated linear PCR template
(1 μg per 100 μl reaction) to the lysate with magnesium glutamate, ammonium glutamate,
potassium glutamate, ribonucleotide triphosphates, folinic acid, total E. coli tRNAs, amino
acids, phosphoenolpyruvate, nicotinamide adenine dinucleotide, coenzyme A, oxalic acid,
putrescine, spermidine, and rifampicin. The components were mixed gently by repeated
pipetting and incubated for 5 hours at 30°C, 500 rpm, in a RTS ProteoMaster (Roche), in
reaction tubes sealed with Air Pore membrane (Qiagen). After incubation, expressed protein
was purified by affinity chromatography (see below). Additional details can be found in the
Supplementary Information.
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Purification of proteins encoded by synthetic genes
All proteins were constructed with a C-terminal hexahistidine fusion and purified using
EZview Red HIS-Select HC Nickel Affinity Gel (Sigma Aldrich). A suspended gel slurry of
50 μl was washed with 1 ml loading buffer (20 mM MOPS, 7.5 mM imidazole, 500 mM
NaCl, pH 7.5). Completed TnT reactions (25, 50, or 100 μl) were combined with the affinity
gel and 1 ml loading buffer, captured at 4°C for 1 hour rotating end-over-end in a Mini
LabRoller (Labnet International), washed with loading buffer (1 ml twice), and eluted with
100 μl elution buffer (20 mM MOPS, 400 mM imidazole, 500 mM NaCl, pH 7.5) incubating
for 30 minutes at 4°C (rotating end-over-end). Each sample was concentrated using
Vivaspin 500 centrifugal concentrators (Sartorius Stedim, 5 kDa molecular weight cut-off;
pre-incubated with 2 mg/ml bovine serum albumin in PBS buffer for 12–16 hrs at 4°C, and
washed with water before use) by centrifugation at 13,500 g for 10–15 minutes. The entire
final volume (~25 μl) was loaded onto one lane of a SDS-PAGE gradient gel (NuPAGE 4–
12% Bis-Tris, Invitrogen); the gel was stained with GelCode Blue Stain Reagent (Thermo
Fisher Scientific). Poly-histidine tagged GFP template was included in each experiment as a
positive expression and purification control; a reaction without added DNA template was
used as a negative control. The seven condition experiments (Figure 2, Figure S1) for all
three scaffolds were tested in at least three independent experiments and the majority of the
other synthetic genes were tested in at least two independent experiments.

Protein identification by mass spectrometry
Liquid chromatography (LC) – tandem mass spectrometry (MS/MS) was used to confirm
protein identity by analysis of peptides generated from in-gel tryptic digests. Samples were
prepared according to the in-gel digestion protocol available at
http://www.genome.duke.edu/cores/proteomics/sample-preparation/. Approximately half of
the sample from each gel band was analyzed on a nanoAcquity LC and Synapt HDMS
system (Waters Corporation) using a 30 minute LC gradient, with the top three precursor
ions from each MS scan selected for MS/MS sequencing. Raw data was processed using
Mascot Distiller v2.0 and searched against the Swiss-Prot database (v57.11) using Mascot
v2.2 (Matrix Sciences), allowing for fixed modification of Cys (carbamidomethylation) and
variable modification of Met (oxidation). Scaffold (v2.6) software was used to analyze the
data. Sequence coverage obtained from this analysis for each of the proteins is shown in
Figure S2.

Determination of mRNA levels
mRNA levels were determined by addition of 10 μCi of α-labeled rATP (Perkin Elmer) to a
TnT reaction. Aliquots (10 μl) were removed and mixed with 100 μl Trizol (Invitrogen),
incubated (5 minutes, room temperature), followed by addition of 20 μl chloroform (3
minutes at ambient temperature), vortexing (15 seconds), centrifugation at 12,000 g to
separate phases (15 minutes), and aspiration of the RNA-containing aqueous phase which
was subsequently passed through a NucAway Spin Column (Applied Biosystems) to remove
unincorporated label. The resulting ~50 μl eluate was mixed with 200 μl of OptiPhase
SuperMix scintillation cocktail (Perkin Elmer) and label incorporation was measured in a
MicroBeta Trilux scintillation counter (Perkin Elmer). To determine an optimal assay time
point, a time course was constructed for representative poorly and highly expressing DNA
templates for each of the three proteins. Near-maximal label incorporation was observed at
one hour; this time point was used subsequently to characterize the RNA levels of the
alleles.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genomic averages and variances of regional ORF nucleotide composition, RNA
secondary structure, and codon adaptation index
All parameters are shown as mean values and variances calculated over all ORFs within a
genome. Blue, 5′ ORF region (first 35 bases); red, middle region; green, 3′ ORF region (last
35 bases). Circles indicate the values of these parameters calculated for E. coli strain K-12
DH10B. (A) Mean ORF regional nucleotide composition is reported as the ratio of the
composition of that region to that of the genome average. (B) Variances of the mean
genomic regional nucleotide compositions. (C) Mean ORF regional secondary structure
content is reported as the ratio of a region relative to the genome average. (D) Variances of
the mean ORF regional secondary structure content. (E) Mean regional codon adaptation
indices. (F) Variances of the regional genomic CAI values.
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Figure 2. Experimental expression levels of synthetic genes determined using E. coli coupled in
vitro transcription and translation reactions
(A) Synthetic genes were designed by optimizing CAI, mRNA secondary structure, and 5′
ORF regional nucleotide composition singly or in combination giving a total of seven
conditions. For each condition, the expression pattern of two alleles differing by at least 10
mutations are shown. Three proteins differing in size, structure, origin and expression of
wild-type ORF sequences were used: asparate aminotransferase (ttAST), fatty acid binding
protein (ggFABP), and triose phosphate isomerase (lmTIM). Proteins were purified from
coupled in vitro transcription and translation (TnT) reactions using immobilized metal
affinity chromatography and run on 4–12% SDS-PAGE gradient gels. Green florescent
protein template was included as a positive control for protein expression levels and an
extract without added DNA as a negative control. Observed expression levels were
classified into one of four categories (blue numbers: 0, no band; 1, weak band; 2, medium
band; 3, strong band). Full gel images are shown in Figure S1. The identity of the observed
protein band was verified by mass spectrometry for each of the three proteins in the first
allele of the optimization condition 7 (Figure S2). (B–D) Time course of radiolabeled RNA
in TnT reactions containing a high- (black) and low- (grey) expression level allele
(background of a reaction without added DNA was substracted): ttAST (B), ggFABP (C),
lmTIM (D). (E–G) Total radiolabeled RNA at one hour using one allele for each condition
presented in panel A and the wild-type sequences: ttAST (E), ggFABP (F), lmTIM (G).
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Figure 3. Parameterization of a mathematical function that calculates protein expression levels
from ORF sequence
The function is the sum of six pairs of sigmoids representing reward and penalty
contributions of 5′ (A) and 3′ (B) ORF regional AU composition, the ORF codon adaptation
index (C), 5′ (D), middle (E) and 3′ (F) ORF regional secondary structure content. The score
of each component ranges [−200,200]; their sum is mapped onto the protein expression
category as <−100→0 (no expression), [−100,0]→1 (low), [0,100]→2 (medium), >100→3
(high). Left column: density plot of the distribution of sigmoids in the ensemble of near-
optimal solutions. False coloring indicates how many sigmoidal curve segments pass
through a region (magenta, none < blue < green < yellow < red, high). These distributions
give an indication of the uncertainty in the parameter set. For instance, although there are
many solutions for the 3′ ORF regional composition (B), it is clear that all have a penalty
(lower-left quadrant) and reward (upper-right quadrant) with a critical transition centered at
~56% (red peak). Middle column: sigmoids of the parameters set that best fits the data (grey
area: penalty score values). Right column: distribution of parameters in the experimental
dataset (note that for the C-terminal segment there are 29 alleles with secondary structure
scores <−500, which are not shown).
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Figure 4. Correlation between observed and calculated protein expression levels
(A) correlation between calculated and observed expression levels. The frequencies are
normalized to 1 within each predicted category. For 69% of the data calculated and observed
expression categories are accurately calculated (diagonal). The remainder is usually off by
only one expression level category; (B) distribution of observed protein expression levels (0,
no expression; 1, low expression; 2, medium expression; 3, high expression).
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Figure 5. The effect of varying N-terminal AU content in the presence of (near-) constant other
parameters
Eight alleles of ttAST (50a–53b; G, top) and ten alleles of lmTIM (33a–37b; G, bottom)
were constructed in which the 5′ regional composition was varied from 31% to 60%AU
content (E); while keeping the other five parameters near-constant in a range where they
have little effect on the predicted expression score (A–D, F). Panels A–F show the range of
values (red rectangles or circles) of the six parameters for the eighteen alleles, mapped on
the scoring function parameterized by the optimal global fit (see Figure 3). Panel G shows
the expression levels (blue numbers) of the eighteen alleles (identity indicated at the top of
each lane; see Supplementary Table 2 and Supplementary Figure S1) determined in
Coomassie-stained gels. The curves above each lane indicate the mapping of the allelic 5′
regional AU content (shown as percentage at the bottom of each lane) onto the scoring
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function for this parameter (blue line). Mapping of the allelic values is shown for two
critical points: red dots, 55% AU content, obtained from the optimal global fit of all the data
(see Figure 3A, middle); green dots, 53% AU content, corresponding to the lower limit
observed in the range of near-optimal fits (see Figure 3A, left). The latter value exhibits a
clear threshold transition for these alleles in these two proteins. In addition to illustrating the
effect of transitioning through a threshold, these results show that the value of the nucleotide
composition critical point is not yet determined precisely (2% uncertainty).
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