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Summary
Overexpression of plasminogen activator inhibitor-1 (SER-PINE1, PAI-1), the major physiological
inhibitor of pericellular plasmin generation, is a significant causative factor in the progression of
vascular disorders (e.g. arteriosclerosis, thrombosis, perivascular fibrosis) as well as a biomarker and
a predictor of cardiovascular-disease associated mortality. PAI-1 is a temporal/spatial regulator of
pericellular proteolysis and ECM accumulation impacting, thereby, vascular remodeling, smooth
muscle cell migration, proliferation and apoptosis. Within the specific context of TGF-β1-initiated
vascular fibrosis and neointima formation, PAI-1 is a member of the most prominently expressed
subset ofTGF-β1-induced transcripts. Recent findings implicate EGFR/pp60c-src→MEK/ERK1/2
and Rho/ROCK→SMAD2/3 signaling in TGF-β1-stimulated PAI-1 expression in vascular smooth
muscle cells. The EGFR is a direct upstream regulator of MEK/ERK1/2 while Rho/ROCK modulate
both the duration of SMAD2/3 phosphorylation and nuclear accumulation. E-box motifs (CACGTG)
in the PE1/PE2 promoter regions of the human PAI-1 gene, moreover, are platforms for a MAP
kinase-directed USF subtype switch (USF-1→USF-2) in response to growth factor addition
suggesting that the EGFR→MEK/ERK axis impacts PAI-1 expression, at least partly, through USF-
dependent transcriptional controls. This paper reviews recent data suggesting the essential
cooperativity among the EGFR→MAP kinase cascade, the Rho/ROCK pathway and SMADs in
TGF-β1-initiated PAI-1 expression. The continued clarification of mechanistic controls on PAI-1
transcription may lead to new targeted therapies and clinically-relevant options for the treatment of
vascular diseases in which PAI-1 dysregulation is a major underlying pathogenic feature.
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PAI-1 and cardiovascular disease
PAI-1 (SERPINE1) is the major physiologic regulator of the plasmin-based pericellular
proteolytic cascade, a modulator of vascular smooth muscle cell (VSMC) migration and a
causative factor in tissue fibrotic and cardiovascular disease (1–9) (Fig. 1). In-vivo studies in
PAI-1-null mice confirmed the role this SER-PIN in arteriosclerosis and vascular fibrosis(2,
3,10–12). More-over, transgenic animals engineered to overexpress PAI-1 spontaneously
develop arterial thrombosis and perivascular fibrosis as a function of age (13) consistent with
the emergence of PAI-1 as a significant biomarker and predictor of cardiovascular disease-
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related death (14,15). PAI-1 expression is also linked to neointimal expansion, as development
of a VSMC-rich neointima is significantly reduced in PAI-1−/− mice (compared to wild type
counterparts) in response to oxidative stress-mediated vessel injury and in the balloon-
catheterized carotid artery (6,16,17). The decrease in neointima formation is particularly
striking in the context of combined ApoE/PAI-1 deficiency (8,16). Such findings in animal
models of vascular injury have relevance to recent clinical observations. Indeed, post-
transluminal coronary angioplasty PAI-1 activity was significantly greater in patients with
restenosis compared to those without clinical recurrence (18). The actual role of PAI-1 in
VSMC accumulation, however, is likely to be complex. Transgenic overexpression of PAI-1
in VSMC (using a SM22 promoter) promotes smooth muscle proliferation through FLIP-
mediated activation of the ERK1/2 and NF-κB pathways (19). There is also considerable
evidence that PAI-1 expression actually protects VSMC from plasmin-induced apoptosis/
anoikis (e.g. [20,21]), likely by suppression of caspase-3 activation (22,23), suggesting that
PAI-1 modulation of neointimal growth is a consequence of both increased proliferation and
reduced apoptosis. Plasmin-mediated VSMC apoptosis both within the aortic wall or in culture
is initiated by plasminogen activation (by either tPA or uPA) and is effectively impaired by
PAI-1 (24,25). Furthermore, VSMC isolated from PAI-1−/− mice are extremely sensitive to
plasminogen-induced apoptosis compared to wild-type, tPA−/− or uPA−/− VSMC reflecting a
>10-fold increase in conditioned medium plasmin activity (23,24). This anti-apoptotic effect
of PAI-1 is not restricted to VSMC or to plasminogen-initiated cell death. PAI-1 effectively
inhibited both spontaneous and camptothecin-induced apoptosis in human prostate cancer and
promyelocytic leukemia cell lines (26) and rescued human keratinocytes from plasminogen-
mediated loss of cell viability (27). PAI-1 may also have anti-adhesive and pro-apoptotic
activities, at least in the setting of vascular cell attachment to vitronectin, a matrix constitutent
on which PAI-1 affects adhesion via the proximity of uPAR/integrin binding sites in the SMB
domain (28,29).

TGF-β1 and PAI-1: Links to vascular disease progression
The available data in vascular and non-vascular cells strongly suggest that induced PAI-1
expression occurs as part of a primary response to fibrogenic growth factors, among the most
prominent of which is TGF-β1 (30–33) (Fig. 1). Indeed, TGF-β family members are
fundamental in the pathogenesis of several cardiovascular and vascular fibrotic diseases
including hypertension, pathogenic restenosis, atherosclerosis and cardiac hypertrophy/
fibrosis by impacting the expression of disease-relevant genes (e.g. PAI-1, connective tissue
growth factor) (34–37). TGF-β1-induced neointimal growth is effectively suppressed by PAI-1
ablation implicating PAI-1 as a major target of TGF-β-associated vascular pathology in vivo
(31,38,39) stimulating interest in the TGF-β/PAI-1 expression control axis as a potential
therapeutic opportunity. TGF-β ligand neutralizing antibodies, soluble TGF-βRII receptor
constructs, TGF-β type-1 receptor (ALK5) inhibitors, TGF-β/PAI-1 antisense/siRNA-based
therapies and small molecule PAI-1 inhibitors (e.g. TM5007, ZK4044, PAI-039) are currently
in either preclinical or phase I evaluations (e.g. [40–46]). The consistent implication of PAI-1
andTGF-β1 in neointima formation and vascular fibrosis (6,16,30,31,47–49) supports the
likelihood that clarifying the signaling network underlying TGF-β1-induced PAI-1 expression
may well provide novel, perhaps selective, targets to address TGF-β/PAI-1-dependent
cardiovascular disease.

Role of src kinase/EGFR signaling inTGF-β1-induced PAI-1 expression in
vascular smooth muscle cells

TGF-β1 stimulation of quiescent VSMC results in phosphorylation (at Y416) of the non-
receptor tyrosine kinase pp60c-src and the rapid activation of the epidermal growth factor
receptor (EGFR) atY845 (a src-target residue) (37,50). EGFRY845 phosphorylation is
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specifically dependent on the catalytic activity of c-src (51). Indeed, pretreatment with the
highly specific src family kinase inhibitor SU6656 effectively blocked TGF-β1-stimulated
EGFRY845 phosphorylation; pEGFRY845 activation in response to TGF-β1, moreover, was
detected in wild-type fibroblasts but not in their counter parts genetically deficient in the src
family kinases c-src-, c-yes-, c-fyn (SYF−/−/− cells) (37). Demonstration of c-src/EGFR
complexes in the EGFR-overexpressing A431 cell line as well as inTGF-β1-stimulated VSMC
established linkage between src family kinases and the EGFR (50,52,53). The functional
significance of such interactions, at least with regard to the PAI-1 response to TGF-β1, was
confirmed using a molecular genetic approach. A DN- pp60c-src construct completely blocked
TGF-β1-initiated PAI-1 induction while TGF-β1 failed to stimulate PAI-1 expression in
SYF−/−/− fibroblasts; importantly, PAI-1 expression was restored in SYF−/−/− cells engineered
to re-express a wild-type pp60c-src construct (37). While the mechanism of src regulation in
response toTGF-β1 is uncertain, p130CAS is involved in src kinase signaling (54) and the
adaptor protein Shc, specifically the p66 and p52 isoforms, is important for both src activation
and formation of (Shc-dependent) EGFR/c-src complexes (55–57). Another model suggests
that c-src associates with the EGFR upon ligand binding via interactions between the c-src
SH2 domain and the EGFRY992 residue resulting in EGFRY845 phosphorylation and initiation
of downstream events (51). Regardless of the precise mechanism, pharmacologic blockade of
EGFR signaling (withAG1478), use of site-specific dominant-negative (DN) or mutant EGFR
constructs (e.g. kinase-dead EGFR K721A, EGFRY845F) and genetic ablation of EGFR1
effectively inhibited TGF-β1-initiated PAI-1 transcription confirming participation of the
EGFR in PAI-1 gene control (37). Although the EGFRY845F mutant is an EGF-responsive
kinase with retention of at least some downstream signaling ability (58), it is, nevertheless, an
effective inhibitor of EGF-/transactivating agonist-induced DNA synthesis, indicating that
Y845 is required for mitogenesis (51,59). Since the EGFRY845 site regulates several distinct
signaling pathways (reviewed in [51]), the requirement for both a functional EGFR and, in
particular, an intact Y845 residue in TGF-β1-initiated signaling strongly suggests that the
EGFRY845 residue constitutes a platform for bifurcation of downstream events with specific
impact on TGF-β1-induced PAI-1 transcription. TGF-β1 stimulated ERK1/2 phosphorylation,
moreover, in EGFR+/+ but not EGFR−/− cells consistent with prior observations that TGF-β1-
dependent ERK1/2 activation is downstream of EGFR signaling (32).

Involvement of Rho/ROCK signaling in PAI-1 expression inTGF-β1-simulated
vascular smooth muscle cells

EGFR−/− as well as SYF−/−/− fibroblasts are fully capable of responding to exogenous TGF-
β1 as SMAD2/3 are effectively phosphorylated in both wild-type and EGFR−/− fibroblasts.
Similarly, TGF-β1-induced SMAD2 phosphorylation is not altered by EGFR blockade either
pharmacologically (with AG1478) or molecularly (by expression of EGFRKD or
EGFRY845F) (37). While the MEK inhibitors U0126 and PD98059 completely blocked TGF-
β1-induced PAI-1 expression as well as ERK1/2 phosphorylation(32), SMAD2 activation was
not impacted (37). Collectively, these data indicate that SMAD2/3 are efficiently
phosphorylated in response to TGF-β1 in both EGFR+/+ and EGFR−/− fibroblasts as well as
SYF−/−/- cells, suggesting that TGF-β1-directed SMAD2 phosphorylation (at the carboxy
terminus) is EGFR/MEK-independent. Indeed, recent data clearly indicates that TGF-β1
stimulates PAI-1 expression through two distinct but cooperating pathways that involve EGFR/
pp60c-src→MEK/ERK signaling and EGFR-independent, but Rho/ROCK-modulated, TGF-
βR-directed SMAD activation (37). Rho/ROCK are critical elements in the progression of
cardiovascular disease (reviewed in[60–62]) particularly in the context of TGF-β1-induced
vascular fibrosis (34). Balloon injury-induced neointima formation is, in fact, suppressed by
Rho/ROCK inhibitors (63) and angiotensin II-induced perivascular fibrosis in ROCK+/− mice
is significantly reduced compared to wild-type littermates (64). Importantly, PAI-1 expression
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in response to various other fibrogenic stimuli (e.g. C-reactive protein, hyperglycemia) is also
largely Rho/ROCK mediated suggesting that targeting this pathway may have multi-level
therapeutic implications (65–67). Activation of RhoA in response to TGF-β1 preceded optimal
PAI-1 induction; pretreatment with C3 transferase, transfection of a dominant-negative RhoA
(DN-RhoAN17) construct or incubation with the ROCK inhibitor Y-27632 ablated PAI-1
induction in response to TGF-β1 (37) similar to the requirements for smooth muscle α-actin
and connective tissue growth factor expression (68,69). Recent findings suggest a more
complex control of SMAD function by members of the small GTPase family than may have
been previously appreciated. While TGF-β1 receptors phosphorylate SMADs downstream of
growth factor engagement, the Rho/ROCK pathway modulates the duration of SMAD2/3
phosphorylation (37). How Rho/ROCK impactTGF-β1-initiated SMAD2/3 activation and sub-
cellular localization is not known but this pathway may function to provide efficient SMAD2/3
activation for extended periods impacting, thereby, SMAD-dependent transcriptional
regulation of target genes including PAI-1 (70–72). Alternatively, Rho/ROCK signaling may
be required to inhibit negative regulation of SMAD2/3 function via the inhibitory SMAD7 or
by inactivation of SMAD phosphatases (e.g. PPM1A) sustaining, thereby, SMAD2/3
transcriptional actions (e.g. [73,74]).

Cooperative SMAD and non-SMAD factors mediate PAI-1 gene induction
byTGF-β1 in vascular smooth muscle cells

While SMAD2/3 activation may be necessary it is not sufficient for TGF-β1-stimulated PAI-1
expression in the absence of EGFR signaling. One model consistent with the available data
(29,32,37,50,75,76) suggests that SMADs and specific MAP kinase-targeted transcription
factors occupy their separate binding motifs at the critical TGF-β1-responsive PE2 region E
box in the human PAI-1 promoter (29,32,77–79). Indeed, the available data strongly suggest
that complex formation at the PE2 site requires cooperative signaling by the EGFR→ERK
(USF) and Rho/ROCK (SMAD) pathways (Fig. 2). A similar required E-box motif (CACGTG)
maps to the expression-regulating HRE-2 region in the rat PAI-1 promoter (80). Extract
immunodepletion and super-shift/complex-blocking experiments confirmed one PAI-1 E box-
binding protein to be USF, a member of the basic helix-loop-helix-leucine zipper (bHLH-LZ)
family of MYC-like proteins (75,77). Dominant-negative interference with USF DNA-binding
ability significantly reduced TGF-β1-mediated PAI-1 transcription (29,32,79). Since MAP
kinases regulate the DNA-binding and transcriptional activites of USF (32,76), TGF-βR
signaling through SMAD2/3 may actually cooperate with EGFR/MEK-ERK-activated USF to
attain high level PAI-1 expression (50,76). SMADs can interact with other E box-binding HLH-
LZ factors such as TFE3 at the PE2 site in the PAI-1 gene at least in one cell type (72). There
is evidence, in fact, to suggest that such interacting complexes impact PAI-1 gene control since
USF occupancy of the PAI-1 PE2 region E-box site, which is juxtaposed to three SMAD-
recognition elements, modulates transcription in response to TGF-β1 or serum (29,32,37,79).
Such potential promoter-level co-operativity is supported by the realization that SMADs
interact rather weakly with their SMAD-binding elements and that interactions with other
factors are necessary to initiate gene expression. Recruitment of this multicomponent complex
likely requires participation of the TGF-β1-stimulated EGFR→MEK/ERK and Rho/ROCK
pathways for the optimal response of the PAI-1 gene to TGF-β1. This has significant
cardiovascular implications as USF levels increase early after balloon injury to the carotid
artery (81) where it regulates expression of pro-atherogenic genes including osteopontin (81,
82) and PAI-1 (6,18) as well as genes involved in the etiology of familial combined
hyperlipidemia and the metabolic syndrome (83).

Recent findings have highlighted the increasing complexity of SMAD-non-SMAD protein
interactions in TGF-β1-dependent PAI-1gene control. Members of the p53 family are critical
elements in a subset of TGF-β1 responses due, at least in part, to the ability of MAP kinase-
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phosphorylated p53 to bind SMAD2, forming transcriptionally active multi-protein complexes
(84–86). DNase I fooprinting/methylation interference and oligonucleotide mobility shift
analyses confirmed that p53 binds to a recognition motif in the PAI-1promoter (87). DNA-
binding activity was associated with both p53 sequence-driven reporter gene transcription and
induced expression of the endogenous PAI-1 gene likely utilizing the two p53 half-sites (AcA-
CATGCCT, cAGCAAGTCC) at −224 to −204 bp relative to the transcription start site (88).
TGF-β1-induced expression is significantly attenuated in cells in which p53 levels are reduced
by siRNA (85) and, in p53-deficient lung tumor cells that express little or no PAI-1, engineered
re-expression of p53 rescues both basal and inducible PAI-1 expression (89). One mechanism
suggests that p53 interacts with SMAD2 (90). In TGF-β1-stimulated cells, binding of USF to
the PE2 site, which is juxtaposed to three SMAD-binding elements, may facilitate DNA
bending. Phasing analysis revealed that certain bHLH-LZ of the MYC family (including USF)
orient the DNA bend toward the minor groove (91), which could potentially promote
interactions between p53, bound to its downstream half-site motif, with SMAD2 tethered to
the upstream PE2 region SMAD site. Similarly, the transcriptional coactivator p300/CREB-
bindingprotein (CBP), a histone acetyltransferase, interacts with and acetylates SMAD2/3 in
response to TGF-β1 resulting in enhanced PAI-1 transcription (92–94). RAP250, a protein
with no intrinsic enzymatic activity but effectively recruits histone acetyltransferases and
methylases to chromatin complexes, also interacts with SMAD2/3 and is essential for maximal
PAI-1 induction in response to TGF-β1 (95). At least one recent review provides insights into
the determinants of TGF-β-Smad signaling including a critical analysis of selective interactions
between the SMADS and other signaling pathway components (96).

E-box motifs are platforms for TGF-β1 regulation of PAI-1 expression
There are at least five E box-like sequences in the human PAI-1 promoter; only E boxes E4
and E5 are classic consensus sites with E4 (the PE2E-box motif)andE5(thePE1E box) flanked
by the 5′ adjoining ATT trinucleotide “spacer”/SMAD-binding elements and the 3′4G/5G
polymorphism, respectively (77). USF proteins are major PAI-1 E box-binding factors (97)
and competitive occupancy of the PE1(E5)/PE2(E4) sites by distinct USF homo- or
heterodimer pairs has transcriptional consequences (e.g. [98]). Indeed, chromatin
immunopreciptiation (ChIP) confirmed that the PAI-1 gene PE2 E box is, in fact, a USF target
in vivo and that function-disrupting USF mutants inhibit PAI-1 induction (79). Site occupancy
and transcriptional activity, furthermore, require conservation of the PE2 core E-box structure
as the CACGTG→CACGGA and TCCGTG dinucleotide substitutions (in the rat gene) and a
CACGTG→CAATTG or TCCGTG replacement (in the human gene), with retention of PAI-1
flanking sequences, resulted in loss of both competitive binding and growth factor-dependent
reporter activity (77,80). ChIP assessment of the E-box site in the PE2(E4) region of the human
PAI-1 gene, moreover, indicated a dynamic occupancy by USF subtypes (USF-1 vs. USF-2)
as a function of growth state (79). An exchange of PE2(E4) E box USF-1 homodimers with
USF-2 homo- or USF-1/USF-2 heterodimers, moreover, closely correlated with PAI-1gene
activation. Indeed, USF-2-stimulated human PAI-1 promoter activity in HepG2 cells required
the PE2(E4) and PE1(E5) sites and, importantly, the E box-like hypoxia response element
(HRE) CACGTACA at nucleotides −194/−187; PE2(E4) or PE1(E5) sequence mutations
attenuated PAI-1 promoter activity while HRE mutation completely abolished reporter signal
(98). While both USF-1 and USF-2 bound toPE2(E4)andPE1(E5) target probes (32,98), USF
proteins did not bind directly to the HRE target sequence; thePAI-1HRE was bound by an
ATF-1/CREB-like protein suggesting that HRE binding factor(s) may interact cooperatively
with USF-occupied E4/E5 to affect transcriptional output (98). DNASTAR program alignment
of the human and rat PAI-1 promoters indicated that the PE1(E5) and PE2(E4) E-box sites
differed in homology by 1 and 2 bases, respectively (99). Mutational analysis, moreover,
confirmed that the PE2, as compared to the PE1, E box was important in TGF-β1-directed
PAI-1 promoter activity (77). Such sequence differences in the rat versus human PAI-1 gene
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likely dictate expression levels as a consequence of the nature of the associated transcriptional
complexes and the particular conditions of stimulation (e.g. 100–102).

The CACGTG hexanucleotide “core” is a target for occupancy by at least seven members of
the bHLH-LZ transcription factor family (USF-1, USF-2, c-MYC, MAX, TFE3, TFEB, TFII-
I). USF proteins, however, have a MgCl2-dependent preference for C or T at the −4 position
(103). The human PAI-1 gene, in fact, has a T at the −4 site of the PE2 region E box as well
as a purine at +4 and −5 and a pyrimidine at +5 (A−5T−4C−3A−2C−1 G+1T+2G+3G+4C+5), all
of which facilitate USF binding (103). In this regard, the CACGTG→TCCGTG mutation is
particularly relevant, since bHLH-LZ proteins with E-box recognition activity have a
conserved glutamate important for interaction with the first two nucleotides(CA) in the E-box
motif (91). These data are also consistent with the known hexanucleotide motif preference
(CACGTG or CACATG) of USF proteins(104–106). Successful PAI-1 probe competition by
a CACGTG “core” flanked by non-PAI-1sequences(but with retention of T at −4 and a purineat
+4) and the failure of specific E-box mutants to similarly compete (or to produce band shifts
when used as targets) further indicate that a consensus hexanucleotide E box at the PE2(E4)
site in the PAI-1 gene is both necessary and sufficient for USF binding (77). This contrasts
with the highly cooperative constraints for E-box recognition by other bHLH-LZ proteins (e.g.
TFE3, MAX) that utilize accessory factors (e.g. SMADs) for optimal residence on the PAI-1
promoter (72,107). An additional restraint on motif recognition and protein function resides at
the level of protein phosphorylation. USF andTFE3 are phosphorylated at consensus MAP
kinase target residues (108,109) which initiates a conformational switch that exposes the DNA-
binding domain (110). DNA binding and transcriptional activity requires USF phosphorylation
(79,108,110,111). At least one phosphorylation site (T153) is juxtaposed to a potential MAP
kinase “docking” sequence (108). The recent identification of USF/ERK1/2 complexes and
the requirement for MEK signaling in TGF-β1-dependent ERK1/2 activation and PAI-1
transcription suggests a possible functional interaction between USF and one or more MAP
kinases (32). DNA-anchored USF-1 could also complex with translocated MAP kinases (via
kinase docking sites located within or closely juxtaposed to the USR) (e.g. [32,78,79,109])
resulting in the hyper-phosphorylation of USF-1(at secondary residues) potentially releasing
E box-bound USF-1. USF activity may be further modified by either a recruited co-activator
at the E-box site (112,113)or, potentially, at the HRE(85) (e.g. USF-2, CREB) or direct
replacement of USF-1 with USF-2 homodimers. By analogy, the HPV-16 oncoprotein E6
activates telomerase reverse transcriptase (TERT) transcription by c-MYC induction and
release of USF-dependent repression at the −34 to −29 E-box site (114). Collectively, these
findings suggest that the transcriptional effects of USF family members are context-dependent
(112,115,116). USF-1 may function as a “basal repressor” of PAI-1 (or TERT) expression
occupying E box sites to inhibit access of strong transcriptional activators that recognize the
CACGTG motif (i.e. MYC, USF-2).

Conclusions
PAI-1 has emerged as an important causative factor and biomarker of cardiovascular disease.
The continued definition of specific controls on PAI-1 transcription is important to realizing
the potential of PAI-1 expression disruption (at both the transcriptional and intracellular
signaling pathway levels) in the design of targeted, clinically-relevant, options for treatment
of vascular pathologies (occlusive disease, neointima expansion, perivascular fibrosis)
associated with TGF-β1-induced PAI-1 expression. Recent data suggest that specific defined
PAI-1 promoter regions, including PE1/2((E5/E4) and the HRE, may function as molecular
“switches” that modulate PAI-1 transcription during cell “activation” by fibrogenic factors.
These results, coupled with the success of small-molecule inhibitors of PAI-1 bioactivity,
genetic-based approaches to attenuate PAI-1 expression at the mRNA transcript level or by
interference with the involved signaling pathways, encourage speculation that PAI-1 disruption
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at various levels may have some promise in the manipulation of specific aspects of the
atherogenic response. Indeed, suppression ofPAI-1activityhas proven effective, incertain
settings, in slowing disease progression (9,117). The recent realization that complex
cooperative EGFR→MEK/ERK and Rho signaling is an essential aspect of TGF-β1-stimulated
PAI-1 transcriptional control is not only novel but underscores the potential diversity of new
molecular targets (including members of the USF family of bHlH-LZ transcription factors)
that can be exploited to disruptor regulate PAI-1 expression levels for therapeutic benefit.
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Abbreviations

ALK5 activin receptor-like kinase 5

bHLH-LZ basic helix-loop-helix/leucine zipper

ChIP chromatin immunoprecipitation

DN dominant-negative

ECM extracellular matrix

EGFR epidermal growth factor receptor

ERK extracellular signal-regulated kinases

HRE hypoxia response element

MEK mitogen-activated protein kinase/ERK kinase

Rho Rho GTPase

ROCK Rho kinase

NF-κB nuclear factor-kappa B

SERPIN serine protease inhibitor

SMAD Sma/Mad homologues

tPA tissue plasminogen activator

uPA urokinase plasminogen activator

USF upstream stimulatory factor

VSMC vascular smooth muscle cells
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Figure 1. Potential contribution of overexpression of PAI-1 to cardiovascular disease (CVD)
TGF-β1, a major physiological regulator of PAI-1 expression, promotes extracellular matrix
accumulation largely through the regulation of plasmin generation and MMP-mediated matrix
degradation (via direct induction of PAI-1) as well as by inducing synthesis of matrix proteins
(e.g. fibronectin, collagen) which, collectively, facilitate creation of a profibrotic state in
vascular tissues. Increased PAI-1 expression by profibrotic and inflammatory factors (e.g.
TGF-β, angiotensin) contributes to vascular thrombosis, by inhibition of fibrin degradation,
neointimal expansion and arteriosclerosis, at least in part, by increasing VSMC proliferation
and reducing VSMC apoptosis. PAI-1 elevation also attenuates plasmin-mediated matrix
remodeling resulting in excessive extracellular matrix accumulation, a hallmark of perivascular
fibrosis.
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Figure 2. Model for TGF-β1-induced PAI-1 expression
Current data indicates thatTGF-β1 activates two distinct signaling pathways that initiate
transcription of PAI-1. Rho/ROCK are required for maintenance of SMAD phosphorylation
as well as ERK activation (through yet to be defined mechanisms) while the pp60c-src-activated
EGFR (at theY845 site) signals to MEK-ERK initiating likely ERK/USF interactions resulting
in USF phosphorylation and a subtype (USF-1→USF-2) switch at the PAI-1 PE1/PE2 E box
sites. Collectively, these two promoter-level events stimulate high levels of PAI-1 in response
to TGF-βR occupancy. The actual mechanism underlying EGFR activation in response toTGF-
β1 is unknown but may involve direct recruitment of src kinases to the EGFR or the processing
and release of a membrane-anchored EGFR ligand (e.g. HB-EGF). Similarly, events associated
with TGF-β1 stimulation of the RhoA/ROCK pathway are presently unclear. Rho/Rock may
regulate the activity and/or function of the SMAD phosphatase PPM1A impacting, thereby,
the duration of SMAD-dependent transcription of target genes such as PAI-1.
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