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Abstract
The emergence of geographical information systems and related softwares nowadays enables medical
databases to incorporate the geographical information on patients, allowing studies in spatial
associations. Public health administrators and researchers are often interested in detecting variation
in survival patterns by region or county in order to understand the possible factors that contribute
towards such spatial discrepancies. These issues have led statisticians to develop survival models
that account for spatial clustering and variation. Additionally, with rapid developments in medical
and health sciences, researchers increasingly encounter data sets where a substantial portion of
patients are cured. Models accounting for cure in the population assist in the prognosis of potentially
terminal diseases. This article proposes a Bayesian modelling framework that models spatial
associations for areally referenced survival data using a general class of cure models proposed by
Cooner et al. The special models we outline are alternatives to the traditional proportional hazards
models and can be fitted using standard Bayesian software such as WinBUGS.

1 Introduction
With the advent of geographical information systems, medical and health databases now often
include geographical information on patients (e.g., county of residence) that allow the
researchers to investigate spatial associations in health phenomena. Spatial disease mapping,
an area that has attracted much attention over the last several years,1–3 concerns the
development of statistical and cartographic methods that map disease rates accounting for
different types of extraneous variation. Lawson and Williams,3 in particular, discuss several
aspects of modelling and software implementations.

In recent times, there has been growing interest in capturing spatial trends in the survival
patterns of patients suffering from potentially terminal diseases. Health care administrators and
public health researchers are often interested in detecting variation in survival patterns by
counties for determining the possible factors that contribute towards such variability. These
issues have led statisticians to develop survival models that account for spatial clustering and
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variation. Banerjee et al.4 investigated the spatially correlated frailties in traditional parametric
survival models adopting a hierarchical Bayesian approach. Instead, Li and Ryan5 address this
problem from a classical perspective.

Generally, the spatial survival modelling mentioned above is treated in a proportional hazards
framework. With rapid developments in medical and health sciences, scientists and health
professionals encounter more data sets where the patients are expected to be cured. Formulation
and estimation of models that account for cure are important for understanding prognosis in
potentially terminal diseases. Traditional parametric survival models such as Weibull or
Gamma6 do not account for cure, assuming instead that individuals who do not experience the
event are censored. Although subtle, in these contexts one distinguishes between the concepts
of censoring and cure: censoring refers to a subject who does not fail within the time window
of the experiment, while cure refers to one who will never fail. Indeed the latter is an abstraction
as we never ‘observe’ a cure (due to a finite monitoring time). Still estimating the probability
of such an outcome, especially in various cancer-relapse settings, can help expose unknown
health issues concerning that population.

Statistical models address this conceptually challenging problem by parametrizing the
probability of a cure, called the cure fraction. One of the earliest such models was a class of
mixture models by Berkson and Gage7 that generated subsequent investigations by Farewell,
8,9 Goldman,10 and Ewell and Ibrahim11 among others. Yakovlev et al.12 and Chen et al.13
offered an alternative approach to formulating cure models14,15 that assume a latent biological
process in generating the observed failure (say, cancer relapse). Recently, Cooner et al.16

proposed a very general class of cure models assuming (possibly several) latent factors or
latent risks (e.g., metastasis-competent tumours that lead to cancer relapse) corresponding to
each patient. For an individual to be at risk of failure, one must be exposed to at least one of
these latent factors. If not, the individual is not at risk and is considered cured. Failure is
observed when some (perhaps one or all) of these latent factors become activated.

In the modelling of spatial association using random effects and, more generally, regressors in
cure models, the modeller faces some conceptually interesting alternatives. Certain data sets
may be better modelled by assuming that the cure fractions are spatially associated.
Alternatively, one may model regressors and spatial effects in the distribution of the latent
factors. Richer models incorporating such random effects in both the cure fraction and the
latent distributions can also be conceptualized. However, identifiability and estimability of
such models raise concerns that have hitherto gone unaddressed with most of the spatial-
survival analysis literature focussing upon proper survival models. Recently, Banerjee and
Carlin17 demonstrated data analysis from a spatially referenced interval-censored smoking-
cessation study in southern Minnesota using a binary cure model interpreted as one latent factor.
However, their models preclude studying spatial effects in the cure fraction, as such effects are
not estimable.

This article explores spatial cure rate models by extending the modelling framework of Cooner
et al.16 We propose a methodological framework that enables versatile and flexible modelling
of spatial associations for survival data in which a prominent proportion of subjects might be
cured. We adopt a Bayesian hierarchical framework that allows very rich modelling structures
estimated using Markov Chain Monte Carlo (MCMC) methods.18 It is important to point out
that we limit our discussion to areal settings where the geographical referencing for each
subject is by the county they live in, rather than by the coordinates of each subject’s residence
(point-referencing). Areal summaries are frequently found in public health data due to data
privacy issues.
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With information at the county level, spatial modelling will proceed from the neighbourhood
information of the counties. More precisely, we consider a vector of univariate latent random
variables ϕ = (ϕ1,…,ϕn) in n areal locations (such as counties, states) that follow a spatial
distribution. Unlike the independent random effects that specify ϕ ~ N(0, τ2I), a spatial
distribution will model ϕ ~ N(0, Σ−1), where Σ−1 is a choice of the spatial precision matrix.
Typically, these effects are modelled after adjusting for covariates or risk information and
hence are zero-centered. Specifying Σ−1 based on the underlying neighbourhood configurations
follow from the theory of Markov Random Fields (see e.g., the works of Rue and Held19 for
details). We work with univariate and multivariate conditionally autoregressive (CAR) models
that accrue computational benefits, while incorporating spatial effects. In particular, we
investigate a Generalized multivariate CAR (GMCAR) distribution, recently investigated by
Jin et al.20 that encompasses very rich multivariate spatial associations.

The remainder of this paper evolves as follows. In Sections 2 and 3 we outline the cure rate
and spatial modelling framework that we work with. Section 4 discusses the Bayesian
implementation algorithms. Section 5 provides the analysis of a breast cancer survival data set
obtained from the National Cancer Institute’s Surveillance, Epidemiology and End Results
(SEER) database (http://www.seer.cancer.gov/). Finally, Section 6 summarizes and indicates
future areas for research.

2 Cure rate modelling under latent activation schemes
Cure models based upon latent activation schemes16 involves failure times at two different
levels: an observed failure time T corresponding to the observed time when an individual
fails, as well as the latent event times, Yk, k = 1,…,N, the activation times for the N latent factors
that generate the observed failure at time T. Note that if N = 0 then the individual is not exposed
to any of the latent factors and is considered immune from failure; thus the individual is
cured and T = ∞. For a given  are assumed to be independently and identically
distributed (i.i.d.) with a survival distribution P(Y > t) = S(t) that does not depend upon N. We
call this the latent survival function and denote the corresponding distribution function by F
(t) = 1 − S(t).

To derive the distribution of T, we assume that r out of N latent factors need to be activated
for the subject to fail, so T = Y(r), r = 1,…, N where Y(1) < … < Y(N) are the ordered Yk’s. Cooner
et al.16 investigate the different modelling choices for r. While in general r itself can be
modelled as random, fixing r at some positive integer between 1 and N (given N) results in
better identified models. Thus, r = 1 implies that activation of any one of the latent factors
leads to observed failure. We call this the first-activation scheme. In contrast, setting r = N
implies T = max1≤k≤N Yk and delivers a different scheme where an individual is able to ‘resist’
up to N − 1 activations and fails with the last activation. We call this the last-activation
scheme. In either scheme, N represents the same object (number of latent factors), but the way
it brings about the observed phenomenon (e.g., relapse of cancer) is modelled differently. More
generally, an exposed subject (N > 0) at any time point will not experience detectable failure
if the number of latent event occurrences at that time is less than r. Henceforth, we will consider
r as fixed; indeed, we will focus only on the first- and last-activation schemes.

The conditional distribution of T given N can be written down in terms of the incomplete beta
function, or a beta cdf denoted by IB(S(t); N − r + 1, r), (using a standard result on order statistics
using the binomial theorem, e.g., Rao21 (p. 215) as

(1)
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where 1(·) is the indicator function and

The unconditional survival function of T, S*(t), is related to the latent distribution as

(2)

where the expectation is taken over the distribution of N. Here S*(t) always exists, being
bounded between 0 and 1 for any valid distribution of N restricted to N ≥ r ≥ 1 as IB(S(t); N −
r + 1, r) is otherwise 0. Also, as limt→∞ S(t) = 0, we have limt→∞ S*(t) = P(N = 0), showing
that S*(t) is improper whenever P(N = 0) > 0. Indeed, P(N = 0) is the probability of a person
being cured or immune, hence called the cure fraction, and depends only upon the distribution
of N, irrespective of what r is. Despite S*(t) being improper, the hazard, say h*(t)dt ≈ P(T ∈
[t, t + dt)|T > t), is still valid so that h*(t) is evaluated as −(d/dt) log S*(t), or f*(t)/S*(t), where
f*(t) is the corresponding improper density. In fact, if f (t) is the proper latent density
corresponding to F(t), then

(3)

The variable N can never be observed and must be modelled using a probabilistic assumption.
From a more theoretical perspective, one can show16 that if N ~ Po(θ) and if r or N − r is fixed
at some positive integer (e.g., r = 1 or r = N), then θ is identifiable under a scale-invariant prior
g(θ) ∝ 1/θ permitting regression in log(θ). These generate a well-identified class of cure models,
obtained by setting r appropriately. Note that with N ~ Po(θ), we have the cure fraction exp
(−θ). This theoretical identifiability permits regression (along with spatial random effects) in
log(θ), amounting to a Poisson regression.

The first-activation scheme (r = 1) assumes that activation of a single latent factor will lead to
observed failure. According to a biological model for patients diagnosed with cancer, N is the
number of metastasis-competent clonogenic cells that are in an irreversible process towards
metastasis, and Yk is the time for the kth clonogenic cell to produce ‘detectable’ tumour.
Detectable metastasis occurs as soon as any one of the clonogens metastasize, so that T =
min1≤k≤N Yk. This arises as a special case of equation (1) with r = 1 so that P(T ≥ t|N) = 1(N =
0) + IB(S(t); N, 1)1(N ≥ 1), which simplifies to P(T ≥ t|N) = 1(N = 0) + [S(t)]N1(N ≥ 1). The
CIS models of Chen et al.13 further assume that N ~ Po(θ), from which we obtain S*(t) =
EN[P(T ≥ t|N)] = P(N = 0) + EN[S(t)N1(N ≥ 1)] = exp(−θS(t)).

The physical framework of the first-activation scheme is not unique in assuming that one latent
factor’s activation generates observed failure. Alternatively, N can be the number of latent
factors that must all be activated for failure. For instance, biological models for certain types
of cancer posit that a patient’s immune response gets activated after the initiation of N cell
mutations. This immune response may be able to resist up to N − 1 promotions of mutated cells
before disease manifestation or death. Here, we model Yk as the time to promotion of the kth
latent factor and failure occurs after the Nth factor is activated, hence the observed failure time
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is T = max Yk, k = 1,…,N. Again, we have a special case of equation (1) with r = N and P(T ≥
t|N) = 1(N = 0) + IB(S(t); 1, N)1(N ≥ 1). The conditional distribution of T given N is now easily
expressed in terms of the latent distribution function F(t) = 1 − S(t) as P(T ≤ t|N) = [F(t)]N1
(N ≥ 1). Note that although S*(t) is different from that in the first-activation scheme, they tend
to the same limit, P(N = 0), resulting in the same cure fraction. In particular, when N ~ Po(θ),
we get S*(t) = 1 + exp(−θ)(1 − exp(θF(t))) which is different from that under first activation,
but approaches the same cure fraction, exp(−θ).

Turning to alternative modelling of N, we note that several authors including Tucker et al.22

and Tucker and Taylor,23 have questioned the Poisson assumption for any particular cancer
cure scenario. From a modelling standpoint, the number of possible latent events N can have
any finite-mean integer-valued distribution (e.g., binary, geometric and so on). In traditional
cure rate models,7,9 N is binary with only one latent dominant event (e.g., a dominant metastasis
competent tissue-mass in breast cancer), so N ~ Ber(θ) (with θ being the probability of an
activation). Here S*(t) = 1 − θ(1 − S(t)), approaches the cure fraction 1 − θ.

Another specification we consider here is N ~ Geo(θ), a geometric distribution with mean θ/
(1 − θ)(P(N = n) = θn(1 − θ)). A biological motivation, different from the clonogen motivation
in Chen et al. (1999),13 can be offered as follows (also see the work of Moolgavkar et al.24).
Assuming a short time-interval of the mutation (initiation) period (due to exposure to genetic
damage), the patient’s body produces a sequence of N mutated cells/tissues before activating
the immune system. Every mutation (initiation) may give rise to an effective immune response
from the body with probability 1 − θ, capable of destroying the last mutated tissue/cell and
halting the mutation process. With  now being the promotion times of the mutated cells,
a first-activation scheme with T = mink Yk models failure with any one activation. Now we
have S*(t) = (1 − θ)/(1 − θS(t)) with a cure fraction of 1 − θ. We will explore these settings in
the subsequent sections, pointing out their identifiability properties in spatial regression
contexts.

3 Latent spatial cure rate model
The cure rate models in Cooner et al.16 accommodate two primary regression structures, one
using the mean of the latent factors, viz. the Yk’s, or using a Poisson regression in the cure
fraction itself. More precisely, suppose we have I regions, with ni patients observed in the ith
region. Let (tij, δij, xij) be the observations collected from the jth patient in region i (i.e., the
(i, j)th patient), where tij is the time-to-event (e.g., death, relapse and so on), δij is the censoring
indicator (0 if censored, 1 if dead) and xij is a set of patient-specific regressors. If we assume
that Yk’s follow a two-parameter Weibull distribution Weib(ρ; η), that is S(t) = exp(−tρ eη), for
each patient, then we can model patient-specific regression either in the Weibull link as

, or in the respective cure fraction as log(θij) = xij. In the former, we can explore the
contribution of progress rate to failure time; in the latter, we can investigate the contribution
of the cure fraction.

For studying spatial variation across regions and, more specifically, smoothing across regions
using adjacency information, we introduce spatial frailties4 that are spatially correlated region-
specific random effects ϕi, i = 1,…, I. Interesting modelling choices arise. We could, as for the
regressors, add these frailties either in η or in log(θ). If geographical variation is expected to
reflect itself in lurking covariates that affect the latent factors, we opt for the former. In contrast,
if we expect this variation in the cure fraction itself, we opt for the latter. However, in practice
this choice will often not be clear. Therefore, more generally, one may incorporate two different
sets of frailties,  in the ηij’s and  in the log(θij)’s. On the basis of these, we classify
models as univariate or bivariate; we discuss them in detail below.

Cooner et al. Page 5

Stat Methods Med Res. Author manuscript; available in PMC 2010 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.1 Univariate spatial cure rate model
In principle, N can be modelled using any integer-valued probability distribution. Irrespective
of the distribution of N, the regression coefficients and frailties are identifiable from the data
when they model the ηij, giving rise to the following models:

In contrast, covariates modelled through regression on the cure fraction will be identified only
if N ~ Po(θ), thereby precluding models 1(b)–(c). The spatial cure rate models for studying the
spatial associations in cure fractions are given by

Note that the interpretation of the parameters will be different for the two sets of models. In
models 1(a)–(c), higher values of ηij indicate longer latent event times and hence prolonged
survival, so covariates influence the latent factors that cause failure. In contrast, in model 2,
covariates influence the cure fraction directly. Almost certainly, most covariates that affect the
latent event times will also affect the cure. For these covariates, we have a consistency in
behaviour under the two groups of models. To see this, note that the Weibull mean is a
decreasing function of ηij (given by exp(−ηij/ρ)Γ(1 + 1/ρ)) and the cure fraction is a decreasing
function of θij. This is sensible because covariates that adversely affect the survival time will
likely affect the cure fraction adversely as well (and vice versa). Therefore, it is expected that
their coefficients have the same sign under both sets of models.

Turning to the spatial modelling of the ϕi’s, we employ variants of the (univariate) conditionally
autoregressive model introduced by Besag.25 For further theoretical discussions, see the works
of Cressie,26 Banerjee,27 Rue and Held,19 Heikkinen and Högmander,28 Högmander and
Møller29 and Hoeting et al.30 for generalizations and applications. Collecting the frailties into
an I × 1 vector ϕ = (ϕ1,…, ϕI)T, a popular version of the CAR model is characterized by

(4)

where B is an I × I matrix with diagonal elements 0, and Dτ is a diagonal matrix with entries
, i = 1,…,I. A usual assumption is Dτ = τ2D, where D is a diagonal matrix with common

entries. On the basis of the formulation in equation (4), different choices of B, α ∈ (0, 1), and
Dτ lead to various CAR modelling structures. Most often, we set D to be a diagonal matrix
with entries mi, i = 1,…,n, where mi is the number of the spatial neighbours for region i, whence
B = D−1 W is a row-normalized adjacency matrix, where W is the adjacency matrix with
diagonal entries 0 and off-diagonals equalling 1, if and only if two regions are neighbours (and
0 otherwise). With α = 1, we recover the pairwise difference distribution of Besag et al.,31 also
called intrinsic autoregressive model. While this model allows maximum smoothing, the
spatial dispersion matrix is singular. However, it is non-singular in a subspace of dimension
one less (for connected regions), and is not much cause of concern for Bayesians who can just
add a linear constraint to ϕ and update it using MCMC methods. See the work of Lawson et
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al.32 for an excellent overview of implementing CAR models in the WinBUGS software in the
disease mapping contexts.

For assessing practical benefits in modelling these effects, we also fit i.i.d models where ϕ ~
N(0, τ−2I). Two basic schemes, first and last activation, of the cure rate model class should
apply in both structures. We will analyse the resulting models and investigate the performances
using Deviance Information Criterion (DIC; Spiegelhalter et al.33). See section 4 for further
details.

3.2 Bivariate spatial cure rate models
For investigating spatial associations in the latent link and the cure fraction jointly, the basic
structure is similar to the univariate setting:

Again, both schemes proposed by Cooner et al.16 should be identifiable. When multiple
parameter sets (such as frailties in cure fractions and the Weibull link) need to be modelled
jointly, as opposed to independently, we resort to multivariate CAR models originally proposed
by Mardia34; see also the works of Carlin and Banerjee35 and Gelfand and Vounatsou.36 Let

 be a vector of p variables associated with the ith region. Collecting these effects

into , the joint distribution can be written down as

(5)

where BR is an np × np matrix with block elements (BR)ij = RiBij and 0 as diagonals, Ri and
Bij are p × p matrices, and Γ is an np × np block diagonal matrix with block elements Γi, i =
1,…, n.

Mardia34 and Carlin and Banerjee35 discuss more general conditions for the positive-
definiteness of Γ(I − BR), although computational feasibility often encourages simpler
specifications such as Ri = αIp×p, i = 1,…, n, and Γ = D ⊗ Λ, where D is a diagonal matrix
with positive entries and Λ is a p × p positive definite matrix. The dispersion matrix in equation
(5) now becomes [(D(I − αB)) ⊗ Λ]−1.

Although the Kronecker structure offers computational and interpretational simplicity, there
has been much research on developing more general spatial covariances, notably by Kim et
al.,37 Carlin and Banerjee35 and Jin et al.20 The last work offers a Generalized Multivariate
Conditionally Auto Regressive (GMCAR) model with emphasis on computational simplicity.

Considering p = 2 and writing , where  and , the
GMCAR models the joint distribution of ϕ as p(ϕ) = p(ϕ1|ϕ2)p(ϕ2). Writing this joint
distribution as

(6)
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setting  and , we have ϕ1|ϕ2 ~ N(Aϕ2, Σ11.2) and
ϕ2 ~ N(0, Σ22).

Treating ϕ1|ϕ2 and ϕ2 as two univariate CARs, we assume ϕ1|ϕ2 ~ N(Aϕ2, τ1[(D − α1W)]−1),
and the marginal distribution for ϕ2 is N(0, τ2[(D − α2|W)]−1). Furthermore, let D = Diag(mi),
and 0 < α1, α2 < 1 to ensure that model propriety and positive spatial autocorrelation. Also
define the entries of matrix A as aii = γ0, aij = γ1 if i ~ j, and 0 otherwise, hence A = γ0I +
γ1W, where γ0, γ1 are called the bridging parameters that relate the associations between areal
units and the associations between the variables. Jin et al.20 refer to such models as GMCAR
(α1, α2, γ0, γ1, τ1, τ2) and show that many existing MCAR models are special instances of the
GMCAR.

4 Bayesian estimation of spatial cure models
Our observed data comprises Dij = (tij, δij, xij), where tij is the observed failure time, δij is the
failure indicator and xij is a set of covariates. We collect the model-specific parameters (and
hyperparameters) into a generic set Ω = Ωij, where Ωij = (ηij(β), θij(β), ρ, ψ) denotes regression
in either ηij or θij (perhaps both), and ψ as the set of other hyperparameters that may arise in
specific models. Suppressing ηij and ρ, the contribution of subject (i, j) to the data likelihood
(in a right-censored setting) is

where P(T ≥ t|N) is as in equation (1), and  [F
(t)]r−1f (t) with r = 1 or N accordingly for first or last activation. More generally, we can envision
each subject-specific activation types, so that some of the r’s will be 1 and others will be N.
However, it is more appropriate to think of the population (patients from a specific cancer type)
as being subjected to a mechanistic generation of failure that determines the activation scheme
for the first or last patient. So, we usually fix r = 1 or set it equal to N for each subject.

We seek the posterior distribution of Ω after marginalizing over the distribution of Nij’s that
considerably simplifies the MCMC implementation18 by reducing the estimation space. The
contribution of patient (i, j) can be written as (h*(tij))δij S*(tij), where h*(t) = f*(t)/S*(t) denotes
the marginal hazard (see Section 2), yielding the marginalized data likelihood as

(7)

Thus, we may sample P(Ω|{Dij}) using say Metropolis–Hastings algorithms, without worrying
about sampling the Nij’s.

Further computational simplifications arise as h*(t) can often be evaluated in closed forms.
For instance, in the first- and last-activation schemes. Under the first-activation scheme, we
obtain h*(t) = h(t)EN[N(S(t))N]/EN[(S(t))N], where h(t) = f (t)/S(t) is the latent hazard function.
Furthermore, when N ~ Po(θ) with regression in log(θ) = xT β and S(t) is free of x, we obtain
a proportional hazards structure for h*(t|x) = exp(xTβ)f (t). In contrast, with N ~ Geo(θ), we
find that h*(t) = θf (t)/(1 − θS(t)) does not render a proportional hazards structure. Cooner et
al.16 argue that a proportional hazards structure is obtained only with N ~ Po(θ). These
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characterization results show that the available observed data can inform about the form of S*
(t|x), and thus help us deduce the distributional structures of the corresponding latent activation
times and N.

For the last-activation scheme, we obtain the hazard as h*(t) = f (t)EN[N(F(t))N−1 1 (N ≥ 1)]/
[1 + P(N = 0) − EN[(F(t))N]]. Here, we do not have a proportional hazards structure with Poisson
or geometric. With the first, we obtain h*(t) = f (t)θe−θS(t)/[1 + e−θ (1 − eθF(t))], while for the
geometric we obtain h*(t) = f (t)θ(1 − θ)/[(1 + θ(θ − 2)F(t))(1 − θF(t))]. Clearly, the hazards
structure for the last-activation scheme is more complex, and perhaps less intuitive, than for
the first-activation setting. Nevertheless, these provide valid regression structures and may
provide better fits in situations where proportional hazards or other simpler models are
inappropriate. More importantly from a computational standpoint, they are easily coded into
the likelihood as a part of the MCMC implementation. These models can, in fact, be
implemented in WinBUGS; www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml.

Finally, we offer model comparisons using the DIC33 as a measure of model choice. The DIC
has nice properties for Gaussian likelihoods (as ours) and is particularly convenient to compute
from posterior samples. This criteria is the sum of the Bayesian deviance (a measure of model
fit) and the (effective) number of parameters (a penalty for model complexity). It rewards better
fitting models through the first term and penalizes more complex models through the second
term, with lower values indicating favourable models for the data. The deviance, up to an
additive quantity not depending upon Ω, is simply minus twice the log-likelihood, D(Ω) = −2
log L({Dij};Ω), where L({Dij};Ω) is the likelihood given in equation (7). The Bayesian

deviance is the posterior mean, , while the effective number of parameters
is given by . The DIC is then given by  and is easily computed from
the posterior samples.

5 Illustrations
The National Cancer Institute’s SEER database, available online at http://seer.cancer.gov,
provides a national cohort of women who have been monitored for assessing breast cancer
prognosis. In addition, available individual-level covariates are age at diagnosis, the number
of primary cancers each woman has had diagnosed, the stage of the disease (local (200),
regional (94 patients) or distant (4 patients), with local as baseline), and the county information
at the time of diagnosis. We consider a sample of 298 patients from Iowa (with 99 counties),
who were all diagnosed of breast cancer in January 1992 and monitored through 1998. The
response here is time to death from breast cancer: only those who have been identified as having
died from metastasis of nodes in the breast (there were 49 such deaths) are considered having
failed, while the rest (including those who might have died from other types of cancer or other
causes) are considered censored. The longest observation time of this sample is 83 months.

Under both activation schemes in our analysis of the cancer data, we assumed that the
regression coefficients β had a non-informative N(0, 103) prior (flat priors are admissible here
as well), while a relatively weak Gamma(2, 0.001) prior (mean 2000) was used for ρ.
Specifically, for model 2, an N(0, 100) prior for η was used, a Gamma(2, 0.001) prior was used
for θ in model 1(a), while U(0, 1) priors were assigned to θ in models 1(b) and (c). We also
use Gamma(2, 0.001) for the precision τ in either independent case or the CAR model. These
priors are vague enough to allow the data to drive the posterior inference, while still leading
to acceptable MCMC convergence. We experimented with other hyperparameter values and
did not observe much sensitivity to these choices in the posterior distributions.
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For each analysis, we ran two initially dispersed parallel MCMC chains for 30 000 iterations
each, where convergence was monitored using sample autocorrelations within the chains,
cross-correlations between the parameters, and plots of the sample traces. These tools
suggested discarding the first 5 000 iterations from each chain as pre-convergence burn-in.
Retaining every 10th of the remaining 2 × 25 000 = 50 000 iterations yielded a final sample of
size 5 000 for posterior analysis. The first- and last-activation models were implemented in
WinBUGS (see www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml) using R (www.r-project.org)
for final posterior summarization. The relevant codes are available from
www.biostat.umn.edu/~sudiptob/Software/Software.html.

5.1 Univariate analysis
We use univariate spatial models to analyse the spatial patterns in the latent link η and the cure
fraction parameter θ separately. We use a single set of frailties  and fit models 1(a)–
(c) regressing in η and model 1(a) and model 2 with regression in log(θ). Table 1 presents the
DIC scores for these models when the ϕi’s are i.i.d. Gaussian random effects. For regression
in η, we see that model 1(c) has the best DIC scores in both the first- and last-activation models.
Interestingly, first-activation scores show slightly greater variation between the models in their
DIC scores as compared to the last-activation model. This might reflect greater sensitivity of
the first activation to the distributional assumptions of N. Also, for model 1(c) the effective
number of parameters, pD, seem to be prominently higher due to greater variation in the random
effects. For regression in log(θ), we find that model 2 has a substantially lower DIC score
compared to model 1(a) under the first-activation scheme, while the latter performs moderately
better than the former for the last activation setting. A very similar story is obtained from Table
2, where the i.i.d. frailties are replaced by spatially associated CAR frailties.

We did not observe much significance for the covariates included in our model. Indeed, the
incorporation of spatial effects sometimes widen these credible intervals, as compared to
models without random effects. Our preliminary results apparently indicate a rather slim impact
of the activation schemes on the posterior estimation of spatial clustering. Therefore, we present
the maps of the spatial posterior medians for η and θ only for model 1(a) and model 2 under
first-activation schemes. Also, for η the different structures in model 1 did not cause major
differences in spatial patterns, while for θ only model 1(a) and model 2 yielded stable
convergence – a fact corroborated by the theoretical impropriety of the others. More
specifically, the i.i.d. frailties, plotted in Figures 1 and 2, show less pronounced spatial patterns.
Both figures reveal only slight differences in spatial patterns for the cure rates or the latent
mean between model 1(a) and model 2. Also, we can see that the large difference of the ϕ
values in model 1(a) and model 2, suggesting that the simple model (univariate and i.i.d. normal
on ϕ) are not stable or reliable (perhaps due to the small sample sizes in some counties).

Figures 3 and 4 reveal much clearer spatial patterns from the northeast to the southwest for
both η and θ. Since the latent mean survival time and the cure fractions are non-increasing
functions of η and θ respectively, the maps for all the models suggest that the southwest has a
better survival experience than the northeast. Although both the southwest and the northeast
are relatively less populated rural regions in Iowa, these clusters might reflect unknown or
missing covariates that explain differences in patient care (e.g., access to health care, quality
of medical facilities and so on). Incorporating regressors containing such information might
well lead to better smoothing of the maps.

5.2 Bivariate analysis
Here we consider joint spatial associations in η and θ simultaneously. In Table 3 we show the
different models we consider here and their DIC scores. We classify the models as those having
two sets of i.i.d. random effects, those with two independent CAR distributions and finally
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with jointly associated GMCAR random effects. Not much variation is seen across the DIC
scores. Under the first-activation scheme we find model 2 to be slightly better for the i.i.d.
effects and the two independent CAR effects, while model 1 seems to be marginally better for
the GMCAR effects. The story is somewhat similar for the last-activation setting, although we
did not find suitable convergence for model 2 from the data under the GMCAR setting.

In Tables 4–6, we present parameter inference results from the best model under first and last
activation, with three bivariate assumptions on spatial frailties. For all six models, we find
insignificant impact for age at diagnosis and the number of primary nodes, although age at
diagnosis has a positive median for each of the models. As expected, the stage variable,
indicating the extent of the disease, “Regional” and “Distant” lead to significant hazard increase
relative to “Local”. Finally, the Weibull scale parameter ρ is robustly estimated across the
models.

Turning to the spatial maps, two sets of i.i.d. Gaussian random effects in η and θ do not bring
about much changes in the posterior behaviour for ϕ, so we do not present the maps for space.
However, in Figures 5 and 6, considering the spatial frailties in the frailties together, we find
that spatial clustering with frailties in η is inconsistent with that in log(θ). This happens for
model 1(a) and model 2 and is in clear contrast with Figures 3 and 4 which displayed consistent
behaviour. The differences between two models for both parameters are large and the spatial
pattern seem reversed. It is worth mentioning that the values now are very well stabilized. Two
separate i.i.d. normal or CAR frailties might still not be enough to capture the spatial patterns.

These lead us to question some of the fundamental assumptions for the independence between
the spatial effects in the latent link η and the cure fraction parameter θ. Simply introducing two
independent univariate spatial structures is inadequate, hence the MCAR or the GMCAR
should be implemented into our models. With the GMCAR assumption, the maps (Figures 7
and 8) show somewhat similar spatial trends as the univariate cases, which may suggest a lack
of significant spatial association for this set of data.

6 Future work
We plan to extend our current work into several directions. First, we will substantially enhance
the current illustration with the hierarchical activation scheme results. Next we propose to
implement these models with more flexible MCAR specifications. Finally, we will investigate
spatio-temporal effects to account for temporal associations where we may model the cure
fractions θi(t) or the latent link ηi(t) as functions of time. These may include direct time-varying
regression, polynomial or spline functions of time, or even completely non-parametric
modelling using temporal processes.
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Figure 1.
Univariate analysis – i.i.d. normal (frailties in latent link η): maps for median frailties under
first-activation scheme for model 1(a) (left) and model 2 (right).
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Figure 2.
Univariate analysis – i.i.d. normal (frailties in cure fraction parameter θ): maps for median
frailties under first-activation scheme for model 1(a) (left) and model 2 (right).
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Figure 3.
Univariate analysis – CAR (spatial frailties in latent link η): maps for median spatial frailties
under first-activation scheme for model 1(a) (left) and model 2 (right).
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Figure 4.
Univariate analysis – CAR (spatial frailties in cure fraction parameter θ): maps for median
spatial frailties under first-activation scheme for model 1(a) (left) and model 2 (right).
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Figure 5.
Bivariate analysis – two independent CAR (spatial frailties in latent link η i.e., ϕ1): maps for
median spatial frailties under first-activation scheme for model 1(a) (left) and model 2 (right).
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Figure 6.
Bivariate analysis – two independent CAR (spatial frailties in cure fraction parameter ϕ i.e.,
ϕ2): maps for median spatial frailties under first-activation scheme for model 1(a) (left) and
model 2 (right).

Cooner et al. Page 19

Stat Methods Med Res. Author manuscript; available in PMC 2010 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Bivariate analysis – GMCAR (spatial frailties in latent link η i.e., ϕ1): maps for median spatial
frailties under first-activation scheme for model 1(a) (left) and model 2 (right).
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Figure 8.
Bivariate analysis – GMCAR (spatial frailties in cure fraction parameter θ i.e., ϕ2): maps for
median spatial frailties under first-activation scheme for model 1(a) (left) and model 2 (right).
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Table 4

Posterior quantiles for different models (corresponding to best DIC) under first- and last-activation schemes,
with i.i.d. normal assumption on spatial frailties

Parameter First (model 2) Last (model 2)

Median (2.5%, 97.5%) Median (2.5%, 97.5%)

Intercept 1.034 (−3.116, 12.440) −4.005 (−6.645, −1.638)

Age 0.008 (−0.013, 0.029) 0.014 (−0.009, 0.039)

Primaries −0.001 (−0.672, 0.568) 0.783 (−0.458, 2.183)

Stage (local = 0)

    Regional 1.281 (0.656, 1.947) 1.764 (0.829, 2.937)

    Distant 2.980 (2.063, 3.830) 2.642 (1.568, 3.621)

    η0 (Weibull link) −8.729 (−19.520, −4.952) −4.629 (−6.214, −3.422)

ρ 1.090 (0.824, 1.524) 1.157 (0.827, 1.653)
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Table 5

Posterior quantiles for different models (corresponding to best DIC) under first- and last-activation schemes,
with CAR assumption on spatial frailties

Parameter First (model 2) Last (model 2)

Median (2.5%, 97.5%) Median (2.5%, 97.5%)

Intercept 6.645 (−2.279, 15.050) −4.037 (−6.620, −1.612)

Age 0.008 (−0.014, 0.030) 0.014 (−0.008, 0.038)

Primaries 0.004 (−0.650, 0.563) 0.766 (−0.507, 2.190)

Stage (local = 0)

    Regional 1.287 (0.668, 1.937) 1.790 (0.854, 2.966)

    Distant 2.992 (2.067, 3.839) 2.651 (1.572, 3.643)

    η0 (Weibull link) −14.100 (−22.730, −5.398) −4.570 (−6.117, −3.270)

ρ 1.059 (0.804, 1.404) 1.144 (0.793, 1.626)
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Table 6

Posterior quantiles for different models (corresponding to best DIC) under first- and last-activation schemes,
with GMCAR assumption on spatial frailties

Parameter First (Model 2) Last (Model 2)

Median (2.5%, 97.5%) Median (2.5%, 97.5%)

Intercept −25.230 (−37.580, −19.390) −4.066 (−6.390, −1.500)

Age 0.007 (−0.012, 0.029) 0.015 (−0.012, 0.038)

Primaries 0.018 (−0.632, 0.584) 0.627 (−0.479, 1.930)

Stage (local = 0)

    Regional 1.287 (0.678, 1.941) 1.722 (0.826, 2.826)

    Distant 3.017 (2.081, 3.856) 2.651 (1.629, 3.547)

    η0 (Weibull link) – – −4.723 (−6.327, −3.475)

ρ 1.054 (0.800, 1.346) 1.192 (0.857, 1.684)
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