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Summary
Testing the equality of two survival distributions can be difficult in a prevalent cohort study when
non random sampling of subjects is involved. Due to the biased sampling scheme, independent
censoring assumption is often violated. Although the issues about biased inference caused by
length-biased sampling have been widely recognized in statistical, epidemiological and
economical literature, there is no satisfactory solution for efficient two-sample testing. We propose
an asymptotic most efficient nonparametric test by properly adjusting for length-biased sampling.
The test statistic is derived from a full likelihood function, and can be generalized from the two-
sample test to a k-sample test. The asymptotic properties of the test statistic under the null
hypothesis are derived using its asymptotic independent and identically distributed representation.
We conduct extensive Monte Carlo simulations to evaluate the performance of the proposed test
statistics and compare them with the conditional test and the standard logrank test for different
biased sampling schemes and right-censoring mechanisms. For length-biased data, empirical
studies demonstrated that the proposed test is substantially more powerful than the existing
methods. For general left-truncated data, the proposed test is robust, still maintains accurate
control of type I error rate, and is also more powerful than the existing methods, if the truncation
patterns and right-censoring patterns are the same between the groups. We illustrate the methods
using two real data examples.

1. Introduction
Prospective prevalent cohort studies are performed to evaluate the natural history of a
disease (e.g., time to death or onset of AIDS) among recruited individuals who have been
diagnosed with the disease of interest (e.g., cancer or infected with HIV). An important
special sampling scheme assumes that the probability of individuals selected from the target
population is proportional to the time from diagnosis to the failure event (Zelen and
Feinleib, 1969; Vardi, 1989; Zelen, 2004). We give two examples of such data. In a study of
shrubs (Muttlak and McDonald, 1990), the data on the shrubs’ widths were collected using
the line-intercept sampling method, in which the probability of the inclusion of a shrub in
the sample was proportional to the width of the shrub. In an epidemiologic study to explore
survival among patients with dementia, subjects age 65 and older were recruited and then
screened for dementia (Wolfson et al., 2001). For those subjects confirmed to have
dementia, the dates of death or censoring were prospectively collected. In both examples,
selection bias occurred because the observed widths of shrubs or time intervals from onset
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of dementia to death tended to be larger or longer for subjects in the observed cohorts
compared to subjects in the target population. In fact, the statistical issues related to
selection bias beyond length-biased data have also attracted considerable attention in recent
literature (Jensen et al., 2000; Begg, 2002; Cole et al., 2004; Scheike and Keiding, 2006;
McCullagh, 2008).

The issues of length bias and biased sampling in various applications have been well
recognized in the epidemiology and statistics literature for decades. Wicksell (1925) first
noted biased sampling in the “corpuscle problem”. Since then, a series of papers in this area
have been motivated by industrial applications (Blumenthal, 1967; Cox, 1969; Kvam, 2008);
survey sampling studies for wildlife population (Cook and Martin, 1974; Patil and Rao,
1978); human genetics research in linkage mapping (Terwilliger et al., 1997); economics
studies on unemployment durations (De Uña-Álvarez et al., 2003); cancer screening trials
(Zelen and Feinleib, 1969) and prevalent cohort epidemiology studies for natural histories of
HIV infections and other chronic diseases (Lancaster, 1979; Brookmeyer and Gail, 1994;
Greenberg et al., 2005; Song et al., 2006). A longstanding problem in analyzing such data is
the need to correct for bias in estimation and inference. Studies in the literature have focused
on one-sample estimates for the length-biased failure time distribution either conditional on
the observed truncation times (Turnbull, 1976; Lagakos et al., 1988; Wang, 1991), or with
an unconditional approach (Vardi, 1982, 1989; Asgharian et al., 2002; Asgharian and
Wolfson, 2005). There is little work considering efficient nonparametric two-sample and k-
sample tests to compare underlying survival distributions when observed right-censored data
are subject to biased sampling.

For traditional survival analyses, there is substantial literature on testing the equality of
survival distributions for right-censored survival data. The logrank test has been among the
most commonly used tests (Mantel, 1966; Peto and Peto, 1972), and has proven to be
asymptotically most efficient under the proportional hazards alternatives (Aalen, 1978; Gill,
1980; Fleming et al., 1987). Under biased sampling, these tests may not be applicable
because the significance level can be severely inflated due to the dependent censoring
mechanism with the observed failure time data.

For general left-truncated data, Lagakos et al. (1988) proposed a nonparametric truncation
logrank type test by modifying the definition of the risk set; Bilker and Wang (1996)
considered a semiparametric truncation test without right censoring; Shen (2007) extended
the weighted Kaplan-Meier statistics using the maximized likelihood estimator of survival
functions from the likelihood conditional on the observed truncation times; and Finkelstein
et al. (1993) studied the score test of the conditional likelihood based on proportional
hazards models. However, few have explicitly considered length-biased data. Length-biased
data are a special case of left truncated data in which the truncation times are uniformly
distributed on a defined interval. The aforementioned tests for left-truncated data are
conditional on the observed truncation times, and thus would be less efficient/powerful than
tests based on the full likelihood for length-biased data. Wang (1996) considered the
estimation of hazard under the Cox regression model for length biased data. Unfortunately
her method cannot be applied to data with right censoring.

In this paper, we propose an asymptotically most efficient test under the proportional
hazards alternative for right-censored length-biased data, which is analogous to the logrank
test for traditional right-censored data. We can also extend the proposed test to general left-
truncated survival data when the stationarity assumption is violated. The stationarity
assumption implies that the initiation times follow a stationary Poisson process (Wang,
1991). We introduce the notations, and derive the test statistics and the asymptotic properties
of the test statistics in Section 2. We investigate the validity of logrank test for length-biased
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and left-truncated data in Section 3. We summarize the simulation results in Section 4, and
two applications of the proposed test in Section 5. We conclude with a discussion in Section
6, and provide details of the proofs in the Appendix.

2. Test Procedures
Consider a prevalent cohort study in which subjects are diagnosed with a disease and are at
risk for a failure event. Let X̃ij be the unbiased time measured from initiation to failure, Aij
denote the time of recruitment measured from initiation, Vij denote the time from
recruitment to failure, and Cij be the censoring time measured from recruitment for the jth
individual in the ith group, j = 1, · · ·, ni, and i = 1, 2. The censoring indicator is denoted by
δij = I(Vij ≤ Cij). A major sampling constraint is that the value of X̃ij is observed only when
the X̃ij > Aij. We denote the length-biased time and the observed length-biased time under

right censoring as  and , respectively. Within the ith group, we
assume that X̃ij are independently and identically distributed with unbiased survival function
Si(.) and density function fi(.). The censoring time Cij is assumed to be independent of (Aij,
Vij) within the ith group, with survival and cumulative distribution functions defined by
SCi(.) and FCi(.). Note that the censoring time measured from the initiation Aij + Cij is
mechanistically dependent on failure time Aij + Vij even if Cij is independent of (Aij, Vij).

For the observed length-biased data without censoring, the density function of  is

We define the corresponding survival distributions of the uncensored length biased data as
G1 and G2. Our goal is to test the equality of two unbiased survival distributions under the

proportional hazards alternatives, . The null and alternative hypothesis of interest
are

2.1. Two-Sample Test Without Censoring
Motivated by the shrub study, we start with the data without right censoring. Given the
observed biased failure times, the joint density of (Aij, Vij) is

Without right censoring, the log-likelihood based on the joint density function of (Aij, Vij) is

(1)
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where λi(.) is the hazard function of Si(.). Taking the first derivative of the log-likelihood
with respect to β, we have

Thus, the score function under the null hypothesis (i.e., S1 = S2 = S and μ1 = μ2 = μ) is

It is then easy to prove the expectation of T0 to be zero using integration by parts under H0,
because

Unlike score test statistics without unknown quantities, the aforementioned T0 requires
estimating the unknown survival function. Let the pooled observed times and the
corresponding sample indexes be defined by {xk, k = 1, · · ·, n = n1+n2} = {x11, · · ·, x1n1, x21,
· · ·, x2n2} and {zk, k = 1, · · ·, n} = {01×n1, 11×n2}, respectively. Under the null hypothesis,
S(t) and μ could be estimated empirically by the pooled data,

After plugging in the above consistent estimators to T0, the asymptotically equivalent score
statistic is

Replacing −log(Ŝ(t)) with Λ̂(t), which is the nonparametric estimator of the cumulative
hazards function, and using integration by parts,  can be expressed as
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Without censoring, G1 and G2 can be consistently estimated by their empirical counterparts,

 and . Then  is equivalent to

(2)

Let ρ = lim n1/n, 0 < ρ < 1. Under the null hypothesis (G = G1 = G2),

converges in distribution to a zero-mean normal distribution with variance

The variance can be estimated by inserting the consistent estimator of Λ(t), denoted by .

The null hypothesis will be rejected at significance level α if , where Zα/2
is the upper α/2 percentile of a standard normal distribution.

2.2. Two-Sample Test in the Presence of Censoring
In the presence of right censoring, the joint density distributions of the observed failure time
and censoring indicator are

relying on the property derived in Asgharian and Wolfson (2005) for length-biased data.
Given group indicator i, the full likelihood function for the observed biased samples (Xij, δij)
is

and the log-likelihood function is proportional to

(3)

this leads to the score function under H0 (i.e., β = 1):
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(4)

Under the null hypothesis, we have the following equation using integration by parts:

(5)

Given (5), the score function has mean zero under H0. In general, S(.) is unknown but can be
consistently estimated using Vardi’s estimator via Ĝ(.) (Vardi, 1989), from the pooled
observed right-censored length-biased data

The sample score statistic, which has a zero mean asymptotically, follows

Similar to the asymptotic variance of  in Section 2.1, the asymptotic variance of the test
statistic  is not the negative second derivative of ℓ(β) with respect to β, because there is
additional variation induced by the estimation of the unknown survival function. To study
the limiting distribution of test statistic , we need the following regularity conditions:

a. The survival function S(.) is a continuous function, and τ = inf{t: S(t) = 0} < ∞.

b.

, where SC(t) = ρSC1(t) + (1 − ρ)SC2(t).

Assumption (b) is to ensure that the uniform consistency of Vardi’s estimator holds for all 0
< t < τ (Asgharian and Wolfson, 2005). In an earlier paper, Asgharian et al. (2002) used a
sufficient but more intuitive alternative for assumption (b), which is SC(t) > 0.59. This
sufficient condition implies that heavy right censoring may cause instability at the tail for
the estimated survival distribution Ĝ(t).

Let G*(t) = P (A + V ≤ t|δ = 1) and F*(t) = P (A + V ≤ t|δ = 0) with corresponding

conditional density functions g*(t) and f*(t),  and p1 = P(δ = 1). For the
difference between  and T1, we derive an asymptotic representation as a sum of
independent and identically distributed (i.i.d.) random variables,
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where

and  is an invertible linear operator,

This representation, when taken together with the fact that T1 is an i.i.d. sum implies that the
test statistic converges in distribution to a zero-mean normal distribution. See the Appendix
for the details of the proof.

Theorem 1—Under the null hypothesis and regularity conditions (a) and (b), 
converges in distribution to a zero-mean normal distribution with variance

Though it is of theoretic interest to get the explicit form of the asymptotic variance of the
test statistic, it is difficult to propose a consistent variance estimator when there is right
censoring. Alternatively, resampling procedures can be used to obtain the critical regions for
the score test. When the censoring distributions of two groups are equal, the standard
permutation procedure yields a valid P-value for the test (Jennrich, 1983; Hesterberg et al.,
2005). Specifically, the permutation test resamples pairs (xij, δij) from the pooled data
without replacement, assigning the first n1 pairs to group 1 and the remaining n2 pairs to
group 2. The permutation distribution is generated by resamples, and the null hypotheses is
rejected at significance level α, if the observed test statistic lies outside of the critical region
formed by the α/2 and 1 − α/2 percentiles of the permutation distribution of the test statistic

. Actually the permutation procedure for our test is not computationally intensive due to
the fact that we do not need to estimate the survival function S(.) for each resampling. When
the censoring distributions are different, the observed times may not be exchangeable even
under the null hypothesis, suggesting that the standard permutation procedure may not be a
valid way to obtain the distribution of the test statistic. Hence, we apply the following
conditional bootstrap procedure to test the hypothesis (Reid, 1981):
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1. Obtain the nonparametric maximum likelihood estimator (NPMLE) of the length-
biased survival distribution Ĝ using the pooled data, and estimate the NPMLEs of
the residual censoring time distributions for the two groups, ŜC1 and ŜC2.

2. Draw length-biased times, censoring times and truncation times from the estimated

NPMLEs: , Cij ~ ŜCi, , i = 1, 2; j = 1, · · ·, ni.

3. Calculate the test statistic  using the data generated in step 2.

Repeat step 2 and step 3 to get the bootstrap distribution of the test statistic. The
test rejects the null hypothesis if the test statistic based on the original data falls
outside of the critical region of the bootstrap null distribution.

2.3. k-Sample Test Procedure
In the second of our motivating examples, it is of interest to compare the underlying survival
distributions among 3 different dementia diagnosis groups simultaneously. We generalize
the proposed two-sample test statistic to a k-sample test statistic with k > 2. Specifically, the

model assumption is , and we wish to test for

The log-likelihood can be expressed as

where μj = ∫Sj (t)dt. Taking the first derivative of the log-likelihood with respect to β = (β2, ·
· ·, βK)T, we have

By replacing S1(t) in ηK with its NPMLE Ŝ(t) using the pooled data, denoted by η ̂K, a test
statistic can be constructed as

As shown in Janssen and Pauls (2003), the bootstrap resampling method can be used to
determine the critical region of a test statistic, if the weak convergence holds for the test
statistic. We can show that n−1/2η ̂K converges to a zero-mean multivariate normal
distribution using arguments similar to those in the proof of Theorem 1. Because the
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components in the vector of η ̂K are correlated to each other, the test statistic  converges
weakly to a weighted  distribution (Theorem 4.4.4 of Graybill (1976), page 136), which is
sufficient to guarantee that the bootstrap resampling procedure described in Section 2.2 is
valid.

2.4. General Left Truncated Data
It is clear that the aforementioned score test statistics are derived based on the stationarity
assumption for length-biased data. Interestingly, the proposed score test statistics are valid
as well as efficient for general left-truncated data which may not satisfy the stationarity
assumption, as long as the two groups have the same pattern of left truncation. Suppose that
truncation time A has a known cumulative density distribution, H(a). One can observe X if
and only if X̃ > A, which is equivalent to H(X̃) > H(A), since H is a monotone increasing
function. Note also that H(A) has a uniform distribution, which leads to the length-biased
data structure for the transformed data (H(X), H(A), δ). Under the proportional hazards

alternative for X̃, , H(X̃) also has a proportional hazards alternative because

Therefore, if one considers the transformed data (H(X), H(A), δ), which is length-biased
data, the corresponding score test statistic  remains to be asymptotically most efficient
under the proportional hazards alternatives.

3. Logrank and Truncation Logrank Tests under Biased Sampling
For traditional right-censored data, the popularity of the logrank test can be attributed to its
asymptotic efficiency under the proportional hazards alternatives. The logrank statistic is the
score test statistic of the partial likelihood under the proportional hazards model. We will
investigate the validity of the logrank test for length-biased data and general left-truncated
data under different censoring schemes. Recall that the logrank test can be expressed as

(6)

where t1 < · · · < th are the distinct failure times of pooled samples. For each tk, let Nik be the
number of subjects “at risk” in the ith group and Nk = N1k + N2k. The observed numbers of
events at tk are defined as O1k, O2k, and Qk for each group and combined group,
respectively.

For length-biased data, the probabilities of observing a failure event at time tk for a subject
given that the subject is “at risk” at that time are
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Under the null hypothesis f1(.) = f2(.) = f(.), the expectation of the logrank test statistic can
be expressed as

(7)

where  and . When the two groups have equal
censoring distribution (including no censoring as a special case), SC1(t) = SC2(t), the
expectation of (7) is zero under H0. Therefore, the logrank test is a valid statistic to test the
equality of survival distributions for length-biased data under equal censoring. When the
censoring distributions are different, the logrank test statistic does not have a zero
expectation under the null hypothesis from (7) due to the informative censoring induced by
the sampling scheme. Subsequently, the standard logrank test may not preserve the nominal
significance level under the null hypothesis when the censoring distributions in the two
groups are different. Using the arguments similar to those in Section 2.4 and the fact that the
logrank test is rank-based statistic, the logrank test is also valid for general left-truncated
data as long as the censoring distributions in the two arms are the same.

For traditional right-censored survival data, the logrank statistic is asymptotically most
efficient test under the proportional hazards alternatives. It is not surprising that the
proposed score test reduces to the logrank test when there is no left truncation. Recall that
the proposed score statistic is

(8)

When there is no left truncation, the unknown survival distribution in equation (8) is reduced
to the Nelson-Aalen estimator, thereby  can be expressed as a summation of the
differences between the observed number of events and the expected number of events.

By modifying the risk set at time t as R* = {k: Xk ≥ t ≥ Ak}, Lagakos and De Gruttola (1988)
proposed the logrank type of test statistic for general left-truncated data as follows, which
we refer to as truncation logrank test:
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where  and  denote the numbers of subjects “at risk” based on the revised risk set R*

for groups 1 and 2, respectively. Note that the observed truncated survival times and
censoring times are independent conditional on the observed truncation times. Thus, under
H0 the expectation of TLT is zero. Since the truncation logrank test is conditional on the
observed truncation times, it would be less efficient than the unconditional score test for
length-biased data. Efficiency and robustness comparisons between them will be further
investigated in the following simulation studies.

4. Simulation
We used Monte Carlo simulations to evaluate and compare the performance (size and
power) of the proposed test, the standard logrank test, and the truncation logrank test under
different biased sampling schemes and censoring distributions. We used small (50) to
moderate sample size(150) per group and a significance level of 0.05. The size and power
were calculated from 5000 replications of the tests, and the resampling procedure used 500
resamples. We considered scenarios with unequal sample sizes in the groups as well as
scenarios with equal sample sizes.

We generated independent pairs of (Aij, X̃ij), i = 1, 2, j = 1, · · ·, ni, with the failure time

generated from the Weibull distribution  for several choices of scale
parameter β2 and a fixed scale parameter β1 = 1 in group 1 and fixed shape parameters αj =
2; Aij was generated from a uniform distribution to ensure the stationarity assumption or
from an exponential distribution for general left-truncated data. Under each setting, we kept
the pairs with Aij < X̃ij in the cohort. The censoring variables measured from the examination
time, Cij, were independently generated from uniform distributions. The conditional
bootstrap procedure is more computationally intensive than the standard permutation
procedure. An interesting question is whether the permutation procedure is robust with
respect to the assumption of equal censoring distributions. We thereby assess the robustness
of the standard permutation procedure.

Tables 1–3 respectively list the percentages of rejecting the null hypothesis at significance
level 0.05 based on the simulations with small, moderate, and unbalanced sample sizes. We
found that the type I error rates for the proposed test in all scenarios were reasonably close
to the nominal value 0.05, and that the power increased with the increase in sample size and
decreased with the increase in degree of censoring. With the equal total sample sizes, the
proposed test was more powerful under the balanced design (n1 = n2, see Table 2) than
under the unbalanced design (n1 ≠ n2, see Table 3).

When the right censoring patterns were the same between two groups, the sizes of the three
tests considered here were all in a reasonable range as expected. For the power comparison,
the proposed score test exhibited superior power than the truncation logrank test. For
example, in Table 1 the proposed test achieves 25 to 89% greater power than the truncation
logrank test for the investigated scenarios based on a sample size of 50 per group. Somewhat
surprisingly, the proposed test and the standard logrank test produced comparable powers,
suggesting that the standard logrank test may not lose too much efficiency compared to the
asymptotically most efficient score test under length-biased sampling.
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As the two censoring distributions became dissimilar, we used two resampling procedures
(standard permutation and conditional bootstrap) for the proposed score test. The rejection
percentages obtained by the conditional bootstrap procedure are displayed in parentheses in
Tables 1–3. Although the assumption of equal censoring was violated, the two procedures
produced similar results in all of the simulation settings, indicating that the standard
permutation procedure is quite robust to the assumption of equal censoring distributions.
Again, the proposed score test outperformed the truncation logrank test, although both of
them preserved the nominal error rate under the null hypothesis. Unlike  and TLT, the
standard logrank test cannot preserve the specified significance level as shown in equation
(7) for unequal censoring. For instance, the size of the standard logrank test is 0.103, much
larger than the nominal value 0.05, in the last scenario in Table 2.

As demonstrated in Section 2.4, when the truncation distribution is known and the same for
the two groups, the proposed test statistic is valid for general left-truncated data under a data
transformation. However, because the truncation distribution is often unknown in practice,
we investigated the performance of the proposed test under the non-uniform distributions of
the truncation variable and assessed the robustness of the test without transforming the data.
We compared the type I error rate and power for the proposed test with the standard and
truncation logrank tests when the truncation was not uniform (generated from an exponential
distribution) and followed the same or different truncation pattern for the two groups (Table
4). The simulation results show that the proposed test had correct sizes around the nominal
value 0.05 under the same truncation pattern even though the truncation distribution was not
uniform and the data were not transformed. When the truncation patterns were different in
the two groups, the proposed test tended to have slightly inflated sizes ranging from 0.054 to
0.056. Similar to our finding for length-biased data, the standard logrank test produced
results comparable to those of the proposed test for general left-truncated data under equal
censoring distributions, though the standard logrank test cannot maintain the correct type I
error rate when the censoring distributions in the two groups are different (not presented due
to limited space). The validity of the truncation logrank test, which was originally proposed
for general left-truncated data, is not in doubt. However, the truncation logrank test showed
a loss of power due to the conditional approach when compared to the proposed test and
naive logrank test under equal censoring. It is interesting to note that the proposed test
statistic is in fact quite robust to the general truncation distribution without performing data
transformation under the same truncation pattern, given the results listed in Table 4,
although the validity of the test is not analytically verified under this more general setting. In
the absence of right censoring, the validity of the proposed test for general truncation
distribution without data transformation has been proven in equation (2) at the end of
Section 2.1, which has also been confirmed by the empirical studies.

5. Data Application
We apply the proposed test in two applications for illustration. The shrub data includes 46
complete widths of shrub from three trasects (18 from transect I, 22 from transect II, and 6
from transect III). The data were given in Muttlak and McDonald (1990) and further
analysed by Wang (1996) for testing the equality of shrub’s widths from three transects. The
truncation logrank test for left-truncated data could not be used in this example because
there were no records for truncated widths. We performed both pairwise comparisons among
the three groups and an overall k-sample test using the proposed score test and standard
logrank test. Table 5 gives corresponding P-values for the tests. The analysis results from
the proposed two-sample test and logrank test both indicated statistically significant
differences in width between the transect I and transect II groups and transect I and transect
III groups. Similar to the result of Wang (1996), there was no significant difference in width
between transect II and transect III. For the three-sample comparison, the proposed and
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logrank three-sample tests both showed a significant difference among shrub widths from
the three transects.

The purpose of the second example is to compare the survival times following the onset of
dementia for three diagnostic categories of dementia using data from the Canadian Study of
Health and Aging (CSHA) (Wolfson et al., 2001). In the first phase of the CSHA, over
10,000 Canadians age 65 and older were screened for dementia in 1991. At that time, 1132
subjects with dementia were identified and classified into one of three diagnostic categories:
(1) probable Alzheimer’s disease, (2) possible Alzheimer’s disease, and (3) vascular
dementia. Information about the date of onset of dementia was collected from the medical
history of these subjects. In the second phase of CSHA, the date of death or censoring
between 1991 and 1996 was prospectively recorded for the subjects who had been diagnosed
with dementia in the first phase of CSHA. The available data include 818 subjects with
dementia: 393 with probable Alzheimer’s disease, 252 with possible Alzheimer’s disease,
and 173 with vascular dementia. For each subject in the cohort, the date of disease onset, the
entry date to the study, and the death indicator are also provided. Subjects with rapidly
progressive dementia often died quickly, thereby they were more likely to be left truncated.
Thus, the observed survival duration from the onset of dementia would tend to be longer in
the prevalent cohort.

Using an analytic test to examine the stationarity assumption proposed by Addona and
Wolfson (2006), we obtained the two-sided p-values of 0.72 for the vascular dementia
group, 0.79 for the probable Alzheimer group, and 0.14 for the possible Alzheimer group.
Asgharian et al. (2006) used the same data and estimated the nonparametric survival curves
of the forward and backward recurrent times, which are almost indistinguishable and suggest
no obvious violation of the stationarity assumption. The three estimated Kaplan-Meier
curves for the censoring variable (not presented due to limited space) indicate that the three
curves are almost indistinguishable, which suggests no obvious violation of the assumption
about the equal censoring distributions (the corresponding logrank test P-value=0.27).
Therefore, we also used the standard logrank test for comparison.

We performed both pairwise comparisons and overall comparisons among the three groups
using three different tests. The P-values from the proposed two-sample test and standard
logrank test both indicated that the long-term survival distributions are significantly different
between groups with vascular dementia and with possible Alzheimer’s dementia, and
between groups with probable Alzheimer’s dementia and with possible Alzheimer’s
dementia (see Figure 1). The P-values of the overall comparison by the proposed three-
sample test and logrank test again suggested an overall marginally significant difference in
long-term survival distributions among the three subtypes of dementia. In contrast, the less
efficient truncation logrank test could not detect the differences in survival distributions
among the vascular dementia group and the other two groups, and produced P-values much
bigger than 0.05.

6. Conclusion Remarks
We have focused on the development of a nonparametric score test statistic for length-biased
data under proportional hazards alternatives, which is analogous to the logrank test for
traditional survival data. Because of the invariant property of the proportional hazards
alternatives, the proposed score test has proven to be applicable to and remains the
asymptotically most efficient test under the proportional hazards alternatives for general left-
truncated data with a transformation when the pattern of left truncation is the same for all
the groups. Under equal censoring distribution, we find P-values and critical regions by
permutation procedure. Even though the procedure involves permutation, the computation is
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fast and efficient because it is unnecessary to estimate the survival function in each
permutation. Unlike the truncation logrank test, the proposed score test statistic with the
corresponding permutation distribution does not need information on truncation times under
equal censoring distribution. The information on truncation times is required for the
conditional bootstrap procedure under unequal censoring distributions.

Although in this work we focused our attention on the proportional hazards alternatives, the
score test can also be derived for other types of semi-parametric alternatives, such as the
proportional odds ratio model, by straightforward extension. An interesting finding for us is
that the standard logrank test ignoring biased sampling can be a valid test statistic if the
censoring distributions between the groups are equal. Moreover, the loss of efficiency for
the logrank test compared to the most efficient score test seems to be limited. In contrast, the
conditional approach, which was originally proposed for general left-truncated data, is much
less efficient than the proposed score test in all investigated settings. The inefficiency of
conditional approaches has been noted earlier in Wang (1991). A critical condition for the
use of the nonparametric logrank test under biased sampling is the requirement for equal
censoring distributions between the groups. Any violation of this condition would lead to an
inflated type I error rate for the logrank test because the biased sampling scheme induces
dependent censoring, which is not the case for the standard logrank test proposed for
traditional noninformative right censoring data. There is an essential difference between
estimating a covariate coefficient, β, and testing whether β = 0 under the Cox model for
length-biased data. While the traditional logrank test is valid to test β = 0, when the
censoring distributions are equal for length-biased data, the covariate coefficient estimator
from the conventional partial likelihood under the Cox model can be biased regardless of
whether the censoring distributions are equal or not.

As one referee pointed out, there can be a loss of efficiency for the proposed test when the
likelihood of covariates subject to left truncation is not used, when the marginal distribution
of covariates is known (Bergeron et al., 2008). However, if the marginal distribution of
covariates in the target population is unknown, which is common in most practical
applications, there is no loss of information and the test based on the likelihood conditional
on covariates can achieve the same efficiency as the full likelihood (Mandel and Ritov,
2009).
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A. Appendix

A.1. Weak convergence of 
Following from the asymptotic properties of Vardi’s estimator (Asgharian and Wolfson,
2005), we can express Ĝ(t) − G(t) as a sum of i.i.d. random variables plus a reminder:

(9)

where  is an invertible linear operator,
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With equation (9), we derive the asymptotic representation of the NPMLE of unbiased
distribution:

(10)

For simplicity of notation, let

By inserting equation (10), (y) and Ik, we have

(11)

On the other hand, note that
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(12)

Therefore, after applying (11) and (12), one can write

Then the independent and identically distributed (i.i.d.) representation of the test statistic is

(13)

where zk = 1 if the observation k is in the second sample, zk = 0 otherwise. The central limit
theorem, taken together with the i.i.d. representation (13) implies that  converges in
distribution to a zero-mean normal distribution.
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Fig. 1.
Estimated survival functions after adjustment for length bias
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Table 5

Examples: P-values from three test statistics for the shrub study and dementia trial

Proposed test Truncation logrank Standard logrank

TLT TLR

Transect I vs II 0.01 NA 0.01

Transect I vs III 0.00 NA 0.02

Transect II vs III 0.71 NA 0.82

Three-sample test 0.04 NA 0.01

Vascular vs probable Alzheimer’s 0.35 0.42 0.46

Vascular vs possible Alzeimer’s 0.02 0.33 0.02

Probable vs possible Alzeimer’s 0.04 0.71 0.04

Three-sample test 0.05 0.54 0.05
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