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Genomic signatures of germline gene expression
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Transcribed regions in the human genome differ from adjacent intergenic regions in transposable element density,
crossover rates, and asymmetric substitution and sequence composition patterns. We tested whether these differences
reflect selection or are instead a byproduct of germline transcription, using publicly available gene expression data from a
variety of germline and somatic tissues. Crossover rate shows a strong negative correlation with gene expression in meiotic
tissues, suggesting that crossover is inhibited by transcription. Strand-biased composition (G+T content) and A ! G
versus T! C substitution asymmetry are both positively correlated with germline gene expression. We find no evidence
for a strand bias in allele frequency data, implying that the substitution asymmetry reflects a mutation rather than
a fixation bias. The density of transposable elements is positively correlated with germline expression, suggesting that such
elements preferentially insert into regions that are actively transcribed. For each of the features examined, our analyses
favor a nonselective explanation for the observed trends and point to the role of germline gene expression in shaping the
mammalian genome.

[Supplemental material is available online at http://www.genome.org.]

Nucleotide substitution rates, transposable element density, and

crossover rates vary dramatically across the human genome for rea-

sons that are poorly understood (Donis-Keller et al. 1987; Kong et al.

2002; McVean et al. 2004; The Chimpanzee Sequencing and Analy-

sis Consortium 2005; Hellmann et al. 2005). Within genes, sub-

stitution rates are strand-asymmetric (Green et al. 2003; Polak and

Arndt 2008), crossover rates are lower (McVean et al. 2004; Myers

et al. 2005; The International HapMap Consortium 2007; Coop et al.

2008), and transposable element density is higher than in intergenic

regions (Sela et al. 2007). Each of these features may be a conse-

quence of natural selection, but, alternatively, could be a byproduct

of germline gene expression since recombination and mutation

events are only passed down to subsequent generations if they oc-

cur in germline cells. In this study, we compare these competing

hypotheses by examining the correlations between each of these

features and gene expression in germline and somatic tissues.

In yeast, several observations link recombination and tran-

scription. Meiotic recombination is initiated by double-strand breaks

(DSBs) (Sun et al. 1989), which predominantly occur in the open

chromatin regions of promoters (Wu and Lichten 1994; Gerton et al.

2000; Mancera et al. 2008). Regions with very high recombination

(recombination ‘‘hotspots’’) often require the binding of transcrip-

tion factors to be active (White et al. 1991; Kon et al. 1997; Kirkpatrick

et al. 1999a), and genes near hotspots have higher overall expression

levels (but also tend to be repressed during meiosis) (Gerton et al.

2000). Despite their association with gene expression, hotspots are

not transcription-dependent since disrupting transcription does not

necessarily change the recombination rate (Sun et al. 1989; White

et al. 1992), and new hotspots can be created by inserting nucleo-

some-excluding sequences (Kirkpatrick et al. 1999b).

In mammals, the relationship between recombination and

transcription is less clear. Across the genome, G+C content is

positively correlated with both recombination and gene density

(Eyre-Walker 1993; Fullerton et al. 2001; Kong et al. 2002), but

crossover rates are lower within genes than in the regions sur-

rounding them (McVean et al. 2004; Myers et al. 2005; The In-

ternational HapMap Consortium 2007; Coop et al. 2008).

Transcribed regions in many organisms have strand-asym-

metric patterns of substitution (Francino et al. 1996; Francino and

Ochman 2001; Green et al. 2003). In mammals there is an excess of

coding-strand purine transitions (A! G and G! A) compared to

coding-strand pyrimidine (T ! C and C ! T) transitions (Green

et al. 2003), and most transversions display a similar asymmetry

(Polak and Arndt 2008). The bias also exists in human poly-

morphism data (Webster and Smith 2004; Qu et al. 2006), and in

mutations in some somatic cancers (Rubin and Green 2009;

Pleasance et al. 2010). Over time, asymmetrical substitutions give

rise to a strand-biased nucleotide composition characterized by an

excess of G and T nucleotides on the coding strand (Duret 2002;

Green et al. 2003; Touchon et al. 2003). Although the A!G/T!C

and transversion substitution biases are uniform over entire

genes, the G!A/C! T bias is nonuniform and is, in fact, reversed

in the first 1–2 kb downstream from the transcription start site

(Polak and Arndt 2008). A similar substitution asymmetry may

exist around origins of DNA replication (Touchon et al. 2005;

Huvet et al. 2007); however, this asymmetry is very weak after

removing the confounding effect of transcription (Necsulea et al.

2009a; Polak and Arndt 2009).

Several studies have examined the relationship between

strand biases and gene expression. The coding-strand G+T content

of genes is correlated with the average gene expression levels of

housekeeping genes (Majewski 2003) and with gene expression

levels across several different tissues (Comeron 2004). Addition-

ally, the excess of T over A is strongest for genes with the highest

breadth of expression (Duret 2002).

Transposable element density is correlated with gene density

in several species, suggesting a possible connection to transcrip-

tion. In Caenorhabditis elegans, there is an enrichment of LTR ret-

rotransposons near genes (Ganko et al. 2003), while in Arabidopsis,

transposable elements are negatively correlated with gene density

(Wright et al. 2003). In primates, frequency of the transposable el-

ement Alu is positively correlated with both G+C content (Soriano

et al. 1983; Smit 1996; International Human Genome Sequencing

1Present address: Department of Human Genetics, University of
Chicago, Chicago, IL 60637, USA.
2Corresponding authors.
E-mail phg@u.washington.edu.
E-mail gmcvicker@uchicago.edu.
Article published online before print. Article and publication date are at
http://www.genome.org/cgi/doi/10.1101/gr.106666.110.

20:1503–1511 � 2010 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/10; www.genome.org Genome Research 1503
www.genome.org



Consortium 2001) and gene density (Grover et al. 2004). Near

genes, the densities of Alu elements in primates and B1 elements in

mice are greater than predicted by G+C content (Medstrand et al.

2002) and vary for genes of different functional categories (Grover

et al. 2003; Tsirigos and Rigoutsos 2009).

Several investigators have hypothesized that the above dif-

ferences between transcribed and nontranscribed sequences result

from natural selection. For example, selection may act to reduce

crossovers within genes if recombination is mutagenic (McVean

et al. 2004) and could result in strand-biased composition for

efficient splicing (Zhang et al. 2008). Selection could also explain

the enrichment of Alus near genes of specific functional catego-

ries if selection against transposable elements is weaker for these

genes (Grover et al. 2003) or if selection promotes the fixation of

Alus with regulatory potential (Tsirigos and Rigoutsos 2009).

In this study, we test whether the differences between genic

and intergenic regions in substitution pattern, transposable ele-

ment density, and crossover rate are, instead, a side effect of tran-

scription, by examining how these features correlate with gene

expression in somatic and germ tissues. If these features are a by-

product of transcription, then the strongest correlations should

be with gene expression from germline cells. In contrast, natural

selection is expected to act on all genes regardless of their tissue

of expression. Consistent with the nonselective hypothesis, we

find that transposable element density, G+T content, and

A! G/T! C substitution asymmetry are all positively correlated

with gene expression, and that these correlations are highest

for germ tissues. Similarly, crossover rate is most strongly nega-

tively correlated with gene expression from meiotic cells, which

suggests that crossover is inhibited by transcription.

Results and Discussion

Crossover rate is negatively correlated with meiotic
gene expression

In the human genome, crossover rates within genes are lower than

the rates in nearby intergenic regions (Myers et al. 2005; The In-

ternational HapMap Consortium 2007; Coop et al. 2008). It has

been suggested (McVean et al. 2004) that this may be a conse-

quence of selection against mutagenic effects of recombination,

but another possibility is that it is a consequence of an interaction

between transcription and recombination

in meiotic cells. To help distinguish these

possibilities, we calculated the pairwise

correlation between gene expression for

a wide range of tissues (Sato et al. 2003;

Su et al. 2004; Barberi et al. 2005; Ge et al.

2005; Perez-Iratxeta et al. 2005; Skottman

et al. 2005; Kocabas et al. 2006; Korkola

et al. 2006; Looijenga et al. 2006; Chalmel

et al. 2007; Houmard et al. 2009; Wu et al.

2009) and fine-scale crossover rate as esti-

mated from linkage disequilibrium (LD)

data (Myers et al. 2005; The International

HapMap Consortium 2007). Gene expres-

sion in most tissues is negatively corre-

lated with crossover rate (Supplemental

Figs. S1, S5; Supplemental Table S2); how-

ever, the mean correlation of samples

containing germ cells (�r =� 0:27) is much

stronger than the mean correlation of so-

matic tissues (�r =� 0:026; P = 2.1 3 10�30; two-sided Welch’s t-test).

These results are robust to batch effects arising from differences

between studies and microarray platform (Supplemental Note S1).

Different tissues tend to have correlated expression patterns

due to similar expression levels of ‘‘housekeeping’’ genes. To better

distinguish between tissues, we identified the 10% of genes whose

expression patterns have the highest tissue differentiation (Schug

et al. 2005). These genes have more tissue-specific patterns of ex-

pression than housekeeping genes and provide the most power for

discriminating between tissues. We recalculated the correlations

with crossover rate using this subset of genes and found that the

separation between tissues increases (Fig. 1). In fact, the correlation

with most somatic tissues becomes positive when the high tissue

differentiation genes are used (�r = 0:22; P = 1.7 3 10�61; two-sided

t-test). Thus, it is gene expression within germ cells, rather than

somatic cells, that drives the negative association with crossover

rate.

To test whether gene expression during meiotic initiation

explains the reduction in crossover rate better than gene expression

in other germ tissues, we compared samples containing meiotic cells

to other samples from the same studies. We first examined the

correlation of crossover rates and fetal ovary gene expression

(Houmard et al. 2009), again using the set of tissue-specific genes.

Female meiosis begins at ;12 wk gestation (Houmard et al. 2009),

and the mean correlation of samples taken after this time point

(12–18 wk; �r =� 0:35; n = 12) is significantly more negative (P =

2.5 3 10�7; two-sided Welch’s t-test) than that of samples before this

time point (9–11 wk; �r =� 0:22; n = 5). We also find that the mean

correlation with expression from purified pachytene spermatocytes

(�r =� 0:39, n = 2) is significantly stronger (P = 2.0 3 10�3; two-sided

Welch’s t-test) than that of all other testis samples from the same

study (�r =� 0:25; n = 6) (Chalmel et al. 2007). These results indicate

that gene expression in meiotic cells is more strongly associated

with a reduction in crossover rate than gene expression in other

germ cells.

To complement our pairwise correlation analysis, we per-

formed a multiple linear regression using a complete set of auto-

somal genes. This approach allows confounding effects from

covariates to be removed, and the effect of gene expression in

different tissues to be compared despite correlation across tis-

sues. We used crossover rate as the response variable and mean

expression from meiotic, germline (including both meiotic and

Figure 1. Pairwise correlations between gene expression and crossover rate for a set of genes with
high tissue differentiation. Each of the 409 tissue samples is represented by a single bar, colored by
tissue type as defined in the key (ESC, embryonic stem cells; GCT, germ cell tumors). Bars are ordered
from left to right by the correlation coefficient, r, with the vertical extent of the bar indicating the 95%
confidence interval. Only the 507 genes with at least 10 kb of sequence data and the highest tissue
differentiation were included in this analysis, as these genes have more tissue-specific patterns of ex-
pression and provide the most power for discriminating between tissues; for correlations with the
complete gene set see Supplemental Figure S1.
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non-meiotic cells), and somatic tissues as predictors. We included

G+C content, coding sequence density, and telomere distance as

potential confounding variables. The regression confirms that

meiotic gene expression has a significant negative association with

crossover rate (Table 1). In contrast, gene expression from somatic

and germ cells show weak positive associations with crossover rate

(Table 1).

The fine-scale recombination map does not provide infor-

mation on sex-specific recombination, and it may underestimate

crossover rates near genes because it assumes a uniform effective

population size over the length of each chromosome, whereas it is

now known that natural selection has substantially reduced effec-

tive population sizes in genic regions (Cai et al. 2009; McVicker et al.

2009). Therefore, we also estimated rates using inferred crossover

locations from a high-resolution linkage study, which are not af-

fected by intrachromosomal variation in the effective population

size (Coop et al. 2008). These rates also show a negative dependence

on gene expression, and the effect appears somewhat stronger for

female crossover rates (Fig. 2). Genes with high fetal ovary expres-

sion (upper 10%) have a female crossover rate that is 55.2% (67.6%;

95% bootstrap confidence interval) that of genes with low expres-

sion (bottom 10%). Similarly, genes with high expression have male

and sex-averaged LD-based crossover rates that are 73.8% (612.8%)

and 23.8% (63.6%) that of genes with low expression, respectively.

The crossover rate reductions are much stronger for the LD-based

map than for the pedigree map, likely because the pedigree

map’s lower resolution smoothes rate es-

timates across transcription boundaries.

We next examined crossover rates,

G+C content, and the density of a recom-

bination hotspot motif as a function of

distance from the transcription start site

(TSS) or polyadenylation site, considering

intergenic and genic regions separately

(Fig. 3; Supplemental Fig. S6). Crossover

rates are much lower across the entire

length of genes with high meiotic expres-

sion but are indistinguishable from the

flanking upstream and downstream re-

gions for genes with low meiotic expres-

sion (Fig. 3). The lower crossover rates in

genic regions could potentially be ex-

plained by crossover interference if active

promoters have higher recombination

rates, as in yeast (Wu and Lichten 1994).

This does not appear to be the case, how-

ever, because crossover rates do not have

a well-defined peak near the TSS. Further-

more, interference should reduce crossover

rates symmetrically about recombination

hotspots, but we do not see lower rates

upstream of the TSS.

McVean et al. (2004) proposed that

crossover rates within genes may be lower

because of selection against recombination-

induced mutation; however, this cannot

explain the differing correlation trends

(negative vs. positive) for high tissue dif-

ferentiation genes in germline and so-

matic tissues (or the differing slopes for

meiotic vs. somatic expression in the

multiple regression model). An alterna-

tive explanation for the negative correla-

tion with germline expression could be

that recombination during active tran-

scription is deleterious, resulting in se-

lection to cluster meiotically expressed

genes in low-recombination regions or to

reduce the frequency of recombination-

promoting sequence motifs within them.

Genes with high meiotic expression do

not appear to have relocated to low-

recombination regions, however, because

their upstream and downstream crossover

rates are very similar to those of genes with

Table 1. Summary of multiple linear regression models for several response variables

Response Predictora bb S.E.c P d Cumulative r 2e Pair r f

Crossover rate G+C content 0.42 0.01 <10�100 0.19 0.43
Meiotic expression �0.47 0.05 2.6 3 10�24 0.30 �0.37

CDS density �0.20 0.01 <10�100 0.34 �0.13
Telomere distance �0.09 0.01 6.6 3 10�21 0.35 �0.20
Somatic expression 0.09 0.02 2.3 3 10�9 0.35 �0.19
Germ expression 0.09 0.05 8.0 3 10�2 0.35 �0.36

G+T content Germ expression 1.07 0.06 6.7 3 10�81 0.21 0.46
Meiotic expression �0.57 0.05 2.5 3 10�29 0.22 0.43

CDS density 0.10 0.01 5.5 3 10�23 0.22 0.13
Somatic expression �0.09 0.02 3.6 3 10�8 0.23 0.34
Telomere distance �0.07 0.01 2.4 3 10�13 0.23 �0.08

G+C content �0.06 0.01 1.2 3 10�8 0.23 �0.06

A! G/T! C Germ expression 0.59 0.07 1.8 3 10�17 0.09 0.30
G+C content �0.18 0.01 6.4 3 10�41 0.12 �0.19

Somatic expression �0.08 0.02 1.2 3 10�4 0.12 0.19
Meiotic expression �0.26 0.06 5.3 3 10�5 0.12 0.29

CDS density 0.04 0.01 2.0 3 10�3 0.12 0.04
Telomere distance �0.04 0.01 3.4 3 10�3 0.12 0.00

G! A/C! T G+C content �0.12 0.01 3.6 3 10�19 0.02 �0.13
Somatic expression 0.03 0.01 1.0 3 10�2 0.02 0.03
Telomere distance 0.02 0.01 9.6 3 10�2 0.02 0.06
Meiotic expression N.S. 0.04
Germ expression N.S. 0.04

CDS density N.S. �0.02

L1 density G+C content �0.30 0.01 <10�100 0.09 �0.30
Somatic expression �0.21 0.02 4.8 3 10�33 0.10 �0.08
Meiotic expression 0.49 0.05 3.3 3 10�20 0.13 0.09
Telomere distance �0.06 0.01 5.6 3 10�08 0.13 0.04
Germ expression �0.28 0.06 2.0 3 10�6 0.13 0.06

CDS density �0.03 0.01 9.2 3 10�3 0.13 �0.08

Alu density Meiotic expression 0.05 0.05 3.9 3 10�1 0.09 0.30
CDS density 0.23 0.01 <10�100 0.14 0.26

Telomere distance �0.11 0.01 3.9 3 10�26 0.15 �0.12
G+C content �0.07 0.01 9.2 3 10�10 0.15 0.00

Germ expression 0.25 0.06 2.0 3 10�5 0.16 0.30
Somatic expression �0.03 0.02 7.6 3 10�2 0.16 0.22

Observations from 8420 autosomal genes (having 10 kb of intronic sequence and expression data)
were used in all of the models, except the A! G/T! C and G! A/C! T models, where a subset of
5951 genes (having at least 10 kb of alignment data) was used instead. Each variable is normalized to
have mean 0 and standard deviation 1 so that the slope estimates are comparable.
aPredictors were added to each model iteratively, at each step choosing the predictor that gave the
minimum Akaike information criterion (AIC). Expression variables are means taken across a set of rep-
resentative tissues; CDS density is the local coding sequence density calculated from 100-kb windows;
telomere distance is the mean distance (in base pairs) from the nearest chromosome end; and G+C
content is intronic G+C content.
bSlope estimate.
cStandard error of the slope estimate.
dP-value from a two-sided t-test with the null b = 0. N.S., Not significant.
eCorrelation coefficient squared for the multiple model following the addition of each predictor.
fPairwise correlation coefficient for the response variable and each predictor.
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low meiotic expression (Fig. 3). Furthermore, the density of a known

recombination hotspot motif (Myers et al. 2008) does not differ

substantially between genes with high or low meiotic expression

(Supplemental Fig. S6).

The simplest interpretation of our results is, instead, that gene

expression in meiotic cells inhibits crossovers. The positive corre-

lations with somatic expression must reflect a different process,

probably selection for the beneficial effect of recombination events

that bring together favorable alleles at different sites (Hill and

Robertson 1966; Felsenstein 1974). Such selection presumably also

acts on germline-expressed genes but is outweighed in these by the

interference with transcription. Our results

also help to interpret the recent finding

(published while this manuscript was in

preparation) that crossover rates are higher

in genes with monoallelic expression and

lower in genes with the greatest expression

breadth (Necsulea et al. 2009b) since the

latter genes are more likely to be expressed

in meiotic cells. Note, however, that the

negative correlation with gene expression

breadth is not sufficient to reject the se-

lective hypothesis on its own, because

broadly or highly expressed genes may also

be under the strongest selection (Urrutia

and Hurst 2003).

There are three broad mechanisms

by which gene expression could inhibit

crossover: by suppressing the initial for-

mation of recombination-initiating DSBs,

by inducing repair of DSBs before they

are processed, or by forcing resolution

of recombination intermediates by a non-

crossover pathway. The latter hypothesis

would predict that noncrossover recom-

bination (gene conversion) is preferred

over crossover recombination in genes

that are expressed in meiotic cells. Sug-

gestively, in yeast, some genes that are

up-regulated during meiosis are biased

toward noncrossover recombination

(Mancera et al. 2008).

Rather than promoting resolution of DSBs by noncrossover

recombination, transcription could prevent the formation of DSBs

directly (e.g., by the displacement of the meiotic recombination

protein SPO11 by RNA polymerase) or indirectly through epige-

netic changes associated with transcription. Two possible epige-

netic changes are histone marks (Buard et al. 2009), some of which

are associated with active hotspots in mouse, and DNA methyla-

tion, which may be associated with crossover rate (Sigurdsson et al.

2009). In C. elegans, condensin has been shown to play a role in

the distribution of DSBs, suggesting they may preferentially oc-

cur in condensed chromatin (Mets and Meyer 2009). Since tran-

scribed regions tend to be less condensed, they may have fewer

DSBs. Another possibility is that the action of transcription-

coupled repair (Hanawalt and Spivak 2008) eliminates DNA dam-

age in transcribed regions before it can recruit the recombination

machinery (Pauklin et al. 2009).

Strand-asymmetric substitutions are correlated with germline
gene expression

Transcribed regions of the human genome have strand-biased

compositions and substitution rates, which may be a byproduct

of germline transcription (Green et al. 2003). To investigate this

possibility, we calculated the G+T content and substitution rate

ratios from the coding (nontranscribed) strand of each gene (Sup-

plemental Table S4). The mean G+T content of genes on the auto-

somes, on the sex chromosomes, and in the pseudo-autosomal

region of X and Y are all significantly greater than 50%. The

A! G/T! C and G! A/C! T substitution rate ratios are also sig-

nificantly greater than 1 for the autosomes and for chromosome X.

We analyzed the relationship between transcription and

strand-biased substitution by calculating pairwise correlations

Figure 2. Crossover rate as a function of gene expression. Crossover
rates for each gene are estimated from male (blue triangles) and female
(pink squares) pedigree-based linkage maps or a fine-scale linkage-dis-
equilibrium map (open diamonds). Genes are binned by their meiotic
expression (into 10 bins of 1239 genes each); each point gives the mean
crossover rate of the genes in a bin. Meiotic expression estimates are from
fetal ovaries from 12–18 wk gestation (female map), spermatocytes (male
map), or an average of the two (LD-based map). Only autosomal genes
of at least 10 kb in length were used in this analysis. Error bars are
95% confidence intervals.

Figure 3. Crossover rate as a function of distance from the nearest transcription start site (TSS), and the
nearest polyadenylation site. To calculate distances, we used the 59-most TSS and the 39-most poly(A) site
in genes having more than one such site. Gray shading denotes transcribed regions. (A,B) Linkage dis-
equilibrium–based crossover rates for genes with high (open diamonds) and low (filled squares) meiotic
gene expression. (C,D) Pedigree-based female crossover rates for genes with high (open diamonds) and
low (filled squares) fetal ovary expression from 12 –18 wk gestation. (E,F ) Pedigree-based male crossover
rates for genes with high (open diamonds) and low (filled squares) spermatocyte expression.
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with the genes with high tissue differentiation (Fig. 4). The mean

germline tissue correlations are much greater than those from

somatic tissues (germ: �rG+T = 0:39 and �rA!G=T!C = 0:24; so-

matic: �rG+T =� 0:05 and �rA!G=T!C =� 0:091; PG+T = 1.1 3 10�27,

PA!G/T!C = 1.6 3 10�26; two-sided Welch’s t-test). The strongest

correlation with both G+T content and A ! G/T ! C asymme-

try occurs for spermatogonial stem cells (rG+T = 0.61, rA!G / T!C =

0.45), and is much stronger than the correlations previously ob-

served between G+T content and average housekeeping gene

expression (rG+T = 0.28) (Majewski 2003) and G+T content and

gene expression in testis (rG+T = 0.16) (Comeron 2004). As sper-

matogonial stem cells may undergo the greatest number of germ

cell divisions (Drost and Lee 1995), gene expression in these cells

may contribute disproportionately to the compositional bias. As

with crossover rate, these results are consistent across studies and

microarray platforms (Supplemental Note S1).

In contrast to the A ! G/T ! C asymmetry, the correlation

between gene expression and G ! A/C ! T substitution asym-

metry is very weak (Table 1; Supplemental Fig. S2; Supplemental

Tables S2, S4). The mean germ tissue correlation is �r = 0:051 for tis-

sue-specific genes, and only 11 of the 64 germ correlations are sig-

nificantly greater than 0 (and none of the 182 somatic samples are).

This suggests that this asymmetry either arises by a different mech-

anism or has a more subtle relationship with gene expression.

We next performed multiple linear regression using G+T

content and A! G/T! C asymmetry as response variables (Table

1). Germline gene expression retains a positive slope in both the

G+T content and A ! G/T ! C asymmetry models, whereas the

somatic and meiotic slopes become negative. The correlation of

the A!G/T!C model is weaker than the G+Tcontent model (r2 =

0.12 vs. r2 = 0.23), but this may at least in part be due to statistical

noise from the smaller number of observations.

If the substitution asymmetry within genes arises from nat-

ural selection favoring an asymmetric base composition or from

a strand-specific gene conversion bias, then it should skew allele

frequencies for some bases relative to their complements. Webster

and Smith (2004) have previously reported such a strand asym-

metry in the allele frequencies of human polymorphisms. We ex-

amined derived allele frequencies using several large data sets (The

International HapMap Consortium 2007; Keinan et al. 2007; NIEHS

SNPs, http://egp.gs.washington.edu/; SeattleSNPs, http://pga.gs.

washington.edu), and although we observed the previously re-

ported fixation bias toward G and C alleles (Eyre-Walker 1999), we

did not find a significant strand bias in allele frequencies (Sup-

plemental Fig. S7; Supplemental Table S5). As the results in Webster

and Smith (2004) are based on much less data and are only mar-

ginally significant, they may be spurious. We conclude that the

substitution bias in transcribed regions is the result of biased mu-

tation, not biased fixation.

Transposable element density is positively correlated
with germline gene expression

To examine the relationship between transposable element in-

sertion and gene expression, we assigned each gene a transposable

element density reflecting intronic instances of the two most fre-

quent transposable elements, Alu and L1. We then computed the

correlations between Alu or L1 density and gene expression in the

subset of genes with high tissue differentiation (Fig. 5). The mean

correlation of L1 density and gene expression is positive in germ

tissues (�r = 0:14, P = 1.7 3 10�14; two-sided t-test; rmax = 0.36) but

is negative in somatic tissues (�r =� 0:10, P = 4.1 3 10�51; two-sided

t-test). Alu density is positively correlated with gene expression

in germ tissues (�r = 0:21, P = 3.9 3 10�30; two-sided t-test; rmax =

0.36), but the correlation is not signifi-

cantly different from 0 in somatic tissues

(�r =� 0:0081, P = 0.15; two-sided t-test).

The difference between somatic and germ-

line correlations appears to explain why

Alu density was previously found to be

correlated with gene expression breadth

but not with expression level (Urrutia

et al. 2008).

Multiple linear regression confirms

these results (Table 1). L1 density retains

a positive association with gene expres-

sion in meiotic cells but has a negative

association with gene expression in germ-

line and somatic cells once other variables

are added to the model. Similarly, in the

Alu density model, mean expression in

germ cells retains a positive slope, but the

slopes for expression in somatic and mei-

otic cells are not significantly different

from 0.

Alu and L1 elements within genes

are more often in the antisense orienta-

tion (Smit 1999; Medstrand et al. 2002;

Glusman et al. 2006). To test whether this

pattern reflects an insertional preference

related to transcription, we computed

correlations between the orientation bias

of these elements and gene expression

(Supplemental Fig. S4; Supplemental Note

Figure 4. Pairwise correlations between gene expression and strand-biased composition and sub-
stitution rates for high tissue differentiation genes. The figure layout is as described in Figure 1. Cor-
relations are between gene expression and G+T content (n = 507) (A) or A ! G/T ! C substitution
asymmetry (n = 346) (B). For correlations with the complete gene set, see Supplemental Figure S2.
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S2). We found only a slight correlation with the orientation bias of

Alus (and none with L1s), suggesting that this pattern is largely in-

dependent of gene expression and may instead reflect selection

against elements in the sense orientation, as has been previously

suggested (Glusman et al. 2006).

The positive correlation between germline or meiotic gene

expression and Alu and L1 densities suggests that transposable

elements preferentially integrate into transcriptionally active or

open chromatin regions in the germline. This conclusion is sup-

ported by the previous observations that most transposable ele-

ments are enriched within intronic sequences (Sela et al. 2007) and

that Alu density is higher near housekeeping genes than tissue-

specific genes (Ganapathi et al. 2005; Eller et al. 2007; Urrutia et al.

2008). In further support of this idea, we find the strongest

L1 density correlation in pachytene spermatocytes (r = 0.36),

where, in mice, L1 proteins and RNA are specifically coexpressed

(Branciforte and Martin 1994). The negative correlations between

L1 density and somatic gene expression may result from purify-

ing selection against intronic L1 elements and suggests an antag-

onistic evolutionary relationship whereby many L1s have become

fixed in germline-expressed genes despite selection against them.

Conclusion

Our results reveal that the key evolutionary processes of mutation

and recombination are influenced in unexpected ways by gene

expression in germline cells. Germline transcription affects muta-

tion by promoting transposable element insertion within the tran-

scribed region and by causing an asymmetry in point mutation

patterns. Transcription in meiotic cells suppresses recombination.

These effects appear to be consequences of gene expression rather

than the result of selection; in fact, our results for somatic genes

suggest that selection acts to remove

transposable element insertions and to

favor crossovers within genes, implying

that the observed trends for germline-

expressed genes are somewhat deleterious.

In combination our findings point to a

novel role for germline cell molecular bi-

ology in genome evolution.

Methods

Gene annotations
The genomic locations of human tran-
scripts were obtained from the University
of California at Santa Cruz (UCSC) ‘‘known
gene’’ annotations (Hsu et al. 2006), which
we downloaded from the UCSC Genome
Informatics website (Kent et al. 2002) in
September 2007. Overlapping transcripts
(i.e., alternate splice forms) on the same
strand were combined into single genes.

Genome sequences and alignments

We downloaded the human genome se-
quence (hg18) and pairwise human/
chimp (panTro2) and human/macaque
(rheMac2) alignments from UCSC. The
alignments were processed to make them
best-reciprocal and were extensively fil-
tered for sequence and alignment quality

using the methods described in McVicker et al. (2009). The filtered
pairwise alignments were then combined to create a three-species
multiple alignment.

G+T content

G+T content was estimated for each gene by counting intronic
nucleotides on the coding strand. Sites within 100 bp of any an-
notated exon were excluded to avoid the effects of selection act-
ing on exons or splice sites. Repetitive sequences identified by
RepeatMasker (http://www.repeatmasker.org) were excluded be-
cause recently inserted repeats are unlikely to be at compositional
equilibrium. CpG islands, defined by annotations downloaded
from UCSC, were also omitted because of their unusual sequence
composition. Only genes with at least 10 kb of filtered sequence
data were used for analyses.

Substitution rates

Substitution rates were estimated by parsimony using the human/
chimp/macaque alignment. Each gene was assigned a substitution
rate calculated from intronic substitutions that were inferred to be
on either the chimpanzee or human branches (using macaque as
the outgroup). Rates were calculated from the perspective of the
coding strand, and sites in repeats or within 100 bp of any exon were
excluded. Sites adjacent to mismatches, Ns, or alignment gaps were
also excluded. Sites that were part of a CpG dinucleotide in any of
the three species were excluded because CpGs are hypermutable and
their substitution rates do not appear to be strand-biased (Polak and
Arndt 2008). Substitution rate ratios were log2-transformed because
the log ratios are symmetric about 0 and show a stronger linear re-
lationship to other variables such as G+T content. Only genes with
at least 10 kb of filtered alignment data were used for analyses.

Figure 5. Pairwise correlations between gene expression and transposable element density for high
tissue differentiation genes. The figure layout is as described in Figure 1. Correlations are between gene
expression and L1 density (A) or Alu density (B) (n = 507). For correlations with the complete gene set,
see Supplemental Figure S3.
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Allele frequencies

See Supplemental Methods.

Crossover rates

Fine-scale LD-based estimates of crossover rate were obtained from
a recombination map constructed from HapMap phase II poly-
morphism data (The International HapMap Consortium 2007)
using the method of Myers et al. (2005) (downloaded from http://
www.hapmap.org, last updated June 25, 2008). Crossover rates
within map intervals were assumed to be constant, and each site
within an interval was assigned the same rate.

Sex-specific pedigree-based crossover rate estimates were cal-
culated using a similar procedure to that of Coop et al. (2008). We
obtained genomic intervals of directly inferred crossover events
from Coop et al. (2008) and assigned each site within an interval
a fractional crossover count, 1/L, where L is the length of the in-
terval. The crossover rate for each site was then calculated by
summing fractional counts from overlapping intervals and di-
viding by the total number of meioses.

For correlation analyses, each gene was assigned an average
crossover rate by taking the mean crossover rate of all sites spanned
by the gene. To improve the accuracy of the estimates, only genes
with a length of at least 10 kb were included in these analyses.

Gene expression

We obtained expression data for 409 microarray experiments in 12
studies representing a wide variety of germ and somatic tissues
(Supplemental Table S1; Sato et al. 2003; Su et al. 2004; Barberi et al.
2005; Ge et al. 2005; Perez-Iratxeta et al. 2005; Skottman et al.
2005; Kocabas et al. 2006; Korkola et al. 2006; Looijenga et al.
2006; Chalmel et al. 2007; Houmard et al. 2009; Wu et al. 2009). As
these studies used two different microarray platforms (Affymetrix
hgu133plus2 and hgu133A), we only considered probesets shared
by both arrays (and in some analyses we only used the hgu133-
plus2 data). The raw intensity data from these studies were back-
ground-adjusted, normalized, and summarized using the RMA al-
gorithm (Bolstad et al. 2003; Irizarry et al. 2003a,b) as implemented
in the Bioconductor software package (Gentleman et al. 2004).

We assigned probesets to genes using identifiers from version
26 of Affymetrix’s array annotation file and UCSC’s kgAlias file.
Probesets were discarded if they mapped to multiple different
genes, failed to map to any genes, were flagged as being incomplete
(probesets ending with ‘‘i_at’’), or were designed with a reduced set
of selection rules (probesets ending with ‘‘r_at’’). In total, 36,675
out of 54,676 probesets were assigned to 17,369 genes for the
hgu133plus2 data (19,038 probesets to 11,738 genes when the
22,284 common hgu133A/plus2 probesets were used). Follow-
ing probeset assignment, each gene was given an expression value
by taking the mean RMA value across all probesets assigned to
that gene (since RMA values are log2-transformed, this is equiva-
lent to a geometric mean of raw intensities).

For some analyses (e.g., multiple regression and examination
of crossover rate as a function of gene expression), it was preferable
to use expression data from more genes at the sacrifice of some
tissues, so we combined expression data from a subset of the studies
that used the hgu133plus2 array (Kocabas et al. 2006; Chalmel et al.
2007; Houmard et al. 2009). In these analyses we also combined
replicate experiments by taking the mean of the log2 expression
values. Fetal testis data were combined across all gestational time
points from 9 to 20 wk because hierarchical clustering revealed that
all 17 of these samples have very similar expression patterns (Sup-
plemental Fig. S8). Fetal ovary data were divided into two groups,
9–11 wk gestation and 12–18 wk gestation, and the samples within

each group were combined; the ovarian samples were divided
this way because meiotic genes are up-regulated beginning at week
12 (Houmard et al. 2009), and hierarchical clustering placed the
ovarian samples into two distinct groups (Supplemental Fig. S8).
Multiple regression analyses conducted prior to the merging of
gene expression replicates yielded results that were very similar to
those from the merged expression data set.

To identify genes with high tissue differentiation (i.e., more
tissue-specific patterns of expression), we combined replicate ex-
periments by taking the mean expression value, and then calcu-
lated the Shannon entropy of each gene’s expression across tissues
(Schug et al. 2005). We then defined our high tissue differentiation
gene set as the 10% of genes with the lowest entropy.

To compare germline and somatic tissues, we considered all
tissues that contain germ cells to be ‘‘germline’’ (e.g., whole testis) and
all other tissues to be ‘‘somatic,’’ with the exception of germ cell tu-
mors, embryonic stem cells, and immortalized cell lines, which were
excluded. We calculated P-values for differences in mean correlations
using two-sided Welch’s t-tests. To test whether mean correlations
were different from 0, we performed two-sided one-sample t-tests.

See Supplemental Note S1 for a discussion of microarray batch
effects.

Multiple linear regression

We performed multiple linear regression using a technique similar
to that described by Hellmann et al. (2005). We normalized all
variables to have a mean of 0 and a standard deviation of 1 so that
the estimated slopes are comparable across predictors. We then
constructed linear models in a stepwise fashion by adding the
predictor variable that gave the minimum AIC at each iteration.
To perform this procedure, we used the stepAIC function from R’s
(R Development Core Team 2008) MASS package (Venables and
Ripley 2002).

Each gene was assigned a crossover rate from the LD-based
fine-scale recombination map, as described above. These crossover
rate estimates were log2-transformed for the regression analyses
because this gave a more linear relationship with the other vari-
ables in the model. A small value (5.0 3 10�4 cM/Mb, equal to one-
half the minimum non-zero crossover rate) was added to all
crossover rate estimates to avoid taking the log of 0.

To calculate coding sequence (CDS) density, we first calcu-
lated a density for each site in the genome using a sliding 100-kb
window. We then defined the CDS density of a gene as the mean
taken across all sites spanned by the gene.

G+C content was assigned to each gene using intronic se-
quences, in the same manner as described for G+T content above.

Mean germ, meiotic, and somatic expression for each gene
was estimated using microarray data from three studies, processed
as described above (Kocabas et al. 2006; Chalmel et al. 2007;
Houmard et al. 2009). Mean germ expression was calculated from
seminiferous tubule, spermatid, spermatocytes, whole testis, oo-
cyte, fetal ovary (9–11 wk gestation), fetal ovary (12–18 wk gesta-
tion), and fetal testis. Mean meiotic expression was calculated from
tissues containing early meiotic cells (oocytes were not included as
they are late meiotic cells): spermatocytes, whole testis, fetal ovary
(12–18 wk gestation), and seminiferous tubule. Mean somatic ex-
pression was calculated from chrondrocytes, vascular smooth
muscle, and somatic reference (mRNA from 10 somatic tissues).
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