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Summary
With the ready availability of spatial databases and geographical information system software,
statisticians are increasingly encountering multivariate modelling settings featuring associations of
more than one type: spatial associations between data locations and associations between the
variables within the locations. Although flexible modelling of multivariate point-referenced data has
recently been addressed by using a linear model of co-regionalization, existing methods for
multivariate areal data typically suffer from unnecessary restrictions on the covariance structure or
undesirable dependence on the conditioning order of the variables. We propose a class of Bayesian
hierarchical models for multivariate areal data that avoids these restrictions, permitting flexible and
order-free modelling of correlations both between variables and across areal units. Our framework
encompasses a rich class of multivariate conditionally autoregressive models that are
computationally feasible via modern Markov chain Monte Carlo methods. We illustrate the strengths
of our approach over existing models by using simulation studies and also offer a real data application
involving annual lung, larynx and oesophageal cancer death-rates in Minnesota counties between
1990 and 2000.
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1. Introduction
The last decade has seen an explosion of interest in disease mapping, with recent developments
in advanced spatial statistics and increasing availability of computerized geographic
information system technology. For example, the databases from the National Center for Health
Statistics or from the ‘Surveillance, epidemiology, and end results’ (SEER) programme of the
National Cancer Institute, which are publicly available to anyone with a Web browser, provide
an enormous supply of georeferenced data.

Disease mapping is an epidemiological technique that is used to describe the geographic
variation of disease and to generate aetiological hypotheses about the possible causes for
apparent differences in risk. Disease maps are used to highlight geographic areas with high
and low incidence or mortality rates of a specific disease, and the variability of such rates over
a spatial domain. They can also be used to detect spatial clusters which may be due to common
environmental, demographical or cultural effects that are shared by neighbouring regions.
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However, mapping of crude incidence or mortality rates can be misleading when the population
sizes for some of the units are small, resulting in large variability in the estimated rates, and
making it difficult to distinguish chance variability from genuine differences. The correct
geographic allocation of health care resources would be greatly enhanced by the development
of statistical models that allow a more accurate depiction of ‘true’ rates of disease and their
relation to explanatory variables (e.g. covariates).

For reasons of confidentiality or practicality, disease incidence or mortality data are often
reported as counts or rates at a regional level (county, census tract, zip code, etc.). Conditionally
autoregressive (CAR) models have been widely used for disease mapping with such data. They
allow the borrowing of strength across regions by using not only the data from a given region
but also the data from neighbouring regions. When we have multivariate areal (lattice) data
(say, counts of p ≥ 2 diseases over the same regions), an obvious first choice would be to use
p separate univariate CAR models. But correlation across diseases may occur if they share the
same set of (spatially distributed) risk factors, or are linked by aetiology, a common risk factor
or an affected organ. Moreover, the presence of one disease might encourage or inhibit the
presence of another over a region. A multivariate areal model can permit modelling of
dependence between those diseases while maintaining spatial dependence between regions.
Identifying similar patterns in geographical variation of related diseases in a multivariate way
may provide more convincing evidence for any real clustering in the underlying risk than would
be available from the analysis of any single disease separately.

Several multivariate areal models have been proposed to date, any of which could be applied
to multiple-disease mapping. The primary underlying challenge of multivariate areal modelling
is to formulate valid probability models that account for association between different variables
(e.g. diseases) within areal units along with the spatial association between areal units. Although
they provide valuable theoretical insight into joint modelling of areal data, current methods
often fall short of offering a template that is at once versatile and practical. Mardia (1988)
described the theoretical background for multivariate Gaussian Markov random-field
specifications, extending the pioneering work of Besag (1974), but used separable models that
force identical spatial smoothing for all variables. The ‘twofold CAR’ model of Kim et al.
(2001) offers richer spatial covariance structures for counts of two different diseases over each
areal unit, but its extension to the case of more than two variables is unclear. Knorr-Held and
Best (2001) developed a latent variable ‘shared component’ model for bivariate disease
mapping; here extension to more than two diseases is possible (Held et al., 2005) but can be
awkward. Sain and Cressie (2002) discussed a multiobjective version of the CAR model that
allows for flexible modelling of the spatial dependence structure, the cross-correlations in
particular, but may become computationally prohibitive. Carlin and Banerjee (2003) and
Gelfand and Vounatsou (2003) developed essentially equivalent multivariate CAR (MCAR)
models for hierarchical modelling to include non-separable models, but they left room for
further generality in the covariance structures.

Adapting the multivariate point level data approach of Royle and Berliner (1999), Jin et al.
(2005) proposed a generalized MCAR (GMCAR) model for areal data that formulates the joint
distribution for a multivariate Markov random field by specifying simpler conditional and
marginal models. These models are computationally efficient and allow sufficient flexibility
in the specifications of the spatial covariance structure. Indeed, many of the above models arise
as special cases of the GMCAR model. However, an inherent problem with these methods is
that their conditional specification imposes a potentially arbitrary order on the variables being
modelled, as they lead to different marginal distributions depending on the conditioning
sequence. This problem is somewhat ameliorated in certain (e.g. medical and environmental)
contexts where a natural order is reasonable, but in many disease mapping contexts this is not
so. Although Jin et al. (2005) suggested using model comparison techniques to decide on the
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proper order of modelling, since all possible permutations of the variables would need to be
considered this seems feasible only with relatively few variables. In any case, the principle of
choosing between conditioning sequences by using model comparison metrics is perhaps not
uncontroversial.

In this paper we develop an order-free framework for multivariate areal modelling that allows
versatile spatial structures yet is computationally feasible for many variables. Our approach is
based on a linear model of co-regionalization (LMC) that has recently been proposed for
multivariate point-referenced data (Wackernagel, 2003; Schmidt and Gelfand, 2003; Gelfand
et al., 2004). Essentially, the idea is to develop richer spatial association models by using linear
transformations of much simpler spatial distributions. In this paper, we apply the LMC
approach to the analysis of multivariate areal data, with an eye towards developing models for
multipledisease mapping. In the process, we arrive at a very versatile framework, which
encompasses a rich class of MCAR models (including most of the existing models) as special
cases. In particular, we consider modelling the annual mortality rates from lung, larynx and
oesophageal cancer between 1990 and 2000 in Minnesota counties, a setting in which
association would be expected both within and across the areal units.

The format of our paper is as follows. In Section 2, we briefly review the spatial modelling of
a single disease and multiple diseases. In Section 3, we introduce new LMC-based ways of
multivariate spatial modelling. Bayesian computing issues are discussed in Section 4, whereas
Section 5 evaluates our approach in terms of the average mean-square error (AMSE) and the
deviance information criterion DIC via simulation. Section 6 then illustrates our approach in
the aforementioned multiple-cancer data mapping setting. Finally, Section 7 summarizes our
findings and suggests avenues for future research in this area.

2. Spatial modelling for disease mapping
Disease incidence or mortality data are often reported as counts or rates at a regional level
(county, census tract, zip code, etc.) and are called areal (or lattice) data. Markov random-field
models for lattice data are based on the Markov property, where the conditional distribution
of a site's response given the responses of all the other sites depends only on the observations
in the neighbourhood of this site. In this paper we define the neighbourhood by area adjacency,
although other definitions are sometimes used (e.g. regions with centroids within a given fixed
distance).

2.1. Spatial modelling of a single disease
Let Yi be the observed number of cases of a certain disease in region i, i = 1, … n, and Ei be
the expected number of cases in this same region. Here the Yi are thought of as random
variables, whereas the Ei are thought of as fixed and known (and are often simply taken as
proportional to the number of people who are at risk in the region). For rare diseases, a Poisson
model approximation to a binomial sampling distribution for disease counts is often used. Thus,
a commonly used likelihood when mapping a single disease is

(1)

where . The xi are explanatory, region level spatial covariates, having parameter
coefficients β. The parameter μi represents the log-relative-risk, estimates of which are often
based on the departures of observed from expected counts. We place a form of Gaussian
Markov random-field model, which is commonly referred to as the CAR prior, on the random
effects ϕ = (ϕ1, …, ϕn)′, i.e.
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(2)

where Nn denotes the n-dimensional normal distribution, D is an n × n diagonal matrix with
diagonal elements mi that denote the number of neighbours of area i and W is the adjacency
matrix of the map (i.e. Wii = 0, and Wii′ = 1 if i′ is adjacent to i and Wii′ = 0 otherwise). In the
joint distribution (2), τ− is the spatial dispersion parameter, and α is the spatial autocorrelation
parameter. The CAR prior corresponds to the following conditional distribution of ϕi:

(3)

where i ~ j denotes that region j is a neighbour (which is typically defined in terms of spatial
adjacency) of region i. The CAR structure (2) reduces to the well-known intrinsic CAR (ICAR)
model (Besag et al., 1991) if α = 1, or an independence model if α = 0. The ICAR model induces
‘local’ smoothing by borrowing strength from the neighbours, whereas the independence
model assumes independence of spatial rates and induces ‘global’ smoothing. The smoothing
parameter α in the CAR prior (2) controls the strength of spatial dependence between regions,
though it has long been appreciated that a fairly large α may be required to deliver significant
spatial correlation; see Wall (2004) for recent discussion and exemplification.

A similar approach proposes a Gaussian convolution prior for the modelling of the random
effects ϕ. The random effects ϕ are assumed to be the sum of the two independent components
with one having a Gaussian independence prior and the other a Gaussian ICAR prior (Besag
et al., 1991). With such a convolution prior, we may capture both the relative contributions of
regionwide heterogeneity and local clustering. Although this method has limitations (see for
example Banerjee et al. (2004), pages 163–165), since the convolution process priors are
among the most widely used we implement this model for our Minnesota cancer data analysis
in Section 6.

2.2. Spatial modelling of multiple diseases
Now let Yij be the observed number of cases of disease j in region i, i = 1, …, n, j = 1, …, p,
and let Eij be the expected number of cases for the same disease in this same region. As in
Section 2.1, the Yij are thought of as random variables, whereas the Eij are thought of as fixed
and known. For the first level of the hierarchical model, conditionally on the random effects
ϕij, we assume that the Yij are independent of each other such that

(4)

where the xij are explanatory, region level spatial covariates for disease j having (possibly
region-specific) parameter coefficients βj.

Carlin and Banerjee (2003) and Gelfand and Vounatsou (2003) generalized the univariate CAR
model (2) to a joint model for the random effects ϕij under a separability assumption, which
permits modelling of correlation between the p diseases while maintaining spatial dependence
across space. Separability assumes that the association structure separates into a non-spatial
and a spatial component. More precisely, the joint distribution of ϕ is assumed to be
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(5)

where , Λ is a p × p positive definite matrix that is interpreted
as the non-spatial precision (inverse dispersion) matrix between cancers and ‘⊗’ denotes the
Kronecker product. We denote the distribution in expression (5) by MCAR(α, Λ). This
distribution can be further generalized by allowing different smoothing parameters for each
disease, i.e.

(6)

where , j = 1, … p. We denote the distribution in expression (6) by MCAR
(α1, …, αp, Λ). Note that the off-diagonal block matrices (the Ris) in the precision matrix in
expression (6) are completely determined by the diagonal blocks. Thus, the spatial precision
matrices for each disease induce the cross-covariance structure in expression (6).

Recently, Jin et al. (2005) developed a more flexible GMCAR model for the random effects
ϕ. For example, in the bivariate case (p = 2), they specified the conditional distribution ϕ1|ϕ2
as N[(η0I + η1W)ϕ2, {τ1(D − α1W)}−1], and the marginal distribution of ϕ2 as N[0, {ϕ2(D −
α2W)}−], both of which are univariate CAR as in model (2). This formulation yields the models
of Kim et al. (2001) as a special case and recognizes explicit smoothing parameters (η0 and
η1) for the cross-covariances, unlike the MCAR models in expression (6) where the cross-
covariances are not smoothed explicitly.

Kim et al. (2001) and Jin et al. (2005) demonstrated that explicit smoothing of the
crosscovariances yield better model fits to areally referenced bivariate data. However, to model
the random effects ϕ with the GMCAR model, we need to specify the order of conditioning,
since different orders of conditioning will result in different marginal distributions for ϕ1 and
ϕ2 and, hence, different joint distributions for ϕ. As mentioned in Section 1, in disease mapping
contexts a natural conditioning order is often not evident—which is a problem that is
exacerbated when we have more than two diseases. What we seek, therefore, are models that
avoid this dependence on conditional ordering, yet are computationally feasible with
sufficiently rich spatial structures.

3. Order-free multivariate conditionally autoregressive distributions
Our primary methodological objective is to formulate MCAR distributions that allow explicit
smoothing of cross-covariances while not being hampered by conditional ordering. The most
natural model here would parameterize the cross-covariances themselves as D − γijW, instead
of using the Rjs as in expression (6). Unfortunately, except in the separable model with only
one smoothing parameter α, constructing such dispersion structures is not trivial and leads to
issues of identifiability on the γs (see, for example, Gelfand and Vounatsou (2003)). Kim et
al. (2001) resolved these identifiability issues in the bivariate setting by using diagonal
dominance but recognized the difficulty in extending this to the multivariate setting. We
address this problem by using an LMC. The LMC is a well-established tool that is used in
multivariate geostatistics (Chilés and Delfiner, 1999;Wackernagel, 2003;Banerjee et al.,
2004) to incorporate different spatial ranges for each variable. However, to date this technique
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has not been employed in areal modelling, which has instead traditionally relied on conditional
specifications.

It is worth pointing out that our use of the LMC here is somewhat broader than usually
encountered in geostatistics. In geostatistics we typically transform independent latent effects,
which suffices in meeting the primary goal of introducing a different spatial range for each
variable. This is akin to introducing different smoothing parameters for each variable and
indeed, as we show below in Section 3.2, independent latent effects lead to the MCAR(α1, …,
αp; Λ) model in expression (6). However, to smooth the cross-covariances explicitly with
identifiable parameters, we shall relax the independence of latent effects. Still, in our ensuing
parameterization, we can derive conditions that yield valid joint distributions. To be precise,

let  be an np × 1 vector, where each ϕj = (ϕ1j, …, ϕnj)′ is n × 1 representing the
spatial effects corresponding to disease j. We can write ϕ = (A ⊗ In×n)u, where

 is n p × 1 with each uj being an n × 1 areal process. Indeed, a proper distribution
for u ensures a proper distribution for ϕ subject only to the non-singularity of A. The flexibility
of this approach is apparent: we obtain different multivariate lattice models with rich spatial
covariance structures by making different assumptions about the p spatial processes uj.

3.1. Case 1: independent and identical latent processes
First, we shall assume that the random spatial processes uj, j = 1, …, p, are independent and
identical. Since each spatial process uj is a univariate process over areal units, we might adopt
a CAR structure (2) for each of them, i.e.

(7)

Since the uj are independent of each other, the joint distribution of  is u ~
Nnp {0, Ip×p ⊗ (D − αW)−1}. Recall that, since ϕ = (A ⊗ In × n) u, the joint distribution of ϕ is

(8)

defining Σ = AA′. We denote the distribution in expression (8) by MCAR(α, Σ). Note that the
joint distribution of expression (8) is identifiable up to Σ = AA′ and is independent of the choice
of A. Thus, without loss of generality, we can specify the matrix A as the upper triangular
Cholesky decomposition of Σ. The MCAR(α, Σ) distribution that is given in expression (8) is
exactly the same as the MCAR(α, Λ) structure in expression (5), as in Carlin and Banerjee
(2003) and Gelfand and Vounatsou (2003) with Σ corresponding to Λ−1. Since ϕ = (A ⊗
In × n) u, a valid joint distribution of ϕ requires valid joint distributions of the uj, which happens
if and only if 1/ξmin < α < 1/ξmax, where ξmin and ξmax are the minimum and maximum
eigenvalues of D−1/2 WD−1/2. If α=1 in CAR structure (7), which is an ICAR model, the joint
distribution of ϕ in expression (8) becomes the multivariate ICAR model (Gelfand and
Vounatsou, 2003).

Currently, the WinBUGS package
(http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml) can fit the MCAR(α = 1, Σ)
distribution (using its mv.car distribution), but not the MCAR(α, Σ) distribution. However,
through the LMC approach we still can fit the MCAR(α, Σ) distribution in WinBUGS by
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writing ϕ = (A ⊗ (In×n)u and assigning proper CAR priors (via the car.proper distribution)
for each uj j = 1, …, p, with a common smoothing parameter α. Regarding the prior on A, note
that, since AA′ = Σ and A is the Cholesky decomposition of Σ, there is a one-to-one relationship
between the elements of Σ and A. In Section 4, we argue that assigning a prior to Σ is
computationally preferable.

3.2. Case 2: independent but not identical latent processes
In case 1, we assumed that the random spatial processes uj, j = 1,…, p, were independent and
identical. However, it will often be preferable to have p different spatial processes. In this
subsection, we shall continue to assume that the uj are independent, but we relax their being
identically distributed. Adopting the CAR structure (2), the distribution of uj is assumed to be

(9)

where αj is the smoothing parameter for the jth spatial process. Since the ujs are independent
of each other and ϕ = (A ⊗ In×n/u, the joint distribution of ϕ is

(10)

where Σ = AA′ and Γ is an n p × n p block diagonal matrix with n × n diagonal entries Γj = D
− αjW, j = 1,…, p. We denote the distribution in expression (10) by MCARα1,…, αp, Σ).

In this case, from the joint distribution in expression (10) it can be seen that different joint
distributions of ϕ having different covariance matrices emerge under different linear
transformation matrices A. To ensure that A is identifiable, we could again specify it to be the
upper triangular Cholesky decomposition of Σ, although this might not be the best choice
computationally. Through the LMC approach in this case, the distribution in expression (10)
is similar to the MCAR(α1,…, αp, Λ) structure (6), which was developed in Carlin and Banerjee
(2003) and Gelfand and Vounatsou (2003). All of these have the same number of parameters,
and there is no unique joint distribution for ϕ with the MCAR(α1,…, αp, Λ) structure, since
there is not a unique Rj-matrix such that RjR′j = RjPP′j = D − αjW (P being an andarbitrary
orthogonal matrix). Carlin and Banerjee (2003) took Rj as the Cholesky decomposition of D
− αjW, whereas Gelfand and Vounatsou (2003) instead recommended a spectral decomposition.

Again, a valid joint distribution in expression (10) requires p valid distributions for uj, i.e.
1=ξmin < αj < 1=ξmax, j = 1,…, p. Through the LMC approach, we can also fit the data with
the MCAR.α1,…, αp, Σ/ prior distribution (10) on ϕ in WinBUGS as in Section 3.1 by writing
ϕ = (A ⊗ In×n)u and assigning proper CAR priors (via the car.proper distribution) with a
distinct smoothing parameter αj for each uj, j = 1,…, p. As mentioned in Section 3.1, we assign
a prior to AA′ = Σ (e.g. an inverse Wishart prior) and determine A from the one-to-one
relationship between the elements of Σ and A; Section 4 provides details.

3.3. Case 3: dependent and not identical latent processes
Finally, in this case we shall assume that the random spatial processes uj = (u1j,…, unj)′, j= 1,
…, p, are neither independent nor identically distributed. We now assume that uij and ui,l≠j are
independent given uk≠,j and uk≠i,l≠j, where l, j = 1,…, p and i, k = 1,…, n implying that latent
effects for different diseases in the same region are conditionally independent given those for
diseases in the neighbouring regions. On the basis of the Markov property and similarly to the
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conditional distribution that is given by expression (3) in the univariate case, we specify the
ijth conditional distribution as Gaussian with mean

and conditional variance var(uij|uk≠i,j, ui,l≠j, uk≠i,l≠j) ∝ 1/mi, where bjj denotes the spatial
autocorrelation for the random spatial process uj whereas bjl (l≠j, l, j=1,…, p) denotes the cross-
spatial correlation between the random spatial process uj and ul. Putting these conditional

distributions together reveals the joint distribution of  to be

(11)

where I is a p × p identity matrix and B is a p × p symmetric matrix with elements bjl, j, l = 1,
…, p. As long as the dispersion matrix in expression (11) is positive definite, which boils down
to (Ip × p⊗D−B⊗W) being positive definite, expression (11) is itself a valid model. To assess
non-singularity, note that

Denoting the eigenvalues for D−1/2 WD−1/2 as ξi, i = 1,…, n, and the eigenvalues for B as ζj,
j = 1,…, p, we find (see, for example, Harville (1997), theorem 21.11.1) the eigenvalues for
B⊗(D−1/2WD−1/2) as ξi × ζj, i = 1,…, n, j = 1,…, p. Hence, the conditions for Ip×p⊗D
−B⊗W being positive definite become ξiζj < 1, i.e. 1/ξmin < ζj < 1/ξmax, i = 1,…,n, j = 1,…,
p, where ξmin and ξmax are the minimum and maximum eigenvalues of D−1/2WD−1/2. Thus, 1/
ξmin < ζj < 1, j = 1,…, p, ensures the positive definiteness of the matrix Ip × p⊗D−B⊗W and,
hence, the validity of the distribution of u given in expression (11). In fact, ξmax = 1 and ξmin
< 0 (see, for example, Banerjee et al. (2004)), which makes this formulation easier to work
with in practice (e.g. in choosing priors; see Section 4) than the alternative constraint 1/ζmin <
ξj < 1/ζmax.

Model (11) introduces smoothing parameters in the cross-covariance structure through the
matrix B but unlike the MCAR models in Sections 3.1 and 3.2 does not have the Σ-matrix to
capture non-spatial variances. To remedy this, we model ϕ = (A⊗In×n) u so that the joint
distribution random effects ϕ is

(12)

Since ϕ = (A⊗In×n)u, it is immediate that the validity of model (11) ensures a valid joint
distribution for expression (12). We denote distribution (12) by MCAR(B,Σ), where Σ=AA′.
Again, A identifies with the upper triangular Cholesky square root of Σ. With Σ=I we recover
expression (11), which we henceforth denote as MCAR(B, I).

To see the generality of expression (12), we find that the joint distribution of ϕ reduces to the
MCAR(α1,…,αp,Σ) distribution (10) if bjl=0 and bjj=αj, or the MCAR(α,Σ) distribution (8) if
bjl=0 and bjj=α, in both cases for j, l=1,…,p. Also note that the distribution in expression (12)
is invariant to orthogonal transformations (up to a reparameterization of B) in the following
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sense: let T = AP with P being a p×p orthogonal matrix such that TT′=APP′ A′Σ. Then the
covariance matrix in expression (12) can be expressed as

where C=P′BP. Without loss of generality, then, we can choose the matrix A as the upper
triangular Cholesky decomposition of Σ.

To understand the features of the MCAR(B,Σ) distribution (12), we illustrate in the bivariate
case (p=2). Define

and

where

and

Note that the γs are not identifiable from the matrix Λ and our reparameterization in terms of
B must be used to conduct posterior inference on B and Λ (see Section 4), from which the
cross-covariances may be recovered. The above expression does allow the MCAR(B,Σ)
distribution (12) to be rewritten as

(13)

which is precisely the general dispersion structure that we set out to achieve.

To see how the parameters in expression (13) affect smoothing, we obtain the conditional
means

and
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and the conditional variances  and
, i, k = 1, … n. (The conditional moments for special cases

such as the separable model (5) arise by simply setting γ1 = γ2 = γ12 = α.) We note that −Λ12/
Λ11 and −Λ12/Λ22 appear as regression parameters, regressing one component of ϕ at a given
site on the other. The spatial smoothing is incorporated by an autoregressive term for each site
in the neighbour set which is corrected at each site for the regression on the other component.
The smoothing parameters are different for each spatial association and cross-spatial
association. For neighbouring regions i and k, expression (13) yields the partial correlations
corr(ϕi1, ϕk1|ϕ1\(ik),ϕ2)=γ1/√(mimk), corr(ϕi2, ϕk2|ϕ2\(ik),ϕ1) = γ2/√(mimk), corr(ϕi1,ϕi2|ϕ1\i,ϕ2\i)=
−Λ12/√(Λ11Λ22), and corr(ϕi1, ϕk2|ϕ1\i, ϕ2\\k) = corr(ϕk1,ϕi2|ϕ2\i)= γ12Λ12/√(mimk×Λ11Λ22),
where ϕl = (ϕ1l,…,ϕnl)′ and ϕl\i=(ϕ1l,…ϕi−1,ϕi+1,l,…,ϕnl)′, for l = 1, 2 and i, k = 1,…, n. With
the MCAR(α, Λ) distribution from expression (5) or the MCAR(α,Σ) distribution from
expression (8), we have corr(ϕi1, ϕk1|ϕ1\(ik), ϕ2)=corr(ϕi2, ϕk2|ϕ2\(ik),ϕ1)=α/√(mimk), and corr
(ϕi1,ϕk2|ϕ1\i,ϕ2\k)=−corr(ϕi1, ϕk1|ϕ1\(ik),ϕ2) corr(ϕi1 ϕk|ϕ1\(ik,|ϕ2) corr(ϕi, ϕi2|ϕ1\i, ϕ2\i)= α Λ12/√
(mimkΛ11Λ22), in both cases for i, k = 1, …, n. Thus case 3 offers the most flexible model for
the conditional correlation structure.

4. Bayesian computation
Our proposed MCAR(B, Σ) model is straightforwardly implemented in a Bayesian frame-work
by using Markov chain Monte Carlo (MCMC) methods. As in Section 3.3, we write ϕ = (A
⊗ In×n)u, where u = (u1, u2)′ and uj = (u1j,…, unj/′. The joint posterior distribution is

(14)

where Y1 = (Y11, …, Yn1)′ and Y2 = (Y12, …, Yn2)′ and L(Y, Y2|u, σ2, A) is the data likelihood.

The second term on the right-hand side of expression (14) is p(u|B) = Nn p {0, (Ip × p ⊗ D −
B ⊗ W)−1}. As mentioned in Section 3.3, propriety of this distribution requires the eigenvalues
ζj of B to satisfy 1/ξmin < ζj < 1 (j = 1,…, p). When p is large, it is difficult to determine the
intervals over the elements of B that result in 1/ξmin < ζj < 1, and thus designing priors for B
that guarantee this condition is awkward. In principle, we might impose the constraint
numerically by assigning a flat prior or a normal prior with a large variance for the elements
of B, and then simply check whether the eigenvalues of the corresponding B-matrix are in that
range during a random-walk Metropolis–Hastings update. If the resulting eigenvalues are out
of range, the values are thrown out since they correspond to prior probability 0; otherwise we
perform the standard Metropolis–Hastings comparison step. In our experience, however, this
does not work well, especially when p is large.

Instead, here we outline a different strategy to update the matrix B. Our approach is to represent
B by using the spectral decomposition, which we write as B = PΔP′, where P is the
corresponding orthogonal matrix of eigenvectors and Δ is a diagonal matrix of ordered eigen-
values, ζ1,…, ζp. We parameterize the p × p orthogonal matrix P in terms of the p(p − 1)/2
Givens angles θij for i = 1,…, p − 1 and j = i + 1,…, p (Daniels and Kass, 1999). The matrix
P is written as the product of p(p− 1)/2 matrices, each associated with a Givens angle.
Specifically, P = G12G13 … G1p … Gp−1)p where i and j are distinct and Gij is the p × p identity
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matrix with the ith and jth diagonal elements replaced by cos(θij), and the (i, j)th and (j, i)th
elements replaced by ± sin(θij). Since the Givens angles θij are unique with a domain (−π/2,
π/2) and the eigenvalues ζj of B are in the range (1/ξmin, 1), we then put a U(−π/2, π/2) prior
on the θij and a U(1/ξmin, 1) prior on the ζj. To update θijs or ζjs by using random-walk
Metropolis–Hastings steps with Gaussian proposals, we need to transform them to have support
equal to the whole real line. A straightforward solution here is to use

a transformation having Jacobian . In practice, the ζj must be
bounded from 1 (say, by insisting that 1=ξmin < ζj < 0:999, j = 1,…, p) to maintain identifiability
and hence computational stability. In fact, with our approach it is also easy to calculate the

determinant of the precision matrix, i.e. , where ξi are
the eigenvalues of D−1/2 WD−1/2, which can be calculated before any MCMC iteration. For the
special case of the MCAR(α1, …, αp, Σ) models, we could assign each αi ~ U(0, 1), which
would be sufficient to ensure a valid model (e.g. Carlin and Banerjee (2002)). However, we
also investigated with more informative priors on the αis such as the beta(2, 18) prior that
centres the smoothing parameters closer to 1 and leads to greater smoothing.

With respect to the prior distribution p(A) on the right-hand side of expression (14), we can
put independent priors on the individual elements of A, such as inverse gamma for the square
of the diagonal elements of A and normal for the off-diagonal elements. In practice, we cannot
assign non-informative priors here, since then MCMC convergence is poor. In our experience
it is easier to assign a vague (i.e. weakly informative) prior on Σ than to put such priors on the
elements of A in terms of letting the data drive the inference and obtaining good convergence.
Since Σ is a positive definite covariance matrix, the inverse Wishart prior distribution renders
itself as a natural choice, i.e. Σ−1 ~ Wishart{ν, (νR)−1} (see for example Carlin and Louis
(2000), page 328). Hence, we instead place a prior directly on Σ and then use the one-to-one
relationship between the elements of Σ and A. Then the prior distribution p(A) becomes

where |∂Σ/aij| is the Jacobian. For example, when p = 2, the Jacobian is . Rather than
updating Σ as a block by using a Wishart proposal, updating the elements aij of A offers better
control. These are updated via a random-walk Metropolis step, using log-normal proposals for
the diagonal elements and normal proposals for the off-diagonal elements. With regard to
choosing ν and R in the Wishart{ν, (νR)−1 prior, since E(Σ−1) = R−1, if there is no information
about the prior mean structure of Σ, a diagonal matrix R can be chosen, with the scale of the
diagonal elements being judged by using ordinary least squares estimates based on independent
models for each response variable. Although this leads to a data-dependent prior, it typically
lets the data drive the results, leading to robust posterior inference. In this study we adopt ν =
2 (i.e. the smallest value for which this Wishart prior is proper) and R = diag(0.1, 0.1). Finally,
for the remaining terms on the right-hand side of expression (14), flat priors are chosen for
β1 and β2, whereas σ2 is assigned a vague inverse gamma prior, i.e. an IG(1, 0.01) prior
parameterized so that E(σ2) = b/(a − 1). In this study, β and σ2 have closed form full conditionals
and so can be directly updated by using Gibbs sampling.
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5. Simulation study
To evaluate our new approach for modelling multivariate areal data, we begin with some
simulation studies. The studies use the spatial lay-out of the 87 counties in the state of
Minnesota, which is a fairly typical areal arrangement and the one that is used by our Section
6 data set. We generated count data from a Poisson distribution, as is typical in disease mapping
settings:

(15)

where Yij is the observed number of cases of cancer type j (one of two types) in region i and
log(μij) = βj + ϕij with the βjs being fixed as β1 = −0.05 and β2 = − 0.01. This set-up mimics
oesophageal (relatively low incidence) and lung (higher incidence) Minnesota cancer incidence
data and uses the actual internally standardized expected mortalities Eij from our SEER data.

To assess the relative performance of our proposed model, we designed five simulation studies.
In study 1, we generate ϕ1 = (ϕ11,…, ϕ1n)′ and ϕ2 = (ϕ21,…, ϕ2n)′ from the MCAR(B, Σ)
distribution (12), where D = diag(mi) and the adjacency matrix W are based on the Minnesota
county map. We specify the distribution in expression (12) by setting

which yields a non-spatial correlation of 0.32, and

These choices yielded ϕijs ranging between (−1.5, 1.5) with correlations between the spatial
effects ranging from 0.08 to 0.73. In study 2, we generate ϕ from the MCAR(B, I) model (11)
retaining the same B as in study 1, whereas, in study 3, we generate them from the MCAR(α,
Σ) model (8) with the same A as in study 1. In study 4, we generate the ϕ from the GMCAR
(α1, α2, η0, η1, τ1, τ2) models under the conditioning order ϕ1|ϕ2. We choose the true parameter
values in this GMCAR distribution to be α1 = 0.1, α2 = 0.8, η0 = 0.4, η1 = 0:3, τ1 = 10 and τ2
= 10. Finally, study 5 examines the effect of model misspecification by using a geostatistical
model (instead of an MCAR model) as the true random-effect distribution. Here ϕ1 and ϕ2 arise
from a Gaussian process with exponential covariance functions exp(−0.01dij) and exp
(−0.05dij) respectively, where dij is the distance between the centroids of counties i and j, and
is calculated using the rdist.earth() function in R using the fields package. In this model
we take the same values of a11, a12, a21 and a22 as in study 2.

The data that are analysed in this paper and the programs that were used to analyse them can
be obtained from http://www.blackwellpublishing.com/rss

5.1. Simulation results: mean-squared error
To evaluate the performance of our proposed model, we simulated N = 1000 data sets and fitted
several multivariate models to each. In each study of Table 1, model 1 is the MCAR(B, Σ)
model that is specified by expression (12), whereas model 2 is the MCAR(B, I) model in
expression (11). Model 3 is the MCAR(α, Σ) model from Section 3.2 or, equivalently, the
MCAR(α, Λ) model in expression (5). Models 4 and 5 are the order-specific GMCAR(α1, α2,
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η0, η1, τ1, τ2) models (Jin et al., 2005) with the conditioning order ϕ1|ϕ2 and the reverse
conditioning order ϕ2|ϕ1 respectively. Finally, model 6 is a bivariate independent and
identically distributed (IID) model.

For each data set and model in each study, we first ran a few initially overdispersed parallel
MCMC chains, and monitored them by using measurements of sample autocorrelations within
the chains, cross-correlations between parameters and plots of sample traces. From these, we
decided to use 20000 iterations for the preconvergence burn-in period, and then a further 20000
iterations as our ‘production’ run for posterior summarization. Unfortunately, the complexity
of model (12) precluded us from using the WinBUGS package, so we instead relied on our
own programs written in C and executed in R (http://www.r-project.org) using the .C
function. Random-number generation and posterior summarization were also implemented in
R.

To evaluate the relative performance of the models, we compare their AMSE. Since the true
ϕij-values are known in the simulation, the AMSE for each disease can be estimated as

with associated Monte Carlo standard error estimate

where  is the posterior mean estimate for disease j at county i based on the rth data set. In
our case we have N = 1000, n = 87 and j = 1, 2.

Table 1 gives the estimated AMSEj-values and their associated Monte Carlo standard errors
for each disease and each model in each simulation study. The estimated overall AMSE values
are calculated by aggregating over the two diseases. Here we also calculate the percentage
change in estimated AMSE for each model compared with the true model in each study, i.e.

 for models k = 1,…,5; negative values would
indicate superiority over the true model.

From Table 1, the performance of the MCAR(B, Σ) model appears quite impressive. Not
surprisingly, in study 1 where it is the true model it excels over the other MCAR and GMCAR
models. In study 2 its performance is highly comparable with the true model MCAR(B, I). In
fact, we find a marginally lower AMSE score for ϕ1 (−0.13%) and a virtually identical overall
AMSE (0.80%). The story is similar for study 3, where the MCAR(α, Σ) model is the true
model, and now we find a marginally lower overall AMSE score (−0.40%). In study 4, where
the GMCAR model is the true model, it performs a little worse (the overall AMSE score exceeds
that of the true model by 1.93%) but is still appreciably better than the other competing models.
Finally, in study 5 where all the models are misspecified, the MCAR(B, Σ) model remains the
best, with considerably lower overall AMSE scores and only a hint of a competition from the
GMCAR (reverse order) model.

The performance of the MCAR(B, I) model is disappointing. The only study where it performs
competitively is in study 2, where it is in fact the true model. In all the remaining studies its
overall AMSE scores beat only those of the bivariate IID model and are usually much higher
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than those of the GMCAR models (especially that having the better ordering) and the MCAR
(α, Σ) model. That this occurs despite the smoothing of the cross-covariances through the matrix
B is probably a reflection of the model's inadequacy in capturing the scaling of the spatial
effects that are offered by Σ. The MCAR(α, Σ) model, unlike the MCAR(B, I) model,
incorporates a single smoothing parameter but captures the within-site association between the
two diseases through Σ. The MCAR(α, Σ) model's overall AMSE performance is typically seen
to lie between those of the MCAR(B, Σ) and the better GMCAR model.

The GMCAR model also presents some interesting features. Recall that its parameterization
is quite rich and it does allow spatially adaptive smoothing of the variances and cross-
covariances. However, its primary drawback lies in its sensitivity to the order of conditioning,
and this is apparent in Table 1. Except for study 4, where ϕ1|ϕ2 is the true model, ϕ2|ϕ1 appears
to be offering much better estimation. In fact, its performance is seen to be only marginally
inferior to the MCAR(B, Σ) model and its overall AMSE score never exceeds 3.81% of that
of the true model. It typically beats the MCAR(α, Σ) model, except in study 3 where the latter
is the true model and has an overall AMSE score lesser by 3.56%. In study 5, where all the
models are misspecified, the better GMCAR model's AMSE score exceeds that of the MCAR
(B, Σ) model by only 3% and is considerably better than all the remaining models.

In summary, although the MCAR(B, Σ) model consistently produces the lowest AMSEs-cores
in Table 1, the absolute differences in AMSE among most of the models are rather small, of
the order of 10−2 in our scale. The associated Monte Carlo standard errors of these AMSEs are
of the order of 10−5, making these differences highly reliable computationally. However, in
disease mapping exercises we would not expect to see practical differences between the models.
Rather, the main message here is that, despite the rich parameterization of the MCAR(B, Σ)
model, it does not appear to be suffering from excessive overfitting (i.e. few negative Δs with
respect to the true model) while offering very robust estimation compared with its competitors.

5.2. Simulation results. deviance information criterion
To investigate the predictive performance of our methods, we now turn to the deviance
information criterion DIC (Spiegelhalter et al., 2002) as our model choice criterion. This
criterion is based on the posterior distribution of the deviance statistic, D(θ) =−2 log {f(y|θ) 2
log {h(y)}, where f(y|θ) is the likelihood function for the observed data vector y given the
parameter vector θ on which we focus, and h(y) is some standardizing function of the data
alone (which thus has no influence on model selection and which we set to 0). DIC is defined
analogously to the Akaike information criterion as the posterior expected deviance plus the
‘effective’ number of parameters, i.e. DIC = D̄ + pD. Spiegelhalter et al. (2002) showed that
pD is reasonably defined as Eθ|y[D] − D(Eθ|y[θ]) = D ̄ − D(θ ̄), i.e. the expected deviance minus
the deviance evaluated at the expectations. Since small values of D ̄ indicate good fit and small
values of pD indicate a parsimonious model, small values of the sum (DIC) indicate preferred
models. Note that a model with more parameters can be ‘more parsimonious’ using pD, since
this criterion measures effective model size (i.e. the dimension of the posterior space spanned
by the parameters after accounting for shrinkage of the random effects towards their grand
mean). DIC is scale free (because D ̄ is), and so no particular score has any intrinsic meaning;
only the ordering of DIC-scores across models is meaningful. The use of pD and DIC is not
without controversy; in particular, Celeux et al. (2006) highlighted several missing data settings
where negativepD is a real risk. However, we did not experience this problem with any of our
multivariate data models, and so we adopt this approach here owing to its flexibility and ease
of use.

To calculate DIC in our MCMC setting, we need to calculate only the average deviance D ̄, and
the deviance of the posterior mean, D(θ ̄). Here D(θ) is the same for the models that we wish
to compare since they differ only in their random-effect distributions p(ϕ|B, Σ), which we do
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not consider to be part of the likelihood. Specifically, setting 2 log {h(y)} = 0 in D(θ), we have
D(θ) ≡ D(β, ϕ) = −2 log{L(Y1, Y2|β, ϕ)}, where L is the likelihood the Poisson for model (15).

Table 2 gives the simulated results for D ̄, pD and DIC for the same six models and five studies
as were considered in Table 1. In Table 2 we redefine Δ as the absolute (not relative) change
when compared with the true model in each case. Thus positive Δ-values indicate poorer fit,
larger effective model size and poorer overall model selection scores for D ̄, pD and DIC
respectively.

Overall, the results are similar to those which were seen for the mean-squared error, with
generally strong support for the MCAR(B, Σ) model. The large improvements in fit that are
brought about by this model are typically not offset by the relatively modest increases in
effective model size, leading to significant improvements in overall DIC-score (the ‘sd’
measures in Table 2 are simply sample standard deviations of the MCMC draws themselves,
not Monte Carlo standard errors as in Table 1). Not only does it excel in study 1, but it actually
outperforms the true models in terms of actual DIC in studies 2 and 3. In fact, in terms of D ̄ it
outperforms all the true models in studies 2–4 but marginally loses out to the true GMCAR
model in terms of overall DIC owing to a substantial increase in the effective number of
parameters. The full MCAR(B, Σ) model also dominates the other models in study 5 even
though it, like the rest of the models, is not designed to capture the true geostatistical nature of
the simulated data. Although the differences in the average DIC-scores in Table 2 are not very
large relative to the standard deviations, the ranking of the models is consistently preserved.
For instance, the percentage of replicate data sets for which the MCAR(B, Σ) model had the
lowest DIC-score was roughly 99% in study 1, 57% in study 2, 86% in study 3, 47% in study
4 (the true GMCAR model had lower DIC in the remaining 53% of the replications) and a full
100% in study 5.

The behaviour of the remainder of the models is also quite similar with results seen for the
AMSE and probably with similar reasonings to those given there. For instance, we again note
the typically poorer performance of the MCAR(B, I) model relative to the other spatial models;
the GMCAR model with the better ordering is the closest competitor to the MCAR(B, Σ) model
whereas the MCAR(α, Σ) model performs somewhere between the two GMCAR models in
studies 1 and 2, performs better than either of them in study 3 (the true model) and study 5
(marginally over the better GMCAR model) and worse in study 4.

6. Data example: Minnesota cancer data
We now turn from the Gaussian likelihood with p = 2 to a non-Gaussian likelihood with p = 3
in a disease mapping context, and we illustrate our methods with a data set that was extracted
from the public use SEER mortality database (http.//seer.cancer.gov). SEER county
level mortality databases (National Cancer Institute, 2003) provide the numbers of deaths and
corresponding numbers of person-years at risk in quinquennial age brackets for each county
in a particular state and each cancer site. Our data consist of the numbers of deaths due to
cancers of the lung, larynx and oesophagus in the years from 1990 to 2000 at the county level
in Minnesota. The larynx and oesophagus are sites of the upper aerodigestive tract, so they are
closely related anatomically. Epidemiological evidence shows a strong and consistent
relationship between exposure to alcohol and tobacco and the risk of cancer at these two sites
(Baron et al., 1993). Meanwhile, lung cancer is the leading cause of cancer death for both men
and women. An estimated 160440 Americans will have died in 2004 from lung cancer,
accounting for 28% of all cancer deaths. It has long been established that tobacco, and
particularly cigarette smoking, is the major cause of lung cancer. More than 87% of lung
cancers are smoking related (http.//www.lungcancer.org).
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These cancers are sufficiently rare relative to the population in each county that the Poisson
spatial regression model (4) in Section 2.2 is appropriate. To calculate the expected counts
Eij, we must take each county's age distribution (over the 18 age groups) into account. To do
so, we calculate the expected age-adjusted number of deaths due to cancer j in county i as

, i = 1,…,87, j = 1, 2, 3, k = 1,…, 18, where

is the age-specific death-rate due to cancer j for age group k over all Minnesota counties, 
is the number of deaths in age group k of county i due to cancer j and  is the total population
at risk in county i and age group k, which we assume to be the same for each type of cancer.

6.1. Model comparison
To compare models, we might set aside the values for some of the cancers in some of the
counties, impute them by using the posterior predictive distribution based on the remaining
data and then compare the resulting total mean-squared prediction error across models.
However, several practical difficulties arise, including the number and precise choice of
validation counties, and which cancer counts (one or all three) to delete in each. The dependence
structure that is imposed by the county lattice and the problem of spatial edge effects also
suggest that this would not offer a general model checking method in our context. As such, we
again compare models by using the DIC-criterion.

The county level maps of the raw age-adjusted standardized mortality ratios (i.e. SMRijYij/
Eij) that are shown in Fig. 1 exhibit evidence of correlation both across space and among the
cancers, motivating use of our proposed multivariate lattice model. Using the likelihood in
expression (4), we model the random effects ϕij by using our proposed MCAR(B, Σ) model
(12). In what follows we compare it with other MCAR models, including the MCAR(α, Σ) and
MCAR(1, Σ) models from Section 3.1, a ‘three separate CAR structure’ model ignoring
correlation between cancers and a trivariate IID model ignoring correlations of any kind. We
also compare one of the MCAR(α1, α2, α3, Σ) models that is given in expression (10) of Section
3.2 by choosing the matrix A as the upper triangular Cholesky decomposition of Σ. However,
we do not consider the order-specific GMCAR model (Jin et al., 2005) since, with no natural
causal order for these three cancers, it is difficult to choose between the six possible
conditioning orders.

As in the previous section, the deviance D(θ) is the same for the models that we wish to compare
since they differ only in their random-effect distributions p(ϕ|B, Σ). Specifically, we now have
D(θ) ≡ D(β, ϕ) = −2 log{L(Y1, Y2, Y3|β, ϕ)}, where L is the likelihood for the Poisson model
(4). We choose the same prior distributions for each parameter as in Section 5 and again set
the deviance standardizing function h(y) = 0. Since p = 3 in this example, we choose the inverse
Wishart distribution with ν = 3 and R = diag(0.1, 0.1, 0.1) for Σ. For a fair comparison of DICs,
we retain the same ‘focus’ parameters and likelihood across the models. We used 20000
preconvergence burn-in iterations followed by a further 20000 production iterations for
posterior summarization.

In what follows, models 1–6 are multivariate lattice models with different assumptions about
the smoothing parameters. Model 1 is the full model MCAR(B, Σ) (with a 3 × 3 matrix B whose
elements are the six smoothing parameters) whereas model 2 is the MCAR(B, I) model. Model
2 is the MCAR(α1, α2, α3, Σ) model (10) with a different smoothing parameter for each cancer.
Model 3 assumes a common smoothing parameter α and model 4 fits the three separate
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univariate CAR model, whereas model 6 is the trivariate IID model. Fit measures D ̄, effective
numbers of parameters pD and DIC-scores for each model are seen in Table 3. We find that
the MCAR(B, Σ) model has the smallest D ̄ and DIC-values for this data set. The MCAR(B,
I) model again disappoints, excelling over the non-spatial model and the separate CAR models
only (very marginally over the latter). The MCAR(α, Σ) and MCAR(α1, α2, α3, Σ) models
perform slightly worse than the MCAR(B, Σ) model, suggesting the need for different spatial
autocorrelation and cross-spatial-correlation parameters for this data set. Note that the effective
numbers of parameters pD in model 3 is a little larger than in model 1, even though the latter
has three extra parameters. Finally, the MCAR models do better than the separate CAR model
or the IID trivariate model, suggesting that it is worth taking account of the correlations both
across counties and among cancers. Model 6 exhibits a large pD-score, suggesting that it does
not seem to allow sufficient smoothing of the random effects. This is what we might have
expected, since the spatial correlations are missed by this model.

Models 7-11 are the convolution prior models corresponding to models 1–5 that are formed
by adding IID random effects (following N(0, τ2)) to the ϕijs. Here the distinctions between the
models are somewhat more pronounced owing to the added variability in the models that is
caused by the IID effects. The relative performances of the models remain the same with the
MCAR(B, Σ) plus IID model emerging as best. Interestingly, none of the convolution models
perform better than their purely spatial counterparts, as the improvements in D̄ in the former
are insignificant compared with the increase in the effective dimensions. This is indicative of
the dominance of the spatial effects over the IID random effects.

6.2. Results from the model selected
In this subsection, we begin by summarizing our results from the MCAR(B, Σ) model, or model
1 in Table 3. Table 4 provides posterior means and associated standard deviations for the
parameters β, Σ and bij in this model, where bij is the element of the symmetric matrix B. Instead
of reporting Σ12, Σ13 and Σ23, we provide the mean and associated 95% credible intervals for
the correlation parameters ρ12, ρ13 and ρ23, which are calculated as ρij = Σij/√(ΣiiΣjj). Table 4
reveals several positive correlations between cancers; in particular, between lung and
oesophagus cancer (ρ13). This might explain why the DIC-scores for models 1–4 are smaller
than that under the separate CAR model.

Turning to geographical summaries, Fig. 2 maps the posterior means of the fitted standard
mortality ratios SMR of lung, larynx and oesophageal cancer from our MCAR(B, Σ) model.
The correlation between the cancers is apparent, with higher fitted ratios extending from the
Twin Cities metro area to the north and north-east (an area where cigarette smoking may be
more common). In Fig. 1, the range of the raw SMRs is seen to be from 0 to 3.3, whereas, in
Fig. 2, the range of the fitted SMRs is from 0.7 to 1.3, owing to spatial shrinkage in the random
effects.

7. Summarizing remarks and future research
In this paper we have applied the notion of the linear model of co-regionalization to the analysis
of multivariate areal data and proposed the MCAR(B, Σ) model for mapping multiple diseases.
As with the existing MCAR(α, Λ) and multivariate IID models in the literature, the MCAR
(B, Σ) model is order free, i.e. independent of the ordering of the variables in the hierarchical
model. But the MCAR(B, Σ) model is much more flexible for modelling spatial correlations
in multivariate areal data. Our simulations and data example demonstrate the improved
performance of the MCAR(B, Σ) model over the existing alternatives as measured by the
AMSE or DIC, as well as its efficient implementation by using MCMC algorithms. Our
approach is also readily extended to higher dimensional (p> 2) settings; the computational
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burden does not increase much with dimension p since it does not involve large matrix
calculations.

Though our emphasis has been on mapping multiple diseases, our proposed MCAR model may
also be useful for mapping a single disease. For example, consider a spatially varying-
coefficients model (Assunção, 2003) extending model (1) in Section 2.1 to

where the xi are explanatory, region level spatial covariates having parameter coefficients β
and zi1 and zi2 are a subset of xi having spatially varying coefficients ςi1 and ςi2 respectively.
We might suspect that ςi1, ςi2 or ϕi corresponding to counties in geographic proximity to each
other might also be similar in magnitude. This in turn means that it might be worth fitting a
multivariate areal model. We could take our proposed MCAR(B, Σ) model for

, where ς1 = (ς11,…, ςn1)′, ς2 = (ς12,…, ςn2)′ ans ϕ = (ϕ1, …, ϕn)′.

In our current work, we have only considered mapping the geographic pattern of multiple
diseases at a single point in time. However, disease data are often reported over a series of time
periods. For example, the SEER database currently provides cancer mortality information for
the years from 1969 to 2001. In such cases, we may be interested in temporal effects as well
as spatial effects. This motivates an extension of the proposed MCAR model to multivariate
spatiotemporal data. Knorr-Held (2000) proposed a general framework for spatiotemporal
modelling of a single disease by using ICAR models, which could perhaps be extended to our
multivariate setting. Alternatively, we may work with a multivariate Gaussian AR(1) time
series of spatial processes in the setting of dynamic models (Gelfand et al., 2005). This would
extend model (4) in Section 2.2 to

where the xijt are explanatory, region level spatial covariates for disease j at time period t having
parameter coefficients βjt. Let ϕj, t+1 = Hjϕj, t + εjt, where Hj is an n × n matrix, ϕjt = (ϕ1jt,…,
ϕnjt)′ and εjt = (ε1jt,…, εnjt)′, j = 1,…, p. Then we can assume that Hj = H = θ0I or Hj = H =
θ0I + θ1W, where W is an adjacency matrix and I is an n × n identity matrix. The random effects

 follow a multivariate areal model, such as our proposed MCAR(Bt, Σt) model,
or perhaps the MCAR(B, Σ) model if the parameters of the MCAR model do not change over
time.

Finally, here we have studied methods for mapping rare disease rates, with the rarity required
to ensure the validity of the Poisson approximation to a binomial sampling distribution.
However, it is easy to adapt the statistical methods that we have presented here to analyse non-
rare diseases by replacing the Poisson likelihood with a binomial distribution for the data
(MacNab, 2003). Also, although in this paper we considered only mapping disease rates, we
also can apply our MCAR(B, Σ) model methodologies when modelling random effects in a
hazard function (Carlin and Banerjee, 2003).
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Fig. 1.
Maps of raw standardized mortality ratios SMR for (a) lung, (b) larynx and (c) oesophageal
cancer in the years from 1990 to 2000 in Minnesota

Jin et al. Page 21

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2010 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Maps of posterior means of the fitted standard mortality ratios SMR for (a) lung, (b) larynx
and (c) oesophageal cancer in the years from 1990 to 2000 in Minnesota from the MCAR(B,
Σ) model
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Table 3

Model comparison using DIC-statistics, Minnesota cancer data analysis

Model D ̄ pD DIC

1, MCAR(B, Σ) 138.8 82.5 221.3

2, MCAR(B, I) 147.6 81.4 229.0

3, MCAR(α1, α2, α3, Σ) 139.6 86.4 226.0

4, MCAR(α,Σ) 143.4 81.9 225.3

5, separate CAR 147.6 82.8 230.4

6, trivariate IID 146.8 91.3 238.1

7, MCAR(B, Σ) + trivariate IID 129.6 137.6 267.2

8, MCAR(B, I) + trivariate IID 139.5 155.2 294.7

9, MCAR(α1, α2, α3, Σ) + trivariate IID 137.4 155.0 292.4

10, MCAR(α, Σ) + trivariate IID 138.2 151.0 289.2

11, separate CAR + trivariate IID 139.2 162.8 302.0
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Table 4

Posterior summaries of parameters in the MCAR(B, Σ) model for the Minnesota cancer data

Parameters Results for the following cancers:

Lung Larynx Oesophagus

Median (2.5%, 97.5%) Median (2.5%, 97.5%) Median (2.5%, 97.5%)

β1, β2, β3 −0.093 (−0.179,−0.006) −0.128 (−0.316, 0.027) −0.080 (−0.194, 0.025)

Σ11, Σ22, Σ33 0.048 (0.030, 0.073) 0.173 (0.054, 0.395) 0.107 (0.044, 0.212)

ρ12, ρ13 0.277 (−0.112, 0.643) 0.378 (−0.022, 0.716)

ρ  23 0.337 (−0.311, 0.776)

b11, b22, b33 0.442 (−0.302, 0.921) 0.036 (−0.830, 0.857) 0.312 (−0.526, 0.901)

b12, b13 0.323 (−0.156, 0.842) 0.389 (−0.028, 0.837)

b 23 0.006 (−0.519, 0.513)

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2010 October 25.


