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Abstract
Estimating the effective signal dimension of resting-state functional MRI (fMRI) data sets (i.e.,
selecting an appropriate number of signal components) is essential for data-driven analysis. However,
current methods are prone to overestimate the dimensions, especially for concatenated group data
sets. This work aims to develop improved dimension estimation methods for group fMRI data
generated by data reduction and grouping procedure at multiple levels. We proposed a “noise-
blurring” approach to suppress intragroup signal variations and to correct spectral alterations caused
by the data reduction, which should be responsible for the group dimension overestimation. This
technique was evaluated on both simulated group data sets and in vivo resting-state fMRI data sets
acquired from 14 normal human subjects during five different scan sessions. Reduction and grouping
procedures were repeated at three levels in either “scan–session–subject” or “scan–subject–session”
order. Compared with traditional estimation methods, our approach exhibits a stronger immunity
against intragroup signal variation, less sensitivity to group size and a better agreement on the
dimensions at the third level between the two grouping orders.
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1. Introduction
Data-driven analysis methods, such as principal component analysis (PCA) [1] and
independent component analysis (ICA) [2], have been shown to be promising tools for
detecting cerebral activity and/or connectivity in functional MRI (fMRI) without a priori
knowledge. This is particularly true for resting-state fMRI analysis [3,4] because of its ability
to investigate exploratively in the absence of regional hypothesis, as required for seed-based
analysis [5]. Nevertheless, a theoretical and practical barrier to current data-driven analysis is
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estimation of signal dimension (i.e., choosing an appropriate number of signal components in
data-driven analysis) [6]. Previous studies have indicated that using different numbers of signal
components may have significant impacts on PCA or ICA decomposition results [1,7]. More
specifically, underestimation of the signal dimension may introduce a mixture of distinct
functional network components, whereas overestimation would break down a single functional
network into multiple components of unrecognizable fractures [7].

In many applications, a number of individual fMRI data sets are usually concatenated in time
domain to construct a group data set and to perform data-driven analysis on the group to obtain
more robust or populationwise results [6]. Thus, for data reduction, the estimation of signal
dimension has become necessary at both individual and group levels in order to reduce data
size without losing effective information [8,9]. It has been noted that if we simply apply data-
driven algorithms on each individual data set and then perform group analysis on decomposed
data space, one may have to deal with the difficulties of finding and quantifying the matched
components across the data sets within the group [10].

Traditionally, the signal dimension of fMRI data could be evaluated by applying classic
stochastic signal modeling techniques such as the Akaike information criterion (AIC) [11],
Bayesian information criterion (BIC) [12] and minimum description length (MDL) [13]. The
legibility of doing so was based on fMRI data possessing the properties that fully comply with
the assumption underlying these traditional signal and noise models, such as the white-noise
spectrum assumption about noise [14]. Nevertheless, previous studies have shown that the
traditional techniques tend to substantially overestimate the signal dimension of resting-state
fMRI data, even in the simplest case of an individual data set [8,15].

For group fMRI data, dimension overestimation can be severer in traditional methods because
the data reduction and concatenation procedures may force the spectral properties of the group
data to be further biased from the original signal and noise assumptions [16]. This problem
may worsen in the case of data reduction performed at multiple grouping levels due to the
cumulating effects of spectral bias. In practice, the difficulty of dimension overestimation is
highlighted by a proportional increase in estimated signal fMRI dimensions with respect to
group size [17]. Consequently, traditional methods are prone to report an unreasonably high
dimension for group fMRI data, usually equal to or approximating the total number of data
points in the time domain [2,8,15]. This problem may lead to an inability to incorporate data-
driven analyses for varying group sizes, as well as to difficulty with sufficient data reduction,
which usually means that a gigantic volume of fMRI data cannot be processed in a regular
computer system for a large group.

It has been demonstrated that the autoregressive structure of fMRI data, which is biased from
the white-noise assumption underlying traditional methods, is responsible for dimension
overestimation at the individual acquisition level [15,18]. Cordes and Nandy [15] proposed an
alternative strategy to estimate the signal dimension of fMRI data under the assumption of
autoregressive noise. The core procedure was to use a first-order autoregressive (AR(1)) model
to fit the noise structure into the PCA eigenvalue spectrum and then to use the divergent point
between the fitted noise spectrum and the actual signal spectrum as an indicator of effective
signal dimension [15]. The authors showed that this method could significantly reduce the
dimension overestimation for individual fMRI data sets. Like other existing techniques,
however, this AR(1) fitting method has not been evaluated for concatenated group fMRI data
sets, where the effects of data reduction may be involved. As mentioned above, a dimension
estimation method that is valid for individual data sets is not necessarily valid for group-level
data sets because of intragroup signal variations and spectral alterations caused by the data
reduction procedure.
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To address these difficulties, we present a study that aims to develop a new method for
estimating signal dimensions for group fMRI data generated by reduction and grouping at
multiple levels. In vivo fMRI data sets were acquired to investigate dimension behaviors at
individual scan, cross-subject (or session) and third “grand” levels. A “noise-blurring”
technique was developed to suppress intragroup signal variations and to correct spectral
alterations by adding artificially generated autoregressive noise to the group data. We specified
the properties of blurring noise based on the assumption that the postnoise group data set should
have a PCA spectrum similar to the average PCA spectrum of the original subgroup fMRI data
sets prior to the data reduction. Our results suggested that the proposed “noise-blurring”
technique could be applied to various dimension estimation methods, whereas the best
performance was obtained by employing the (AR(1)) noise-fitting technique [15] to estimate
the signal dimension of the group fMRI data. In comparison with traditional methods, our
approach exhibited a stronger immunity against intragroup signal variation, less sensitivity to
group size and a better agreement on the dimensionality at the third level between the two
grouping orders.

2. Methods
2.1. Data acquisition and preprocessing

Fourteen (N=14) healthy volunteers (30±6 years old, all male and right-handed) were scanned
in resting state for five sessions (M=5) on a 3-T Siemens Allegra (Siemens, Erlangen, Germany)
scanner on five different days over a period of 14 days. Written informed consent was obtained
from each subject in accordance with the guidelines of the Institutional Reviewer Board at the
National Institute on Drug Abuse. A gradient-echo echoplanar imaging (EPI) pulse sequence
was used to acquire whole-brain resting-state fMRI images, including 39 sagittal 4-mm-thick
slices. Echo time (TE) and repetition time (TR) were set to 27 and 2160 ms, respectively. The
field of view of the image was 22×22 cm2, with an in-plane matrix size of 64×64. For each
resting-state scan, 86 repetitions were acquired over 3.1 min. Subjects were instructed to keep
their head still, to close their eyes and to not think of anything in particular. Ear plugs were
used to reduce acoustic noise, and foam packs were applied to restrict head motion. T1-weighted
anatomical images were also acquired for spatial normalization. Due to scanner failure, data
on one subject were lost for Session 1, data on one subject were lost for Sessions 2 and 3, and
data on one subject were lost for Session 5. Missing data are properly excluded from the image
processing procedure, as described below.

All resting-state EPI data sets were volume-registered in the time domain to correct for subject
head motion and sinc-interpolated to correct for slice–timing effects. Based on the
corresponding T1-weighted high-resolution images, the EPI data were then spatially
normalized to Talairach space [19], spatially smoothed with a Gaussian kernel with a full width
at half maximum of 4 mm and resampled to 3×3×3 mm3. The data were preprocessed with
AFNI [20]. No masking procedure was involved in the processing in order to keep the image
background, which provides useful information on noise structures.

2.2. PCA spectrum and AR(1) fitting
For each preprocessed four-dimensional (4D) spatiotemporal data set, a PCA algorithm [1]
was applied with respect to the spatial domain to calculate the eigenvalue spectrum (i.e., the
descending-ordered PCA eigenvalues of the data). The PCA spectrum had an identical length
as the total time points of the data set, where the larger eigenvalues (in the spectral head) and
the smaller eigenvalues (in the spectral tail) were assumed to characterize contributions from
signal and noise components in the fMRI data, respectively. Thus, the estimation of signal
dimension was equivalent to finding an appropriate divergent point between the signal section
and the noise section of the PCA spectral curve. If a white-noise spectrum were assumed, a

Chen et al. Page 3

Magn Reson Imaging. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



dimension overestimation would occur because a shorter noise section would be identified
based on the fact that white noise should have a “flat” tail in the PCA spectrum [15]. To avoid
this problem, we implemented an AR(1) modeling technique to fit the colored noise structure
of the PCA spectrum, as previously described by Cordes and Nandy [15]. Due to the improved
capability of AR(1) model to capture a colored noise tail, the observed divergent point between
signal and noise sections would move towards the spectral head, leading to a decreased
estimation of the signal dimension. In this study, the eigenvalues in the lower 30% [21,22] of
the spectral tail (excluding the least 20 eigenvalues [15]) were assumed to be pure noise
components and thus were taken into the AR(1) fitting. The signal/noise divergent point was
identified as the place where the fitted and actual spectra crossed each other and then diverged
to a distance greater than 0.1% of the largest eigenvalue; thus, the index of the divergent point
in the PCA spectrum was used to represent the signal dimension of the fMRI data. For
comparison, the traditional techniques for dimension estimation (AIC, BIC and MDL) were
also performed in accordance with Akaike [11], Weakliem [12] and Rissanen [13].

2.3. Data reduction at multiple levels
Let Dij (where i=1, 2, …, M; j=1, 2, …, N) be an arbitrary individual fMRI data set acquired
from subject j at session i. Data reduction for Dij was conducted by reconstructing the fMRI

data  from the denoised PCA spectrum, where the noise components of Dij were removed
[18] based on the estimated signal dimension Dim(Dij), as described above. Group data were
produced by concatenating the multiple postreduction 4D fMRI data sets along the time
direction, and then dimension estimation and data reduction were applied again to the group
data. As illustrated in Fig. 1, this “reduction and grouping” procedure could be repeated at
multiple group levels with different grouping orders. (1) For “scan–subject–session” order,
first-level reduction was applied to each individual scan data set Dij; second-level reduction
was then applied to five groups (Sessi*, where i=1, 2, …, M) comprising all processed
individual data across 14 subjects; and, finally, third-level reduction was applied to the “grand”

group comprising the five post-reduction second-level data sets ( , where i=1, 2, …, M)
across all sessions. (2) For the “scan–session–subject” order, first-level data reduction was the
same as that of the above; the 14 groups (Subj*j, where j=1, 2, …, N) across all sessions were
processed at the second level; and the “grand” group comprising all 14 postreduction groups

( , where j=1, 2, …, N) was processed at the third level. See Fig 1 for an example of
reduction for the “scan–subject–session” order.

2.4. Noise-blurring technique

Let G be an arbitrary group data set comprising subgroup data sets  (i=1, 2, …, N), which
were generated by data reduction from the original data sets Di (i=1, 2, …, N). In general, the
PCA eigenvalue spectrum of group G, denoted by S(G), would decay more slowly than the
spectra of the original data sets S(Di) due to signal variations among the subgroup data sets
that caused fluctuation and reordering of the signal eigenvalues in S(G)), leading to a significant
overestimation for Dim(G) (see Results for an example). On the other hand, the data reduction

process also altered the subgroup spectra  by removing the noise components from S
(Di) according to the estimated Dim(Di). Thus, the traditional dimension methods might not
be valid for group G even though they could work perfectly with the individual data sets Di.

We proposed an approach to suppressing intragroup signal variances and reduction-introduced
spectral alterations by adding artificial autoregressive noise to the group data set G prior to
dimension estimation. This blurring noise, denoted by n(φ), was generated by a Gaussian AR
(1) series with an autoregressive coefficient (φ) that was set as the average φ value fitted from
all original subgroup data sets Di (i=1, 2, …, N) in accordance with Cordes and Nandy [15].
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The strength of the blurring effect was controlled by the noise ratio (nr), defined as the ratio
of the standard deviation of the blurring noise to the standard deviation of the group data. The
postnoise group data set can be written as Gnr=G+nr*n(φ), and the optimal nr was determined
by minimizing the sum of square error (SSE) Δ(nr) between the sum PCA spectrum of all
prereduction subgroup data sets Di (i=1, 2, …, N) and the PCA spectrum of the postnoise group

data set Gnr, such that , where descending-ordered
eigenvalues k=1~L in the PCA spectra were used to estimate the optimal nr.

This noise-blurring technique for group dimension estimation was based on the assumption
that the postnoise group data Gnr should have a spectral structure as close as possible to that
of the original prereduction subgroup data sets, so that the spectral alterations introduced by
the data reduction and grouping procedures can be corrected. Thus, regular dimension methods,
assuming they were able to work properly with original data sets, can be expected to provide
comparable results for the postnoise group data under a similar spectral condition. It should be
noted that the postnoise group Gnr was only used for the purpose of dimension estimation,
whereas the actual procedures of data reduction and grouping were performed on the prenoise
data sets Di (i=1, 2, …, N).

2.5. Computer simulations
To provide an additional assessment to the proposed dimension estimation procedure, we also
performed an analysis on computer-generated data sets, processed similarly to that described
above. In each simulated individual data set, a mixture of random Gaussian white noise and
16 non-Gaussian independent signal sources (components), with a spatial size of 120×120 at
200 time points, was generated (see supplementary file doi:10.1016/j.mri.2010.04.002).
Similar to the in vivo case, 14 “subjects” (or “sessions”) of simulated data sets were generated.
By following the same procedures as depicted in Fig. 1, we performed the dimension
estimation, reduction and grouping steps on the simulated data sets.

In the case of zero signal variation, the 16 signal sources were assumed to be identical across
all subgroup data sets to create a known signal dimension of 16 for the group data. When
intragroup signal variations needed to be taken into account, random white Gaussian
fluctuations were added to the 16 sources to create signal variations among the subgroup data
sets. Thus, the effective group dimension could be characterized with respect to the signal
variation strength, which was quantified by the standard deviation ratio between the added
random fluctuations and the 16 signal sources. Noted that this “adding signal variation”
procedure differs in nature from “blurring noise” in terms of dimensionality estimation because
we employed a “white” spectral signal variation (i.e., the fluctuations series were independent
in each time point) to avoid introducing autoregression changes in the group data.

3. Results
3.1. Individual data sets

Fig. 2 illustrates the PCA eigenvalue spectra of the five individual fMRI data sets acquired
from the five sessions of a typical subject, with observable variation among the sessions. The
averaged PCA spectrum is used to demonstrate the dimension estimation based on the AR(1)
fitting technique. The descending-sorted eigenvalues located within the fitting range (35–65)
are used to generate the fitted noise spectrum. The divergent point between this fitted noise
spectrum and the averaged signal spectrum curves indicates a signal dimension of 30 in this
example. Applying this AR (1) fitting technique to each individual data set for this subject, we
obtain dimensionalities of 28, 26, 28, 33 and 30, respectively, from Sessions 1 through 5. The
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average goodness of fit for these five individual data sets is 0.93±0.03. In general, a data set
where the eigenvalues decay more slowly in the PCA spectrum would tend to give a larger
dimension estimation and vice versa.

3.2. Group data sets
A single Level 2 cross-subject group, comprising 14 postreduction individual data sets all
acquired at the same session, is used as an example to demonstrate the proposed noise-blurring
approach to overcoming the dimension overestimation for group fMRI data. The optimization
procedure for choosing the nr of the colored noise used to blur intragroup signal variations is
shown in Fig. 3, where subfigures A through E show the PCA spectra and AR(1) fitting results
for various noise ratios. A graph of the SSE between the sum PCA spectrum of all prereduction
subgroup data sets and the postnoise spectrum of the group data set plotted as a function of nr
in Fig. 3F indicates an optimal nr of 1.6 in this example. The autoregressive coefficient (φ) of
the blurring colored noise is equal to 0.3, which is the mean of the fitted φ values from all
prereduction individual subgroup data sets. It is also noted in Fig. 3A–E that the estimated
postnoise dimensions become smaller when stronger colored noise (i.e., larger nr) is added to
the group data and that the postnoise spectrum exhibits a faster decay pattern compared to the
prenoise spectrum. The minimal SSE is found at an nr of 1.6, corresponding to a postnoise
dimension estimation of 44 for the group data, whereas the prenoise dimension was found to
be 66.

In Fig. 4, we plot the estimated signal dimensions with respect to the varying sizes of group
fMRI data sets in order to compare the group size sensitivity of different methods. Fig. 4A
illustrates the results of the different numbers (up to 13) of postreduction intersubject subgroup
data sets acquired from the same session with one lost scan, whereas Fig. 4B presents the results
for up to five intersession subgroup data sets acquired from the same subject. To provide a fair
comparison among methods, we performed data reduction on each individual data set
according to the same dimension estimation from the postnoise AR(1) method; thus, no result
of dimension estimation is given for other methods in Group Size 1. In both intersubject and
intersession cases, the estimated signal dimensions from the regular prenoise AIC method
(AIC) and MDL method (MDL) significantly increase with the size of the group data. The
regular AR(1) fitting method (AR) shows less sensitivity to group size than AIC and MDL,
but the trend of proportionally increasing dimensions is more observable than the proposed
method, especially for the larger group sizes, as demonstrated in the intersubject group in Fig.
4A. Comparatively, the proposed postnoise AR(1) fitting method (nAR) demonstrates the least
sensitivity to group size, as denoted by the smaller and relatively stable dimension estimations.

3.3. Multilevel groups
An extension of the dimension techniques at multiple levels is illustrated in Fig. 5A and B for
both “scan–subject–session” and “scan–session–subject” grouping orders, respectively.
Results of the dimension estimations are given using multilevel data reductions according to
the specified method. Traditional methods, such as AIC, BIC and regular MDL, generally do
not provide estimations less than the total data points for the groups at Levels 2 and 3 and are
therefore not plotted. The results show that the estimated signal dimensions from the nMDL
method are higher at Levels 2 and 3 than the individual data sets at Level 1. Comparatively,
the prenoise AR(1) method (AR) exhibits less overestimation for all three levels. Furthermore,
the proposed method (nAR) reduces (at least no worse than) the dimension overestimation at
the second and third levels for both grouping orders. We would like to note that the proposed
nAR method produced better consistent results between the different grouping orders at the
grand level, as indicated by the estimated signal dimensions of 59 and 54 for “scan–session–
subject” and “scan–subject–session” orders, respectively. In comparison, the estimated signal
dimensions of the two orders were 73/54 for the regular AR method and 225/151 for the nMDL
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method at the grand level. For nAR method, the remaining inconsistency can be partially
explained by the discrepancy (14 vs. 5) in the total number of data points at the grand level.

3.4. Simulated group data
A simulated Level 2 group data set comprising 14 subgroups is used to demonstrate the
performance of the proposed method. In Fig. 6, the estimated dimensions from the different
reduction methods are illustrated with respect to intragroup signal variations, characterized by
the strength of random fluctuations added to the identical signal sources. Similar to the case
of in vivo data, methods based on AR(1) fitting provide dimension estimations close to the
known dimension of 16 for the individual data sets, whereas regular AIC and MDL methods
produce substantially higher estimations. Furthermore, the proposed noise-blurring approach
helps this method to further reduce the overestimation and to stabilize the dimension estimation
with respect to intragroup signal variations. It has been noted that the estimated dimensions
are approximately proportional to the strength of signal variations. Nevertheless, the proposed
nAR method exhibits the least dependence on intragroup signal variations.

4. Discussion
We have presented an improved technique for estimating the signal dimensions of multilevel
group fMRI data sets. As we have demonstrated, the proposed method can be used for single-
level and multilevel data reductions, which would be important for large-scale group analysis.
Another application is specifying the appropriate number of signal components in data-driven
analyses such as ICA algorithm [2], providing an essential basis for group-level ICA. We have
employed the proposed method in several internal projects using ICA to explore the functional
networks in the human brain (see Chen et al. [23] for example).

Our analysis has shown that substantial overestimation of signal dimensions occurs for group
fMRI data with traditional methods and that this problem is primarily caused by spectral
changes in the group data compared to the original subgroup data sets. In our opinion, these
spectral alterations can be introduced by either intragroup signal variations or the data reduction
process in producing the group data. Therefore, we propose a noise-blurring approach to
overcome this problem by adding artificially generated autoregressive noise to the group data
to ensure that the postnoise group data have a spectral structure similar to those of the original
prereduction data sets, and then the postnoise group data can be subjected to regular dimension
methods that are assumed to be valid for the individual fMRI data sets. Our results indicated
that the greatest protection against dimension overestimation is obtained with the AR(1) fitting
technique [15], while the proposed approach actually can help any dimension estimation
technique. We would like to note that the autoregressive structure and the strength of the added
blurring noise can be uniquely determined with respect to the average spectrum of original
subgroup data sets. It is also empirically suggested that this blurring noise is unlikely to cause
an overcorrection to the dimension overestimation under the conditions described.

The dimension overestimation for group fMRI data is usually demonstrated by a significant
linear dependence of the estimated signal dimensions on varying group sizes. In practice, this
linear dependence may lead to a gigantic group data volume that cannot be handled in an
ordinary computer system and/or the difficulty of comparing data-driven analysis results from
groups with different sizes. Our data have shown that, compared with other methods, the
proposed postnoise AR(1) fitting method (nAR) provides the dimension estimation with the
least dependence on group sizes. Nevertheless, we acknowledge that there could be alternative
strategies to eliminating the dependence of dimension estimations on group sizes. For example,
rather than applying the dimension methods to the group data, we may simply use the average
of estimated individual dimensions as a representative of the group. In our opinion, however,
this method may not be ideal for group data dimension estimation because information on
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intragroup signal variations is totally lost. Moreover, this averaging strategy does not deal with
the spectral alterations caused by data reduction; thus, it is difficult to employ for multilevel
group data sets.

Other approaches to mitigating the problem of signal variations are also possible. For example,
intensive spatial smoothing applied to group data is an alternative strategy to blur intragroup
variations [8]. However, we believe that the proposed method is superior in the following
aspects. (1) The noise-blurring technique can suppress intragroup variation in both spatial and
temporal domains simultaneously, whereas the spatial smoothing technique generally works
in the spatial domain only, or, if both are applied, it would be difficult to determine an
appropriate smoothing ratio between the two domains. (2) The parameters of blurring noise
can be uniquely determined in a process to compensate for the spectral alterations of the group
data with respect to the original subgroup data sets. In contrast, spatial smoothing lacks such
an objective criterion for determining the smoothing parameters. (3) The proposed noise-
blurring technique can work at all levels of group data, whereas there is no evidence on the
spatial smoothing technique’s effectiveness in multilevel group data.

As there have been extensive studies on the mathematical basis of the classic dimension
estimation theory (for a review, see Friston et al. [24] and Worsley and Friston [25]), we chose
to present our method primarily in the framework of the AR(1) fitting technique, that is, using
the divergent point between the fitted noise PCA spectrum and the actual data PCA spectrum
to indicate the signal dimension of the data. This is not only because AR(1) fitting provides an
intuitive explanation to the dimension estimation problem but also because the proposed noise-
blurring technique displays the best performance when combined with AR(1) fitting. The
postnoise MDL method, for example, can provide dimension estimations smaller than the total
number of data points in the group. However, compared to the AR(1) fitting method, the
postnoise MDL method shows greater sensitivity to group size and reports higher
dimensionality estimations for the second and third levels. More importantly, the superior
performance of the proposed postnoise AR(1) fitting technique is also justified by the greater
constancy at the third level between the two different grouping orders, where, presumably,
information content should be identical. However, for both prenoise and postnoise AR(1)
fitting techniques, the dimension results at the second level are larger and less variable in the
“scan–subject–session” order. This is because each intersubject group comprises N=14
individual data sets, whereas the intersession group comprises only M=5 elements.
Interestingly, the regular AR(1) fitting method gives a second-level dimension estimation that
is slightly larger than that of the third level in the “scan–subject–session” order. This
unreasonable result may reflect the unsuitability of the regular AR(1) fitting method for dealing
with multilevel group fMRI data. Unlike the regular method, the estimated dimension from
the proposed post-noise AR(1) fitting technique is consistently larger at the third level than at
the second level.

For future work, we would like to explore the neurophysiological basis of the dimension
measurements of the fMRI data. Under the premise that the brain connectivity networks derived
from spontaneous fluctuations in resting-state fMRI signals have been reported to follow
specific brain circuits, including sensorimotor, visual, auditory and language processing
networks [3,26–31], we speculate that the signal dimension of fMRI data acquired from the
brain may represent the total “volume” or “complexity” of the functional networks in the resting
brain, as revealed by previous multivariate data-driven studies using ICA and PCA methods.
Thus, it would be interesting to further investigate if the signal dimension of fMRI data would
be associated with the status of brain activities.

Chen et al. Page 8

Magn Reson Imaging. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5. Conclusion
Traditional dimension methods substantially overestimate the signal dimension of group fMRI
data. The proposed postnoise AR(1) fitting technique addressed this problem by using an
autoregressive noise-blurring technique to suppress the intragroup signal variations and data-
reduction-induced spectral alterations that contribute to the dimension overestimation. Our
data indicated that the proposed method significantly reduced the dimension overestimation
for group fMRI data at multiple data reduction levels and exhibited good consistency between
the different grouping orders.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was partially supported by the Intramural Research Program of the National Institute on Drug Abuse,
National Institutes of Health. Sharon Chia-Ju Chen was supported by the National Science Council, Taiwan
(NSC98-2314-B-037-002 and NSC 98-2314-B-037-034-MY3), and Kaohsiung Medical University, Taiwan (KMU-
Q-099023). Wang Zhan was supported by Northern California Institute for Research and Education
(W81XWH-05-2-0094).

References
1. Hansen LK, Larsen J, Nielsen FA, Strother SC, Rostru E, Savoy R, et al. Generalizable patterns in

neuroimaging: how many principal components? NeuroImage 1999;9:534–44. [PubMed: 10329293]
2. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional

MRI data using independent component analysis. Hum Brain Mapp 2001;14:140–51. [PubMed:
11559959]

3. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using
independent component analysis. Philos Trans R Soc Lond B Biol Sci 2005;360:1001–13. [PubMed:
16087444]

4. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al. Consistent resting-
state networks across healthy subjects. Proc Natl Acad Sci U S A 2006;103:13848–53. [PubMed:
16945915]

5. Calhoun VD, Kiehl KA, Pearlson GD. Modulation of temporally coherent brain networks estimated
using ICA at rest and during cognitive tasks. Hum Brain Mapp 2008;29(7):828–38. [PubMed:
18438867]

6. Esposito F, Aragri A, Pesaresi I, Cirillo S, Tedeschi G, Marciano E, et al. Independent component
model of the default-mode brain function: combining individual-level and population-level analyses
in resting-state fMRI. Magn Reson Imaging 2008;26(7):905–13. [PubMed: 18486388]

7. Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic
resonance imaging. IEEE Trans Med Imaging 2004;23:137–52. [PubMed: 14964560]

8. Li, Y.; Calhoun, VD. Sample dependence correction for order selection in fMRI analysis. IEEE
International Symposium on Biomedical Imaging: Nano to Macro; 2006. p. 1072-5.

9. Minka, TP. MIT media laboratory perceptual computing section technical report no. 514. Cambridge,
MA: MIT Media Laboratory Perceptual Computing Section Technical Report; 2000. Automatic choice
of dimensionality for PCA.

10. Meindl T, Teipel S, Elmouden R, Mueller S, Koch W, Dietrich O, et al. Test-retest reproducibility
of the default-mode network in healthy individuals. Hum Brain Mapp 2010;31(2):237–46. [PubMed:
19621371]

11. Akaike H. A new look at statistical model identification. IEEE Trans Automat Contr AC 1974;19:716–
23.

12. Weakliem DL. A critique of the Bayesian information criterion for model selection. Sociol Methods
Res 1999;27(3):359–97.

Chen et al. Page 9

Magn Reson Imaging. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



13. Rissanen J. A universal prior for integers and estimation by minimum description length. Ann Stat
1983;11:416–31.

14. Maxim V, Sendur L, Fadili J, Suckling J, Gould R, Howard R, et al. Fractional Gaussian noise,
functional MRI and Alzheimer’s disease. NeuroImage 2005;25(1):141–58. [PubMed: 15734351]

15. Cordes D, Nandy RR. Estimation of the intrinsic dimensionality of fMRI data. NeuroImage
2006;29:145–54. [PubMed: 16202626]

16. Beckmann, CF.; Noble, J.; Smith, S. Investigating the intrinsic dimensionality of fMRI data for ICA.
7th International Conference on Functional Mapping of the Human Brain; Brighton, UK. 2001.

17. Thirion B, Pinel P, Meriaux S, Roche A, Dehaene S, Poline J. Analysis of a large fMRI cohort:
statistical and methodological issues for group analyses. NeuroImage 2007;35:105–20. [PubMed:
17239619]

18. Wax M, Kailath T. Detection of signals by information theoretic criteria. IEEE Trans Acoust Speech
Signal Process 1985;33(2):387–92.

19. Talairach, J.; Tournoux, P. Co-planar stereotaxic atlas of the human brain. New York: Thieme; 1988.
20. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance

neuroimages. Comput Biomed Res 1996;29:162–73. [PubMed: 8812068]
21. Svensen M, Kruggel F, Benali H. ICA of fMRI group study data. NeuroImage 2002;16:551–63.

[PubMed: 12169242]
22. Van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DEJ. Functional connectivity as

revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain
Mapp 2004;22:165–78. [PubMed: 15195284]

23. Chen S, Ross T, Zhan W, Myers C, Chuang KS, Heishman S, et al. Group independent component
analysis reveals consistent resting-state networks across multiple sessions. Brain Res
2008;1239:141–51. [PubMed: 18789314]

24. Friston KJ, Holmes A, Poline J, Grasby P, Williams S, Frackowiak R, et al. Analysis of fMRI time
series revisited. NeuroImage 1995;2:45–53. [PubMed: 9343589]

25. Worsley K, Friston K. Analysis of fMRI time series revisited — again. NeuroImage 1995;2:173–81.
[PubMed: 9343600]

26. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting
human brain using echo-planar MRI. Magn Reson Med 1995;34:537–41. [PubMed: 8524021]

27. Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging
using resting-state fluctuations. NeuroImage 1998;7:119–32. [PubMed: 9558644]

28. Xiong J, Parsons LM, Gao JH, Fox PT. Interregional connectivity to primary motor cortex revealed
using MRI resting state images. Hum Brain Mapp 1999;8:151–6. [PubMed: 10524607]

29. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, et al. Mapping functionally
related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol
2000;2:1636–44. [PubMed: 11039342]

30. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network
analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003;100:253–8. [PubMed:
12506194]

31. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is
intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A
2005;102:9673–8. [PubMed: 15976020]

Appendix A. Supplementary data
Supplementary data associated with this article can be found, in the online version, at doi:
10.1016/j.mri.2010.04.002.

Chen et al. Page 10

Magn Reson Imaging. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Multiple level data processing diagram for fMRI dataset dimension estimation (DE), data
reduction, and grouping, illustrated with the order of “scan-subject-session”. Dij and D′ij
denote the original and postreduction individual fMRI dataset acquired from subject j at session
i, respectively. Sessi and Sess′j are the pre- and postreduction group data for session j across
all subjects. Dimensional estimation at level 1 (DE1) is applied to all individual datasets,
whereas DE2 and DE3 are performed for the group datasets by adding blurring noise whose
parameters are determined by minimize the sum of square error (SSE) of the PCA spectral
difference between the postnoise group datasets and the prereduction subgroup datasets.
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Fig. 2.
Five 1st level individual fMRI datasets acquired from five scan sessions of one subject are used
to generate the PCA eigenvalue spectra, depicted as five thin colored curves, with apparent
variations behave among them. The averaged PCA spectrum (bold red curve) is used to
demonstrate the dimensional estimation based upon the AR(1) fitting technique. The
eigenvalues located within the fitting range (33–65) are used to generate the fitted noise
spectrum (solid blue line). The divergent point between the fitted and the averaged spectra
curves is marked by a vertical line, indicating a signal dimension of 30 for the averaged
spectrum. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 3.
Dimensional estimates for a 2nd level group dataset comprised of 14 individual subject datasets
acquired at a same session. In A–E, the estimated signal dimension is marked by vertical lines
for both prenoise (blue) and postnoise (red) results. The blue curve denotes the PCA spectrum
of the group data without adding blurring noise, whereas the red curve is the postnoise spectrum
with different noise ratios (nr=1.0–2.0) as labeled. The estimated signal dimension for the
prenoise (s) and postnoise (sn) group dataset are listed in parenthesis. In F, the minimum sum
of square error (SSE) between prereduction subgroup datasets and postnoise group spectrum
is found at nr=1.6, corresponding to a dimension estimate of 44 as shown in C. (For
interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 4.
The data signal dimensions estimated by different methods are plotted with respect to varying
size of the group fMRI dataset at level 2. Reduction for each individual dataset is performed
according to the postnoise AR(1) fitting method (nAR). It is shown that the proposed method
demonstrates the least sensitivity to increasing group size. (A) Up to 13 postreduction
individual subject datasets acquired from the one session are used to comprise the group dataset.
(B) Up to five postreduction individual session datasets acquired from one subject are used to
comprise the group datasets.
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Fig. 5.
The signal dimensions estimated by different methods are compared at multiple group levels
using different grouping orders. Error bars represent the standard deviation of the dimensions
estimated across sessions or subjects. The dimensions given by the postnoise MDL method
(nMDL) increase rapidly with higher group levels, whereas the dimensions increase much more
slowly for the proposed postnoise AR(1) method (nAR). The prenoise AR(1) method (AR)
behaves somewhere between the nMDL and nAR method. The proposed nAR method exhibits
the best dimensional consistency at Level-3 between the two grouping orders.
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Fig. 6.
Estimated signal dimensions for simulated group datasets are plotted as a function of intragroup
signal variations, which are characterized by the strength of the random fluctuations added into
the 16 independent signal sources across all subgroup datasets in the simulation. A positive
linear dependence between the estimated dimensions and the signal variations is shown.
Traditional prenoise methods like AIC and MDL generally report much higher dimensions
than the known individual signal dimension of 16. The proposed postnoise AR(1) fitting
method (nAR) demonstrates the least dependence on the increasing signal variations among
the subgroup datasets.
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