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Genomes encode multiple signals, raising the question of how these different codes are organized along the linear genome
sequence. Within protein-coding regions, the redundancy of the genetic code can, in principle, allow for the overlapping
encoding of signals in addition to the amino acid sequence, but it is not known to what extent genomes exploit this
potential and, if so, for what purpose. Here, we systematically explore whether protein-coding regions accommodate
overlapping codes, by comparing the number of occurrences of each possible short sequence within the protein-coding
regions of over 700 species from viruses to plants, to the same number in randomizations that preserve amino acid
sequence and codon bias. We find that coding regions across all phyla encode additional information, with bacteria
carrying more information than eukaryotes. The detailed signals consist of both known and potentially novel codes,
including position-dependent secondary RNA structure, bacteria-specific depletion of transcription and translation
initiation signals, and eukaryote-specific enrichment of microRNA target sites. Our results suggest that genomes may
have evolved to encode extensive overlapping information within protein-coding regions.

[Supplemental material is available online at http://www.genome.org.]

The requirement to organize the multitude of signals encoded by

a genome into a linear DNA sequence imposes complex con-

straints on the way in which these signals can be encoded. For

example, the region of the mRNA transcript that encodes an amino

acid sequence inevitably overlaps with the RNA secondary struc-

ture signals that the transcript encodes as a whole. In addition,

since transcription initiates upstream of coding regions, coding

regions may be constrained to preferentially avoid signals for

transcription initiation in order to minimize aberrant transcrip-

tion. Thus, unlike prose, in which each letter participates in exactly

one word, the same genomic sequence may in some cases be re-

quired to simultaneously encode multiple types of signals and

avoid other signals. One way in which the same sequence can

comply with such constraints is if codes have a degree of re-

dundancy, namely, if a given code can encode the exact same

information in multiple distinct ways. The genetic code exhibits

such redundancy since the same amino acid sequence can be

encoded by many different DNA sequences. A recent study even

suggested that the genetic code is nearly optimal for accommo-

dating additional information (Itzkovitz and Alon 2007).

Several studies highlighted measures of information content

that are unique to the protein-coding sequence, with the goal of

detecting genes in genomic DNA (Fickett and Tung 1992; Burge

and Karlin 1998; Stormo 2000; Green et al. 2003). Studies that

focused on the phenomenon of overlapping codes demonstrated

that certain codes are enriched or depleted from coding regions

of specific organisms, including depletion of microsatellite repeats

from coding sequences in Escherichia coli, Saccharomyces cerevisiae,

and Caenorhabditis elegans (Ackermann and Chao 2006); restriction

enzyme target sites in bacteria and archaea (Gelfand and Koonin

1997); and enrichment for microRNA targets in human (Forman

et al. 2008) and for RNA secondary structure (Katz and Burge 2003).

A striking example of the use of overlapping information within

coding sequences is the encoding of overlapping genes on the

same strand or on opposite strands, which is prominent in viruses

(for review, see Normark et al. 1983). However, a systematic study,

across diverse phyla, of the identity and extent to which protein-

coding sequences harbor additional overlapping codes is still

lacking.

Results

Markov chain Monte Carlo randomization
of protein-coding regions

To measure the extent to which the protein-coding regions of

a given genome carry additional information beyond the amino

acid sequence, we broadly defined information in terms of the

distribution of short sequences (Burge et al. 1992) of length 6 bp

or 7 bp. We chose these k-mer lengths as they are the longest se-

quences for which we could obtain ample statistics for all possible

sequences. To this end, we compared the number of occurrences

of all possible short sequences in the protein-coding regions of

a given genome to this same number in the coding regions of

randomized versions of the genome that still encode the same set

of proteins.

Since the mere counts of short sequences depends on geno-

mic biases in basepair composition, codon-usage, and di-codon

counts (Andersson and Kurland 1990; Boycheva et al. 2003; Moura

et al. 2007), we used a stringent randomization procedure that

preserves all of these properties (Fig. 1A). Specifically, we employed

a Markov chain Monte Carlo algorithm that generates a ran-

domized genome by iteratively swapping codons that encode the

same amino acid and that are each flanked by the exact same co-

dons (e.g., these two underlined lysine codons, GAG-AAG-TCT

and GAG-AAA-TCT, could be swapped) (Fig. 1A). In addition to

preserving codon and di-codon counts and thus all in-frame

6-mers, our randomization procedure preserves the exact counts

of all short sequences of length 1–4 irrespective of their frame, as

well as the exact counts of 5-mers in the 0 and +1 frames. Unlike

randomizations that preserve only codon counts, we found that

this randomization yields an enrichment of sequences of 6-mers

and of longer k-mers that is independent of the absolute number

of occurrences of these k-mers in the real genome (Supplemental
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Figure 1. Overview of our approach and detection of additional information encoded within protein-coding sequences. (A) Illustration of our method
for identifying over- and underrepresented short sequences within coding regions. For each short sequence (here 6-mer sequences are shown), we count
the number of its appearances in a given genome’s coding sequences and compare that to its average number of appearances in the coding sequences of
randomized genomes. The randomization swaps codons from different genomic locations only if they are both flanked by identical codons and, thus,
preserves amino acid sequence, codon usage, and di-codon counts. An example of one codon swap is shown (left), and these swaps are repeated
iteratively for each randomization, for each species. (B) All genomes contain additional information in their coding sequences. Shown is the Jensen-
Shannon information divergence, a measure analogous to information content, between the distribution of all 6-mer sequences when counted out-of-
frame in the real and randomized genomes (since our randomization preserves di-codon counts, the counts of 6-mers in-frame are equal in the real and
random genomes, by construction). The Jensen-Shannon divergence is shown as a box plot for all organisms in various phyla groups. The red line denotes
the median, the blue box delimits 25–75 percentiles, and the outermost bars show the minimum and maximum. The number of species from each phyla
group is shown in parentheses. (C ) Histograms of log-ratios of number of appearances of the out-of-frame 6-mers in E. coli (black) and out-of-frame 6-mers
in randomized E. coli genomes (gray). Box plots of log-ratios for specific families of known biological signals (mononucleotide repeats, restriction enzyme
target sites, and bacterial transcription and translation initiation sites) are shown in their appropriate place along the histogram. Histograms were nor-
malized to have a maximum of 1 for ease of comparison. (D) Same as C, but for human.
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Fig. S1). Thus, codes that are characterized by short sequences and

are enriched or depleted from coding regions beyond the above

genomic biases will be detected by our approach, since the number

of their occurrences will differ significantly between the real and

the randomized genomes.

Phyla-specific overlapping information content
in protein-coding regions

We quantify the enrichment or depletion of each short sequence

as the ratio between the number of times the sequence appears in

the coding regions of the real genome and the average number of

times it appears in those of the randomized genomes (Supplemental

Fig. S1; Supplemental Tables S1, S2). Applying this approach to

the protein-coding regions of hundreds of genomes from diverse

phyla, including viruses, bacteria, fungi, vertebrates, and plants,

we find that across all genomes, the number of occurrences of

short sequences differs substantially between the real and ran-

domized coding regions (Fig. 1B–D). Notably, this difference is

more pronounced in bacterial genomes compared with eukaryotic

genomes (Kolmogorov-Smirnov test, P < 10�25) (Fig. 1B). This re-

sult also holds when constraining all species to similar genome

sizes and GC content (Supplemental Fig. S2) and is most likely

not affected significantly by genome heterogeneity effects, which

may be introduced by factors such as regional GC bias along the

genome, horizontal gene transfer, or strand biases such as those

caused by transcription-mediated repair (Supplemental Fig. S3;

Green et al. 2003). Thus, our results suggest that protein-coding

regions carry extensive information beyond that expected from

their requirements to encode particular amino acid sequences and

to conform to codon usage and di-codon composition.

Known biological codes are among the enriched
or depleted sequences

The above deviation from random expectation could simply in-

dicate that protein-coding regions evolve by a more complex

evolutionary model than that accounted for by our randomiza-

tion. A much more intriguing possibility is that the additional

information that we find in protein-coding sequences reflects se-

lection for, or avoidance of, meaningful biological codes, and that

this additional information has evolved in order to facilitate spe-

cific functions. To test for this latter possibility, we asked whether

several known biological codes are among the short sequences

enriched or depleted above random expectation across various

genomes.

In bacteria, transcription and translation can initiate at any

genomic location that contains specific, well-characterized short

sequences (Shine and Dalgarno 1975; Haugen et al. 2008). Thus,

we may expect such initiation signals to be depleted from coding

regions of bacteria in order to protect against aberrant transcrip-

tion/translation initiation (Hahn et al. 2003). Indeed, we find that

the binding sites for sigma factors, a group of ubiquitous pro-

karyotic transcription initiation factors (Haugen et al. 2008), are

highly depleted in bacteria (for the�35 promoter element TTGACA,

log-ratio of number of appearances between real and randomized

genomes of �0.42 6 0.02, Kolmogorov-Smirnov of P < 10�152

compared with all 6-mers in all organisms; for the �10 promoter

element TATAAT, log-ratio �0.004 6 0.03, P < 10�20) (Fig. 2A) but

not in eukaryotes (log-ratio of 0 6 0.01 and 0.05 6 0.03, re-

spectively). We observe a similar bacteria-specific depletion of the

Shine-Dalgarno sequence, the bacterial translation initiation site

(AGGAGG, log-ratio of �0.13 6 0.006 in bacteria, P < 10�72, com-

pared with log-ratio of 0.01 6 0.006 in eukaryotes) (Shine and

Dalgarno 1975). Unlike prokaryotic ribosomes, which initiate

translation by randomly colliding with the transcript until en-

countering a position that contains initiation sequences, eukaryotic

ribosomes attach to the 59 UTR of the transcript and linearly scan

the transcript, beginning translation at the first initiation signal

encountered (Kozak 1991). Thus, eukaryotic initiation signals do

not need to be depleted from eukaryotic coding regions since the

‘‘correct’’ initiation signal is invariably encountered by the ribosome

before it ever reaches the ‘‘wrong’’ ones. Consistent with this pre-

diction of the eukaryotic ribosome scanning model, the Kozak motif

(ACCATG), a strong determinant of translation initiation in eu-

karyotes (Kozak 1991), is not enriched or depleted in protein-coding

regions of either bacteria or eukaryotes (Fig. 2A).

Mononucleotide repeats mutate frequently through single

nucleotide insertions or deletions (Ellegren 2004), and we would

thus expect these sequences to be depleted from protein-coding re-

gions in order to minimize DNA replication slippage errors that can

potentially shift the open reading frame. Indeed, we find a ubiqui-

tous depletion of mononucleotide repeats across all phyla, in line

with recent findings (Ackermann and Chao 2006) (log-ratio of

number of appearances between real and randomized of �0.11 6

0.07, P < 10�16; �0.21 6 0.008, P < 10�225; and �0.27 6 0.02, P <

10�87 in viruses, bacteria, and eukaryotes, respectively; Fig. 2B).

We next examined the set of cleavage sites for bacterial re-

striction enzymes. These enzymes cut DNA at specific sequences

as a defense mechanism against invading viruses (Roberts et al.

2003; Tock and Dryden 2005), and as such, we expected these se-

quences to show specific depletion from coding regions of bacteria

in order to avoid self-cleavage. Indeed, we find a significant de-

pletion of restriction enzyme sites in bacterial coding regions (log-

ratio of �0.14 6 0.002, P < 10�225), significantly more than in

coding regions of eukaryotes (log-ratio of �0.012 6 0.002). Nota-

bly, we find that restriction sites are significantly more depleted in

the coding regions of the bacterial genomes that encode their

recognizing enzymes compared with their depletion from coding

regions of other bacteria (log-ratio of �0.3 6 0.01 compared with

�0.14 6 0.006, P < 10�17) (Fig. 2C). As restriction enzymes cut

nonmethylated sequences, the specific depletion that we find for

their sites in bacteria suggests that this avoidance may help to pre-

vent self-cleavage of DNA in cases of leaky bacterial self-methylation

of DNA, which is meant to prevent bacterial sequences from being

cleaved by their own restriction enzymes (Gelfand and Koonin

1997).

As another type of known biological code, we examined the

enrichment of microRNA target sites within protein-coding se-

quences. MicroRNAs are short RNA sequences that modulate

translation by recognizing and binding 6- to 8-bp seeds on the

mRNA sequence of their target genes (Bartel and Chen 2004). Al-

though the traditional view is that microRNAs bind within the

39 UTR of their targets, recent studies demonstrated that microRNA

target sites within coding regions are also functional (Duursma

et al. 2008; Forman et al. 2008; Rigoutsos 2009). Comparing the

number of occurrences of microRNA target site seeds between the

real and randomized genomes, we find that microRNA target sites

are enriched in the coding regions of the eukaryotic genome that

encodes their recognizing microRNA (log-ratio of 0.01 6 0.004, P <

10�5) but not in eukaryotic genomes that do not encode the rec-

ognizing microRNA (log-ratio �0.01 6 0.01) and not in bacterial

genomes (log-ratio�0.026 6 0.001) (Supplemental Fig. S5), which

do not have microRNAs. For example, microRNA target sites in
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Drosophila melanogaster have a significantly higher log-ratio of

occurrences between the real and randomized coding regions of

Drosophila, compared with their log-ratios in other eukaryotes in

which they do not appear as microRNA target sites (Fig. 2D). As

additional evidence that these enrichments likely represent

microRNA target sites, we find that in contrast to the significantly

high log-ratio of Drosophila microRNA target seeds in the coding

regions of Drosophila (0.043 6 0.01, P < 10�4), the reverse se-

quences of these microRNA target sites, which are a control not

known to be microRNA target sites, are not enriched over random

in Drosophila coding regions (�0.01 6 0.01) (Fig. 2D). Together,

these results suggest that eukaryotic genomes may have evolved

their protein-coding sequences to harbor microRNA target sites.

We note that although significant, these enrichments are rela-

tively small in magnitude compared with the enrichment of sig-

nals discussed above.

Encoding of RNA secondary structure overlaps coding regions

Overlapping information in coding sequences should not be lim-

ited to short contiguous sequences. For example, codon choice can

profoundly impact the RNA secondary structure of the resulting

Figure 2. Coding sequences display phyla-specific enrichment of known biological signals. (A) Box plot of log-ratio of number of appearances between
real and randomized genomes, of sequence determinants of transcription (�35 promoter element, TTGACA; �10 promoter element, TATAAT) and
translation initiation in bacteria (Shine-Dalgarno motif, AGGAGG) and of translation initiation in eukaryotes (Kozak motif, ACCATG). In each species, each of
the above 6-mer sequences is counted out-of-frame in the real genome and in the randomized genome, and the log-ratio of these counts is incorporated
into the box plot. The red line denotes the median, the blue box delimits 25–75 percentiles, and the outermost bars show the minimum and maximum. The
number of species from each phyla group is shown in parentheses. (B) Same as A, for log-ratios of mononucleotide 6-mers across various phyla. All represents
all n-mers in all species. (C ) Same as A, for bacterial restriction enzyme sites. The bacteria encoding recognizing enzyme group (third box plot from left) only
displays log-ratios of restriction enzyme sites in bacterial genomes that encode the enzymes that recognize those sites, whereas the bacteria not encoding
recognizing enzyme group (rightmost box plot) only displays log-ratios of restriction sites in bacterial genomes that do not encode the recognizing enzymes.
(D) Same as A, for log-ratios of microRNA target sites from Drosophila melanogaster. The 7-mer seed (reverse complement of nucleotides 2–8 of the
microRNA) from each microRNA was taken for the log-ratio computation. The log-ratios are shown in the coding sequences of Drosophila and in several
other species, as well as in 552 bacterial genomes. The distribution of the reverse sequences of the microRNA target sites is also shown as a control.
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mRNA (Katz and Burge 2003), which in turn modulates transla-

tion efficiency (Kudla et al. 2009). To explore the extent to which

aspects of RNA secondary structure are encoded within protein-

coding sequences, we used the Vienna package (Hofacker 2003) to

fold the coding segments of the archaeal, bacterial, and sac fungal

(ascomycota) genomes (only intronless or intron-poor phyla were

analyzed because our data set of coding segments did not keep

track of the exon order in eukaryotic genes). We then compared

these folds to those of the randomized coding segments of each

species. Intriguingly, we find that in all species examined, the

probability of being base paired, averaged across all coding seg-

ments, is significantly lower in the first 30 bp of coding segments

of the real genome compared with the first 30 bp of coding seg-

ments in randomized genomes, with bacteria exhibiting the most

pronounced deviation from random (Fig. 3). A recent study dem-

onstrated that a low pairing probability in the region spanning

positions �4 to +37 around the translation start site is a strong

determinant of high translation efficiency in E. coli (Kudla et al.

2009). Thus, our finding of lower than expected pairing proba-

bility in this region suggests that protein-coding sequences may

have evolved to encode relatively unpaired secondary structures

near translation start sites in order to increase the translation ef-

ficiency of the corresponding genes.

Phyla-specific enrichment of sequences

Overlapping codes found within protein-coding sequences are

expected to show trends that correlate with the evolutionary his-

tory of the species. To obtain a global, unbiased view of the ad-

ditional information encoded within coding sequences across

different groups of species, we first compared the enrichment of

short sequences between bacteria and eukaryotes. To this end, we

took each short sequence and plotted its overall enrichment in

bacteria versus in eukaryotes, where we defined the overall en-

richment in each of the two phyla groups as the difference between

the fraction of species in the group in which the sequence is

enriched in the real versus the randomized genomes (at P < 0.05)

and the fraction of species within that phyla in which it is depleted

(Fig. 4A; Supplemental Fig. S6). This view reveals several short se-

quences that have similar behavior in bacteria and eukaryotes,

such as the universally depleted mononucleotide repeats. These

similarly enriched or depleted sequences contribute to a small but

significant correlation between the enrichment of short sequences

in bacteria and eukaryotes (R = 0.08, P < 10�6). This correlation is

not observed when performing this analysis on randomized ver-

sions of representative genomes (R = �0.0001, P < 0.996) (see also

Supplemental Fig. S7). A similar small positive correlation can be

seen when comparing Z-scores between all organism pairs (Sup-

plemental Fig. S8). The small value of the correlation in Figure 4A

suggests that most short sequences exhibit phyla-specific behav-

ior, such as bacterial restriction enzyme sites and bacterial tran-

scription initiation signals, which are depleted in bacteria but not

in eukaryotes (Fig. 4A; Supplemental Fig. S6). As an even broader

evolutionary view of our catalog of overlapping codes in coding

sequences, we clustered the log-ratio enrichment of all short se-

quences across all species and obtained several clusters, some of

which exhibit ubiquitous enrichment or depletion of their mem-

ber sequences across all species, while others exhibit phyla-specific

enrichment or depletion of their member sequences (Fig. 4B).

While our analyses of enrichment or depletion of known bi-

ological codes within protein-coding sequences predominantly

found depletion of known codes such as transcription and trans-

lation initiation sites, mononucleotide repeats and restriction en-

zyme binding sites, we note that the fraction of short sequences

that are overrepresented is similar to the fraction of those that

are underrepresented, as apparent by the normal distribution of

Z-scores of 6-mers (Supplemental Fig. S11). Some of these over-

represented sequences may be part of yet uncharacterized over-

lapping codes. To further explore the properties of sequences that

are specifically enriched in eukaryotes significantly more than in

bacteria (Fig. 4A), we compared, for each 5-mer, the distribution of

Z-scores of all of the 6-mer sequences that include it between

bacteria and eukaryotes (Supplemental Table S3). We find that se-

quences containing C(A/G)AGT are the most overrepresented in

eukaryotes versus bacteria, followed by C(G/C/A)AGG. It will be

interesting to further explore the biological meaning of these se-

quences and of others that are overrepresented in specific phyla.

Discussion
The way in which genome sequences have evolved to encode

information is profoundly different from the way in which in-

formation is encoded in human engineered channels. Rather than

being a sequentially designed system, genome sequences have

evolved under strong, often contradicting constraints and ‘‘frozen

accidents’’ (Crick 1968). These constraints include the topology of

the genetic code and other existing codes, the structure of the

transcription and translation machineries, and constraints set by

the mutational process itself. These constraints shape the amino

acid content of proteins, the species-specific codon usage, and

other short-range correlations between nucleotides. Notably, when

comparing real coding sequences to coding sequences of alternative

(randomized) genomes that conform to the above constraints, we

Figure 3. Coding regions tend to encode depletion of RNA secondary
structure downstream of the start codon. Shown is the difference in the
probability of being base-paired between the real and randomized ge-
nomes, averaged across the first 100 nt of all coding segments of archaeal
(blue), bacterial (red), and fungal (green) genomes. The patches show SE
of the difference. Pairing probabilities were predicted by using the Vienna
package (Hofacker 2003) to fold the real and randomized genomes. Each
curve was smoothed with a 3-bp moving window. Since the first codon in
all coding segments has only one flanking codon, it is never swapped by
our genome randomization method. Thus, by construction, the first nu-
cleotides of the coding region are more similar between the real and
randomized genomes, explaining the lower difference observed in the
pairing probability of these nucleotides between the real and randomized
genomes.
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Figure 4. A global view of the additional information encoded within protein-coding sequences. (A) Comparison of short sequence enrichments in
coding regions between bacteria and eukaryotes. For each short sequence, shown is its overall enrichment in bacteria (x-axis) and eukaryotes (y-axis),
where the overall enrichment in each of the two phyla groups is taken to be the difference between the fraction of phyla species in which the sequence is
enriched in the real versus randomized genome (at P < 0.05) and the fraction of species within that phyla is which it is depleted. (Red) Sequences that
correspond to mononucleotide repeats; (blue) sequences that correspond to bacterial restriction enzyme sites; (green) sequences that correspond to
bacterial transcription and translation initiation sites. (B) A clustering representation of the log-ratio coding region enrichment of all 6-mers across all 363
organisms whose coding regions exceed 2 Mbp. Rows, 6-mers; columns, organisms. The data were clustered using k-means clustering (k = 5) of a reduced
matrix of representation bias in archaea, bacteria, and eukaryotes. White marks on the left bar indicate three specific sequence families: mononucleotide
repeats (left column), restriction enzyme sites (central column), and transcription and translation initiation sites (right column). The organisms are arranged
in phyla groups and are shown on the bottom. Red and green denote enrichment and depletion (P < 0.05) above that expected in randomized genomes,
respectively.
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find that for many short sequences, the number of their appear-

ances in real coding sequences is significantly different than their

counts in the coding sequences of alternative genomes. Moreover,

we find that several known biological codes are among the short

sequences that exhibit significant deviations between real and al-

ternative genomes, suggesting that the additional information that

we find in coding sequences may have evolved to facilitate several

functions. Although the enrichment or depletion of many of these

biological codes was shown, each was shown on a small number

of species, which varied across studies. In contrast, our study takes

a systematic and comprehensive approach using a common and

stringent statistical comparison applied to more than 700 species

from diverse phyla to uncover the global use of these codes within

protein-coding sequences.

The lower information content that we found in eukaryotes

compared with bacteria may be related to the higher-order structure

and nuclear compartmentalization of eukaryotic DNA, which may

isolate it from interactions with the milieu of proteins and RNA

in the cytoplasm, thereby partially alleviating the constraints of

avoiding certain signals. Alternatively, the lower information con-

tent in eukaryotes may be a result of the increased power of genetic

drift related to their larger genomes and smaller effective population

sizes (Lynch 2006). Thus, the emergence of overlapping codes,

which would, in general, convey a selection advantage at the or-

ganism level, could be slower in eukaryotic genomes.

The randomization applied here assumed a homogenous co-

don and di-codon composition along the genome, an assumption

that does not hold in general. Although the Z-score profiles of

6-mers in subsamples of genomes stratified according to either

chromosomal content or random selection are well within the

range of the profiles for the entire organism (Supplemental Fig. S3),

it is possible that some of the codes that we detected may be a re-

sult of regional variations in sequence features. These may be in-

troduced by factors such as regional GC bias along the genome,

horizontal gene transfer, or strand biases caused by transcription

mediated repair (Green et al. 2003). Although the fraction of codes

that are common to both the human genome and its chromo-

somal or random stratifications is ;70%, significantly higher than

the ;30% codes common to human and other organisms (Sup-

plemental Fig. S4), this figure indicates that many codes may in-

deed be spuriously detected based on genome heterogeneities.

Thus, our analysis serves to generate hypotheses that should

eventually be validated by other methods.

Our randomization software, which we have made available

in the Supplemental Material, can be used to explore overlapping

information in the coding regions of subregions of genomes as well

as in additional genomes. Our results may also have important

implications for synthetic biology, as expression of synthetic genes

in heterologous hosts may be optimized by avoiding or enriching

for the overlapping codes within the host (Gustafsson et al. 2004).

While we have shown that our method can readily detect

overlapping codes that are represented by short contiguous k-mers,

the detection of other codes, which either are of a stochastic nature,

such as the recognition site of most transcription factors (Schneider

et al. 1986) or are distributed/long codes, such as that of nucleosome

positioning (Segal et al. 2006), is more challenging. Although a

systematic search for these codes is infeasible due to the pro-

hibitively large sequence space, a more hypothesis-driven approach

that specifically examines these codes, such as that which we ap-

plied here for studying RNA folding, can be applicable. Overall, our

study reveals a wealth of overlapping information encoded within

protein-coding sequences and provides an approach and a resource

by which overlapping codes may be further explored, with the po-

tential to uncover novel, uncharacterized codes.

Methods

Constructing the database of coding sequences
The database of coding segments (exons in eukaryotes, coding
sequences in prokaryotes), organized by species, was constructed
using the NCBI Reference Sequence (RefSeq) database as its sole
source, accessible at ftp://ftp.ncbi.nih.gov/refseq/release. This da-
tabase provides a comprehensive, integrated, nonredundant set of
coding segments from taxonomically diverse species. We down-
loaded all of the genomic files in the ‘‘complete’’ version of RefSeq
Release 26 (released Nov. 13, 2007). The files were parsed to extract
the coding segments and phylogenetic information, and one
FASTA file was prepared for each organism, with one coding seg-
ment per entry in the FASTA file. Out-of-frame coding segments
were brought into frame by trimming either 1 bp or 2 bp, as nec-
essary, from the beginning of the coding segment. After frame-
correction, any partial codons (consisting of 1 or 2 nucleotides [nt])
found at the end of coding segments were removed, resulting in all
coding segments being fully translatable to amino acid sequences.
In cases where the same genomic DNA sequence appeared in mul-
tiple coding segments as a result of alternative splicing, the repeated
sequence was removed from all but one of the coding segments in
which it appeared. Only species with at least 47 3 10 = 163,840 nt
in their coding segments, as available from RefSeq, were analyzed,
so that every 7-mer had a naı̈ve expected count of at least 10.

Creating the randomized genomes

We created randomized versions of each genome using the following
Markov chain Monte Carlo (MCMC) simulation, preserving amino
acid sequence and codon and di-codon counts within the genome’s
protein-coding sequences: (1) Pick two codons at random from the
coding sequences of the genome, assuring they code for the same
amino acid and have the same two flanking codons (e.g., TCC-AAA-
CCA and TCC-AAG-CCA, where the underlined codons are the
chosen two codons). (2) Swap the two chosen codons. (3) Repeat
steps 1 and 2 until a burn-in of 3nlog(n) swaps have been made
(where n is the total number of nucleotides in the genome’s coding
regions). This ensures that every codon is highly likely to be swapped
at least once. (4) Save the current randomized genome, and continue
from step 1 if another randomized genome is required. Due to
computational constraints, we used 20 randomized genomes for the
6-mer analyses and five randomized genomes for the analyses of
7-mers, since we found that this number of randomizations is suf-
ficient (Supplemental Figs. S9, S10). Note that two adjacent codons
may never be swapped with each other because this could change
the overall di-codon count as well as disrupt the time-reversibility
of the MCMC simulation. In addition, the first and last codons in
every coding segment (the ‘‘edge’’ codons) do not have two flanking
codons and thus do not participate in any swap. Accordingly, and
since coding segments such as exons are considered as disparate
units, signals that overlap coding segment edges are not detected.

Another randomization that we performed preserved only co-
don counts, and not di-codon counts, by swapping synonymous
codons irrespective of their flanking codons. This led to 6-mer en-
richment scores that were correlated with the number of appear-
ances of the 6-mer (Supplemental Fig. S1B). Observed genomic di-
codon biases dictate that abundant codons tend to appear adjacent
to abundant codons, possibly to satisfy translation efficiency con-
straints (Boycheva et al. 2003; Moura et al. 2007). Our more stringent
randomization, which preserves di-codons, results in no correlation
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between 6-mer enrichment scores and 6-mer frequencies, thus
controlling for this phenomenon (Supplemental Fig. S1A).

Enrichment scores and P-values

We measured enrichment scores for every 6- and 7-mer sequence
in each genome as follows. We counted the number of appearances
of each n-mer in the genome’s coding sequences, denoted Nreal,
as well as the average and standard deviation of its number of
appearances in the coding sequences of each of the randomized
genomes, denoted Nrand and Srand, respectively. Count values
of 0 in either real or randomized genomes were converted to 1 to
avoid the zero frequency problem, and the enrichment score
was calculated as log2(Nreal/Nrand), where out-of-frame enrich-
ment scores are computed using only out-of-frame n-mer counts.
Z-scores ([Nreal � Nrand]/Srand) were computed for each n-mer
and converted to P-values for each tail using a normal distribution
(Supplemental Fig. S12). For each tail, P-values were defined as
significant if they passed a false discovery rate (FDR) threshold of
5%, computed for each genome. Since, by construction, the in-
frame 6-mer counts are identical between the real and randomized
genomes, only out-of-frame 6-mer counts were considered when
analyzing 6-mer results. Note, that by construction, 6-mers are the
shortest n-mers for which out-of-frame counts may differ between
the real and randomized genomes in both�1 and +1 frames, since
5-mer counts only differ in the �1 frame and 4-mer and 3-mer
counts not at all, making the randomization quite stringent. In
contrast to 6-mers, analysis of 7-mer counts included counts from
all frames. P-values for the comparison of log-ratio distributions
between phyla were based on the Kolmogorov-Smirnov test.

Biological sequences

Restriction enzyme target sites were downloaded from the REBASE
database (Roberts et al. 2003). Only restriction enzyme target sites
of length 6 were considered. As a coarse-graining step and in order
to create a match with the RefSeq phyla annotation, all genomes
containing each of the following terms were united: Acinetobacter,
Yersinia, Bacillus, Escherichia, Pseudomonas, Streptomyces, Deinococcus,
Xanthomonas, Vibrio, Staphylococcus, Salmonella, Rhodococcus, Nocar-
dia, Neisseria, Micrococcus, Haemophilus, Citrobacter, and Bifidobacte-
rium. MicroRNA target sites were downloaded from the miRBase
database (Griffiths-Jones et al. 2006). Target sites were defined as
the reverse complement of positions 2–8 of the microRNA seed.

RNA secondary structure

We ran the RNAfold program of the Vienna package v1.6 (Hofacker
2003) on the coding segments of the archaeal, bacterial, and fungal
genomes, as well as on their randomized versions. For each nu-
cleotide in each coding segment, we obtained a ‘‘pairness score’’
representing the probability of that nucleotide being paired with
another nucleotide, thus contributing to secondary mRNA struc-
ture. For each species, we calculated the mean pairness score for
each position on the coding segment relative to segment-start in
order to obtain a position-dependent pairness score. We subtracted
the randomized genomes’ position-dependent pairness score from
that of the real genome’s to determine the real genome’s pairness
score above random expectation.
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