COMMENTARY

Building Genetic Scores to Predict Risk of Complex
Diseases in Humans: Is It Possible?

Simin Liu'??* and Yiqing Song®

ecades of research have identified numerous

biomarkers for cardiovascular diseases (CVDs)

and type 2 diabetes, providing molecular in-

sights for improved treatment and prevention
of the diseases (1-3). Of the biomarkers that could be
objectively and systematically measured, genetic variants
such as single nucleotide polymorphisms (SNPs) have
some unique features in that they do not change over time,
and the temporal sequence of genotype-phenotype can be
clearly established for outcome prediction.

Using high-density fixed SNP arrays, recent genome-
wide association studies (GWAS) have successfully iden-
tified multiple risk alleles related to CVD and type 2
diabetes. These advances in genomics present many excit-
ing opportunities in three scientific domains: 1) integrating
novel genetic variants into risk prediction models of
complex diseases in humans, 2) characterizing new bio-
logical pathways involved in pathogenesis and thus im-
proved strategies for treatment and management, and 3)
enhancing inference of traditional epidemiological work
relevant to public health importance. To capitalize on
these opportunities, several groups have attempted to
develop genetic risk scores by summing up the number of
risk alleles for disease prediction. However, almost all
these studies have concluded that current genetic infor-
mation contributes little information in distinguishing who
will or will not develop a CVD or type 2 diabetes among
apparently healthy adults (4-6).

Given that most common risk variants identified so far
confer relatively modest risk to these complex diseases
(e.g., all risk alleles for type 2 diabetes identified by GWAS
have very small relative risks [<1.50]) (7,8), the “common
diseases-common variants” model has been formally chal-
lenged (9,10). In the field of complex disease genetics, it is
now widely anticipated that some ongoing next-generation
sequencing work covering the whole genome in diverse
populations would identify rare variants of large effect
sizes in the coming years (8). Yet, there still remain many
questions that must be answered before genetic informa-
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tion can be appropriately incorporated into risk prediction
models for complex diseases (Fig. 1).

In this issue of Diabetes, Palmer et al. (11) report
findings of using yet another genes-based score to predict
stroke risk in a cohort of 2,182 patients followed for ~6
years. The authors selected from prior work a set of five
variants involved in inflammation and developed a score
by summing up “at-risk” genotypes for those variants. By
assigning a score of 1 for having at least one risk allele and
0 for noncarriers, Palmer et al. implicitly assumed that
these five loci follow either dominant or recessive genetic
patterns. Previously, Morrison et al. (12) advocated an
additive model with weighing of —1, 0, and 1, as did others
(4-6).

None of these studies, however, have attempted to
weigh the loci using regression coefficients from the
specific proportional hazard function. Put simply in regres-
sion terms, Palmer et al. in effect converted a set of five
dichotomous variables into an ordinal variable in relating
genetic variants to risk of stroke in their model. Whether
this is reasonable depends on the nature of the genotypes-
disease relationship that is inherently defined by the
specific model form. With the use of Cox proportional
hazard model, an ordinal “at-risk genotype” score implies
an exponential relationship in that each added “at-risk
genotype” multiplies the baseline risk by a constant value
corresponding to the antilogarithm of the regression coef-
ficient (following the survival function Yi = 1— {s[t]}exp{A +
B X Xi}; where Yi is predicted probability for developing
stroke over time ¢ (¢t was event free follow-up time for
individual 1i); Xi represents the genotype scores
[0,1,2,3,4,5]). Given that during a mean follow-up of ~6
years none of these five variants were independently
associated with stroke risk, the evidence in support of an
exponential shape of relationship between these genetic
variants and disease risk appeared weak. Only when
converted into an ordinal variable did it become statisti-
cally significant with a hazard ratio of 1.34 for each “at-risk
genotype.” This apparent gain in statistical efficiency can
only be achieved with significant constraints that are
model-dependent and thus has very limited implication for
inference beyond the samples investigated by Palmer et al.
(1D).

It would be helpful to examine the distributions of
traditional risk factors for specific types of stroke (e.g.,
family history, diet, physical activity, diabetes duration,
and levels of glycemic control) by this genetic score. With
~1% increment in the area under the receiver operating
characteristic curve, this ordinal genetic score (even with
strong linearity assumption in a multiplicative scale) ap-
parently did not contribute to discrimination. Formal
evaluation of prediction should also be conducted to
assess improvement of fit for inclusion of each locus
genotype separately and fit for the entire model by com-
puting likelihood ratio x? statistics and Bayesian informa-
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FIG. 1. Assessing and integrating reliable genomic information in the development of clinical risk prediction model. CNV, copy number variant.

tion criteria (fit for the entire model taking into account
the number of parameters).

Aside from using genetic variants for risk prediction,
recent GWAS have also started to uncover potentially new
biological targets for complex diseases. Since the first
GWAS for type 2 diabetes published in 2007 (13), subse-
quent efforts have confirmed at least 20 robust and well-
replicated genetic loci associated with the disease (7).
Interestingly, some identified regions have never been
suspected to be involved in the pathophysiology of type 2
diabetes, including a common variant in the FTO gene
(rs9939609) (14). Several studies have now confirmed the
association between FTO variants and higher BMI and
obesity in both children and adults (15,16). It was thus
surprising that in building their risk score, Palmer et al.
(11) chose to ignore recent GWAS findings for stroke (17)
as well as many important candidate genes in the path-
ways of inflammation and endothelial dysfunction (18). It
remains possible that the addition of a much larger num-
ber of common or rare risk alleles based on a better
understanding of inflammatory mechanisms underlying
CVD could improve risk prediction.

Meanwhile, emerging evidence indicates sex differences
in genetic susceptibility to CVD among diabetic patients
(19). In the U.S., CVD mortality has declined substantially
in recent decades among nondiabetic individuals, but has
declined only among diabetic men and increased signifi-
cantly in diabetic women (20). The reason for the accel-
erated atherothrombotic events in diabetic women
remains poorly understood. Traditional CVD risk factors
such as hypertension and dyslipidemia cannot completely
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account for the apparent sex differences in the excess CVD
risk associated with diabetes (19). Because inflammation
and endothelial function are more seriously affected by
diabetes in women than in men and because diabetes may
cause greater shift to “android” obese pattern in women
than in men (21), recent work has also intensified the
search for sex-specific associations between variants of
these genes and CVD risk and has developed sex-specific
risk prediction models (19,22,23).

More importantly, future risk assessment for complex
disease should take a much more careful consideration of
gene-gene and/or gene-environmental interactions. Com-
plex diseases such as CVD and type 2 diabetes are
influenced by both genetic and environmental factors. For
example, most GWAS to date have been conducted in
middle-aged and older adults so that the cumulative effects
of multiple environmental effects or other gene-gene or
gene-environment interactions in older age may have
diluted a modest but real genetic effect that may be more
apparent earlier in life. Such incomplete understanding of
genetic and environmental causes and their interactions
appeared to have confounded those who attempted to
identify a set of SNPs that could adequately explain or
predict even a small fraction of complex diseases (24,25).
As the field of genomics progresses, it is imperative to
confirm and better characterize genetic variation (i.e.,
better resolution of our genomes) via fine-mapping, func-
tional testing, integrating mechanistic analysis of interme-
diary phenotypes, and assessment of gene-environment
interactions in multiple racial and ethnic groups. Multieth-
nic replications are useful in uncovering true susceptibility
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genes by identifying multiple significant hits within a
specific region, which is particularly valuable given allelic
heterogeneity of the genetic effects (different alleles may
cause the disease in different populations) (26). Yet, even
with these anticipated progress in genomic sciences, the
preventive utility of using genetic score alone for common
diseases in adults will likely be very limited, especially
considering the myriad of environmental factors that also
influence the development of complex diseases. With a
better understanding of pathogenesis, however, integrat-
ing genetic variants with their biochemical phenotypes, as
recently demonstrated in a study of sex-hormone—binding
globulin and type 2 diabetes risk, should be a viable
strategy to provide molecular insights and improve disease
prediction (22,27). Ultimately, greater further efforts will
be required to put valuable genetic information in the
appropriate biological and clinical context (including cost-
benefit evaluation following principles of screening) to
optimize risk assessment for prevention.
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