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Abstract
By providing new insights into the distribution of a protein’s torsion angles, recent statistical models
for this data have pointed the way to more efficient methods for protein structure prediction. Most
current approaches have concentrated on bivariate models at a single sequence position. There is,
however, considerable value in simultaneously modeling angle pairs at multiple sequence positions
in a protein. One area of application for such models is in structure prediction for the highly variable
loop and turn regions. Such modeling is difficult due to the fact that the number of known protein
structures available to estimate these torsion angle distributions is typically small. Furthermore, the
data is “sparse” in that not all proteins have angle pairs at each sequence position. We propose a new
semiparametric model for the joint distributions of angle pairs at multiple sequence positions. Our
model accommodates sparse data by leveraging known information about the behavior of protein
secondary structure. We demonstrate our technique by predicting the torsion angles in a loop from
the globin fold family. Our results show that a template-based approach can now be successfully
extended to modeling the notoriously difficult loop and turn regions.
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1. Introduction
The field of protein structure prediction has greatly benefitted from formal statistical modeling
of available data [Osguthorpe (2000); Bonneau and Baker (2001)]. More automatic methods
for predicting protein structure are critical in the biological sciences as they help to overcome
a major bottleneck in effectively interpreting and using the vast amount of genomic
information: determining the structure, and therefore the function, of a gene’s protein product.
Currently the growth of genomic data far outstrips the rate at which experimental methods can
solve protein structures. To help accelerate the process, protein structure prediction methods
aim to construct accurate three-dimensional models of a target protein’s native state using only
the protein’s amino acid sequence.

Protein structure is typically described in terms of four categories: primary through quarternary.
Primary structure consists of the linear sequence of covalently bonded amino acids that make
up a protein’s polypeptide chain. Secondary structure describes the regularly repeating local
motifs of α-helices, β-strands, turns and coil regions. For a single polypeptide chain, tertiary
structure describes how the secondary structure elements arrange in three-dimensional space
to define a protein’s fold. By allowing the polypeptide chain to come back on itself, the loops
and turns effectively define the arrangement of the more regular secondary structure of α-
helices and β-strands. Quarternary structure describes how multiple folded polypeptide chains
interact with one another. In a typical structure prediction problem the primary structure is
known, and the goal is to use this information to predict the tertiary structure.

One of the standard approaches to this problem is template-based modeling. Template-based
approaches are used when the target sequence is similar to the sequence of one or more proteins
with known structure, essentially forming a protein fold “family.” Typically the core of the
modeled fold is well defined by regular secondary structure elements. One of the major
problems is modeling the loops and turns: those regions that allow the protein’s tertiary
structure to circle back on itself. Unlike the consistency of the core in a template-based
prediction, the variation in the loops and turns (both in terms of length and amino acid
composition) between structures with the same fold family is often quite large. For this reason
current knowledge-based methods do not use fold family data. Instead of the template-based
approach, they use libraries of loops which are similar in terms of length and amino acid
sequence to the target. However, such library data sets do not have the same level of structural
similarity as do purely within-family data sets. In this work, our approach to modeling structural
data allows us to effectively extend template-based modeling to the loop and turn regions and
thereby make more informed predictions of protein structure.

Our approach is based on the simplest representation of protein structure: the so-called
backbone torsion angles. This representation consists of a (ϕ, ψ) angle pair at each sequence
position in a protein, and it provides a reduction in complexity from using the 12 Cartesian
coordinates for the 4 heavy backbone atoms at each position. This method for describing protein
structure was originally proposed by Ramachandran, Ramakrishnan and Sasisekharan
(1963), and the customary graphical representation of this type of data is the Ramachandran
plot. The Ramachandran plot in Figure 1 shows the (ϕ, ψ) angles of protein positions containing
the amino acid alanine. The pictured data set was obtained from the Protein Data Bank [PDB,
Kouranov et al. (2006)], a repository of solved protein structures.

Density estimation of Ramachandran space is particularly useful for template-based structure
prediction. Because a target protein with unknown tertiary structure is known to be related to
several proteins with solved structures, models for bivariate angular data can be used to estimate
the distribution of (ϕ, ψ) angles for a protein family, and thereby generate candidate structures
for the target protein.
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While there has been considerable recent work on modeling in Ramachandran space at a single
sequence position [see, e.g., Ho, Thomas and Brasseur (2003); Lovell et al. (2003); Butterfoss,
Richardson and Hermans (2005); Lennox et al. (2009a, 2009b)], models that accommodate
multiple sequence positions remain uncommon. A notable exception is the DBN-torus method
of Boomsma et al. (2008). However, this approach was developed primarily to address
sampling of fragments in de novo protein structure prediction, and so specifically does not
include protein family information. De novo structure prediction is used when similar proteins
with known structure are unavailable and is thus inherently more difficult and less accurate
than template based modeling. While template-based methods can draw on a certain amount
of known information, a common complication is that protein families typically have fewer
than 100 members, and often fewer than 30 members.

Not only do protein families tend to have few members, but the data within a family is “sparse,”
particularly in loop regions. A template sequence for a protein structure family is generated by
simultaneously aligning all of the member proteins using amino acid type at each sequence
position. However, the sequences in a fold family are usually of different lengths due to
different sizes of loops and turns. In such an alignment, a typical member protein is not
represented at every sequence position. This leads to what we call a “sparse data” problem.
Note that this is not a missing data situation, as a sequence position is not merely unobserved,
but rather does not in fact exist.

A joint model for a large number of torsion angles using somewhat limited data can be enhanced
by leveraging prior knowledge about the underlying structure of the data. We present a
Bayesian nonparametric model incorporating a Dirichlet process (DP) with one of two possible
families of centering distributions for modeling the joint distributions of multiple angle pairs
in a protein backbone. Our model addresses the sparse data situation, and also accommodates
a larger number of sequence positions than previously considered methods of template-based
density estimation. One of our proposed centering distributions leads to a largely
noninformative prior, but we also propose a family of centering distributions based on known
characteristics of protein secondary structure in the form of a hidden Markov model (HMM).
The inclusion of an HMM allows our model to share structural information across sequence
positions. Since each secondary structure type has a distinctive footprint on the Ramachandran
plot, with this process we can use an informative prior to incorporate additional information
into our model.

There is precedent for the use of a hidden Markov model for protein structure prediction in the
DBN-torus model of Boomsma et al. (2008). There, secondary structure information is
incorporated into the state space of a dynamic Bayesian network, a generalization of an HMM,
which allows the DBN-torus model to infer secondary structure when generating candidate
angle pair sequences. The model generates significantly better candidates, however, when
secondary structure is provided from an external secondary structure prediction method. There
are other differences between the DBN-torus method and our own which result from the distinct
applications of the two methods. DBN-torus is used for de novo structure prediction; it is
designed to make predictions for any kind of protein, and is not customized for a particular
fold family. In contrast, our method is tailored for template-based modeling. Thus, the DBN-
torus model can be used even when template information is unavailable, but will miss
opportunities for improvement when fold-family structure information exists.

In this paper we apply our method to the loop region between the E and F α-helices of the
globin protein template, which varies between 8 and 14 sequence positions in length. By
borrowing strength from neighbors containing numerous observations, our model generates
informative density estimates even if relatively little data is available at a given position. This
property gives our method a significant advantage in loop prediction by allowing the use of
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fold family data. This extension of template-based modeling to loop regions was not possible
before the development of these statistical tools. We show that using our Dirichlet process
mixture of hidden Markov models (DPM–HMM) in a template-based approach provides a
better match to real structure data than does either a library-based method or DBN-torus.

In Section 2 we give some background on previous work in torsion angle modeling, as well as
the bivariate von Mises distribution and the Dirichlet process. In Section 3 we present our
model along with the informative and noninformative priors. An explanation of how to fit this
model and use it for density estimation is provided in Section 4. Section 5 contains an
application of our method to estimate the joint density of torsion angles in the EF loop region
in the globin protein family. Finally, we discuss our conclusions in Section 6.

2. Preliminaries
We illustrate the development of our model by first exploring methods for modeling individual
torsion angle pairs. Working with torsion angles requires the use of distributions specifically
designed to account for the behavior of angular data. This data has the property that an angle
ϕ is identical to the angle ϕ + 2kπ for all k ∈ {…, −1, 0, 1,…}. The bivariate von Mises
distribution is commonly used for paired angular data.

Originally proposed as an eight parameter distribution by Mardia (1975), subclasses of the
bivariate von Mises with fewer parameters are considered easier to work with and are often
more interpretable. Rivest (1982) proposed a six parameter version, which has been further
refined into five parameter distributions. One such subclass, known as the cosine model, was
proposed by Mardia, Taylor and Subramaniam (2007), who employed it in frequentist mixture
modeling of (ϕ, ψ) angles at individual sequence positions. In this paper we consider an
alternative developed by Singh, Hnizdo and Demchuk (2002) known as the sine model.

The sine model density for bivariate angular observations (ϕ, ψ) is defined as

(2.1)

for ϕ, ψ, μ, ν ∈ (−π, π] κ1, κ2 > 0, λ ∈ (−∞, ∞), and

(2.2)

The parameters μ and ν determine the mean of the distribution, while κ1 and κ2 are precision
parameters. The parameter λ determines the nature and strength of association between ϕ and
ψ. This density is unimodal when λ2 < κ1κ2 and bimodal otherwise. One of the most attractive
features of this particular parameterization of the bivariate von Mises is that, when the precision
parameters are large and the density is unimodal, it can be well approximated by a bivariate
normal distribution with mean (μ, ν) and precision matrix Ω, where Ω11 = κ1, Ω22 = κ2 and
Ω12 = Ω21 = −λ.

Singh, Hnizdo and Demchuk (2002) fit individual sine model distributions to torsion angle
data sets. Mardia et al. (2008) developed an extension of the bivariate sine model for n-
dimensional angular data, but the constant of integration is unknown for n > 2, rendering it
difficult to use. We instead consider a method based on a Dirichlet process mixture model.

The Dirichlet process, first described by Ferguson (1973) and Antoniak (1974), is a distribution
of random measures which are discrete with probability one. The Dirichlet process is typically
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parameterized as having a mass parameter α0 and a centering distribution G0. Using the stick-
breaking representation of Sethuraman (1994), a random measure G drawn from a Dirichlet
process DP(α0G0) takes the form

where δτ is an indicator function equal to 1 if τ ∈ B and 0 otherwise, τj ~ G0,

. In this form, the discreteness of G is clearly evident.

This discreteness renders the DP somewhat unattractive for directly modeling continuous data.
However, it can be effectively used in hierarchical models for density estimation [Escobar and
West (1995)]. Consider a data set z1,…, zn, and a family of distributions f(z|τ) with parameter
τ. A Dirichlet process mixture (DPM) model takes the form

(2.3)

The discreteness of draws from a DP means that there is positive probability that τi = τj for
some i ≠ j. For such i and j, zi and zj come from the same component distribution, and are
viewed as being clustered together. The clustering induced by DPM models generates rich
classes of distributions by using mixtures of simple component distributions.

While τ is generally taken to be scalar- or vector-valued, there is nothing inherent in the
definition of the DP that imposes such a restriction, and more complex centering distributions
have been explored [e.g., MacEachern (2000); De Iorio et al. (2004); Gelfand, Kottas and
MacEachern (2005); Griffin and Steel (2006); Dunson, Pillai and Park (2007); Rodríguez,
Dunson and Gelfand (2008)]. In a model for the distribution of multiple angle pairs, we propose
using a hidden Markov model (HMM), a discrete stochastic process, as the centering
distribution G0. In the following section we describe how to use this hidden Markov model as
a component of an informative prior for protein conformation angle data.

3. Dirichlet process mixture model for multiple alignment positions
The necessary Bayesian procedures to use a DP mixture of bivariate von Mises sine
distributions for modeling torsion angle data at individual sequence positions were developed
by Lennox et al. (2009a, 2009b). In this section we extend this model to multiple sequence
positions, and provide a noninformative prior that directly extends the single position model.
In addition, we describe a method for using an HMM as a centering distribution in an
informative prior for sequences of contiguous positions. We also show how to perform density
estimation using our model.

Consider a protein family data set consisting of n angle pair sequences denoted x1,…, xn. Let
each observation have m sequence positions, whose angle pairs are denoted xi1,…, xim for the
ith sequence, with xij = (ϕij, ψij). For the moment assume that we have complete data, that is,
that every xij contains an observed (ϕ, ψ) pair. Then our base model for the jth position in the
ith sequence is as follows:
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(3.1)

where θij consists of the parameters (μij, νij, Ωij), θi = (θi1, …, θim) and f(x|θ) is a bivariate von
Mises sine model. The distribution G is a draw from a Dirichlet process, while H1 and H2 are
the centering distributions that provide atoms of the mean and precision parameters,
respectively. Note that the product H1 H2 takes the role of G0 from (2.3).

For our purposes, H2 always consists of the product of m identical Wishart distributions we
call h2. This centering distribution assumes independence for the precision parameters of
sequence positions given clustering information. Similarly, we do not assume a relationship
between the precision parameters and the mean parameters for any sequence position, again
restricting ourselves to the situation when clustering is known. The use of a Wishart prior for
bivariate von Mises precision parameters is motivated by concerns about ease of sampling from
the prior distribution and potential issues with identifiability. A more detailed explanation is
given by Lennox et al. (2009b).

We discuss two distinct choices for H1, the centering distribution for the sequence of mean
parameters (µi, νi). The first assumes a priori independence of the mean parameters across
sequence positions, while the second is designed to share information across adjacent sequence
positions using a hidden Markov model based on known properties of protein secondary
structure.

3.1. Noninformative prior for multiple sequence positions
A straightforward extension of the existing single position DPM model takes H1 to be the
product of m identical bivariate von Mises distributions we call h1. For truly noninformative
priors, a diffuse von Mises distribution may be replaced by a uniform distribution on (−π, π]
× (−π, π]. Both the von Mises and uniform versions of the model assume a priori independence
of the centering parameters (μij, νij) across sequence positions j. However, dependence can still
appear in the posterior distribution. While we refer to this as the noninformative model, and
use it as such, there is no reason why informative distributions could not be used as the
components of H1, nor must these components be identical. The primary distinguishing feature
of this choice of model is that no assumptions are made as to the relationship between the mean
parameters at the various sequence positions.

An advantage of this choice for H1 is that sequence positions j and j + 1 need not be physically
adjacent in a protein. This situation could be of interest when modeling the joint distribution
of amino acid residues which are not neighbors with respect to the primary structure of a protein,
but which are close together when the protein is folded.

3.2. Informative DPM–HMM model for adjacent sequence positions
When considering adjacent positions, however, a model assuming independence is not making
use of all available information regarding protein structure. For this situation we recommend
a centering distribution H1 that consists of a hidden Markov model incorporating secondary
structure information.

We call our model a Dirichlet process mixture on a hidden Markov model space, or DPM–
HMM. Hidden Markov models define a versatile class of mixture distributions. An overview
of Bayesian methods for hidden Markov models is given by Scott (2002). HMMs are commonly
used to determine membership of protein families for template-based structure modeling, but
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in this case the state space relates to the amino acid sequence, also known as the primary
structure [see, e.g., Karplus et al. (1997)]. We propose instead to use an HMM for which the
hidden state space consists of the secondary structure type at a particular sequence position.
While HMMs incorporating secondary structure have been used for de novo structure
prediction methods [Boomsma et al. (2008)], they have not previously been employed for
template-based strategies. We can determine both the transition probabilities between states
and the distributions of (ϕ, ψ) angles for each secondary structure type based on data sets in
the Protein Data Bank. Such a model provides a knowledge-driven alternative to our
noninformative prior from Section 3.1 for adjacent sequence positions.

Our model has four hidden states corresponding to four secondary structure metatypes defined
by the Definition of Secondary Structure for Proteins [DSSP, Kabsch and Sander (1983)]
program: turn (T), helix (H), strand (E) and random coil (C). These four types are condensed
from eight basic types, with all helices being characterized as (H), β-turns and G-turns
combined into the class (T), and both strands and β-bulges defined as (E). The model for a
realization θ from our hidden Markov model is defined as follows:

where sj defines the state of the Markov chain at position j, with sj ∈ {1, 2, 3, 4}. M(sj | sj−1)
is a discrete distribution on {1, 2, 3, 4} that selects a new state type with probabilities determined
by the previous state type. We set our transition probability matrix based on 1.5 million
sequence position pairs from the PDB, while the initialization probabilities correspond to the
stationary distribution for the chain. Note that s = (s1,…,sm) is an observation from a discrete
time Markov process. We then define f(θj|sj) to be a probability distribution with parameters
determined by the current secondary structure state of the chain.

Single bivariate von Mises distributions are not adequate to serve as the state distributions for
the four secondary structure types. Instead, we use mixtures of between one and five bivariate
von Mises sine models. The amino acids proline and glycine exhibit dramatically different
secondary structure Ramachandran distributions, and so were given their own distinct sets of
secondary structure distributions. Figure 2 shows the state distributions used for each secondary
structure class for the eighteen standard amino acids.

Although these are distributions for the means of the bivariate von Mises distribution, we chose
them to mimic the distributions of (ϕ, ψ) angles in each of these secondary structure classes,
which means that they are somewhat more diffuse than necessary. The use of these secondary
state distributions in conjunction with the Markov chain on the state space allows us to leverage
information about secondary structure into improved density estimates, and provides a
biologically sound framework for sharing information across sequence positions.

Note that our model is not to be confused with the hidden Markov Dirichlet process (HMDP)
proposed by Xing and Sohn (2007). The HMDP is an implementation of a hidden Markov
model with an infinite state space, originally proposed by Beal, Ghahramani and Rasmussen
(2002). Their model is an instance of the Hierarchical Dirichlet Process (HDP) of Teh et al.
(2006), whereas our DPM–HMM is a standard Dirichlet process with a novel centering
distribution.

4. Density estimation
Recall that we are interested in estimating the joint density of x = (ϕ, ψ) angles at each sequence
position for a candidate structure from some protein family. Our method, as outlined by Escobar
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and West (1995), involves treating our density estimate as a mixture of components f(xn+1 |
θn + 1), which in our case are products of bivariate von Mises sine models, mixed with respect
to the posterior predictive distribution of the parameters θn+1. This can be written as

(4.1)

This integral cannot be written in closed form, but can be well approximated by Monte Carlo
integration. This is achieved by acquiring samples  from the posterior predictive
distribution for θn+1. then

(4.2)

While (4.2) can be evaluated for any (ϕ, ψ) sequence x, we are typically interested in graphical
representations of marginal distributions at each sequence position. For this purpose we
evaluate on a 360 × 360 grid at each alignment position. This general Monte Carlo approach
works for joint, marginal, and conditional densities.

4.1. Markov chain Monte Carlo
All that remains is to determine how to obtain the samples from the posterior predictive
distribution of θn+1, which consists of μn+1, νn+1 and Ωn+1. Fortunately, while our model is
novel, the behaviors of Dirichlet process mixtures, hidden Markov models, and the bivariate
von Mises distribution are well understood. The complexity of the posterior distribution
prevents direct sampling, but we provide the details of a Markov chain Monte Carlo update
scheme using an Auxiliary Gibbs sampler [Neal (2000)] in Appendix A.

4.2. The sparse data problem
The model as described up to this point does not fully account for the complexity of actual
protein alignment data. Rather than being a simple vector xi of bivariate (ϕ, ψ) observations,
the real data also includes a vector ai of length m which consists of variables indicating whether
or not peptide i was observed at each sequence position. Let aij = 1 if peptide i is included at
alignment position j, and 0 otherwise. This data structure is unique in several ways. Notice that
ai is not only known for proteins with solved structure, but is also typically available for a
target peptide sequence. Therefore, we can avoid fitting a model that includes alignment
positions which are not of interest for our particular problem. This is not a true “missing data”
problem as the unobserved sequence positions are not only absent from our data set, but do not
exist.

Our model is able to adjust to sparse data with the following modification. Recall that the full
conditional distributions could be divided up into a prior component and a data component at
each sequence position. This makes it trivial to exclude an observation from the likelihood,
and hence posterior distribution calculation, at sequence positions where it is not observed. For
example, we can modify the full conditional distribution of the means in the DPM–HMM
model, given in equation (A.3), to be

(4.3)
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The full conditional distributions for the precision parameters and the means with a
noninformative prior, equations (A.1) and (A.2), respectively, can be modified in a similar
manner. The likelihood of xi|θ, is also used by the Auxiliary Gibbs sampler. Once again, adjust
to absent data by removing unobserved positions from the likelihood.

This model provides a straightforward method to cope with the sparse data problem inherent
in protein structure prediction. Note that the situation in which there is ample data generally
but sparse data at a few sequence positions particularly highlights the value of the DPM–HMM
model. Secondary structure at a sparse position can be inferred based on the surrounding
positions, which can allow us to provide a better density estimate at positions with few observed
data points.

5. Application: Loop modeling in the globin family
5.1. Background

A protein’s fold, or tertiary structure, consists of multiple elements of local, regular secondary
structure (repeating local motifs) connected by the more variable loops and turns of various
lengths. These loop and turn regions can be vital to understanding the function of the protein,
as is the case in the immunoglobulin protein family where the conformation of the highly
variable loops determine how an antibody binds to its target antigens to initiate the body’s
immune response. These loop regions also tend to be the most structurally variable regions of
the protein, and modeling their structure remains an outstanding problem in protein structure
prediction [Baker and Sali (2001)]. Current knowledge-based loop modeling methods draw on
generic loop libraries. Library-based methods search the Protein Data Bank for loops with
entrance and exit geometries similar to those of the target loop, and use these PDB loops as
templates for the target structure [e.g., Michalsky, Goede and Preissner (2003)]. Note that
library-based methods differ from typical template-based modeling in that they do not confine
themselves to loops within the target protein’s family. Strictly within family estimates have
not previously been possible. Using the DPM–HMM model, we are able to compare a library-
based approach to a purely within family template-based method for the EF loop in the globin
family.

The globins are proteins involved in oxygen binding and transport. The family is well studied
and has many known members. Therefore, the globin fold is suitable as a test case for template-
based structure prediction methods. A globin consists of eight helices packed around the central
oxygen binding site and connected by loops of varying lengths. The helices are labeled A
through H, with the loops labeled according to which helices they connect. The EF loop is the
longest loop in the canonical globin structure. We generated a simultaneous alignment of 94
members of the globin family with known tertiary structure using MUSCLE [Edgar (2004)].
For this alignment, positions 93–106 correspond to the EF loop.

Table 1 gives a summary of the behavior of 94 representative globins in the EF loop region.
There is considerable diversity in both the length and amino acid composition of this loop.
Representative loops were between 8 and 14 amino acids long, and the highly conserved
regions, particularly at the tail end of the loop, exhibited considerable variability in amino acid
composition.

We compare three different methods for loop modeling: our DPM–HMM method with globin
family data, the noninformative prior model with globin family data, and a library-based
approach. Library approaches generate lists of loops similar to the target and use these as
templates for the target loop, generating a discrete distribution which almost surely has mass
0 at the true conformation of the unknown loop. To make this method comparable to our
density-based approaches, we used our noninformative prior model on library data sets to
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generate a continuous density estimate. Note that all sequences in a library data set are of the
same length, which means that they will never exhibit sparsity. For this reason, fitting the
DPM–HMM model on the library data set would not present much improvement over the
noninformative model.

5.2. Parameter settings
For each of the 94 globins in the alignment, we generated density estimates using each of the
three methods in question. For the DPM–HMM and noninformative models, we excluded the
target from the data set used to generate the density estimates, but used amino acid and sparse
data information from the target protein. This is reasonable since primary structure based
alignments are available for template modeling of an unknown protein. For the library-based
estimate, we applied our noninformative prior model sequences from the coil library of Fitzkee,
Fleming and Rose (2005) which have the same length as the target sequence, and have at least
four sequence positions with identical amino acids. Library data sets ranged in size from 17 to
436 angle pair sequences.

For each of our models, we ran two chains: one starting with all observations in a single cluster
and one with all observations starting in individual clusters. Each chain was run for 11,000
iterations with the first 1000 being discarded as burnin. Using 1 in 20 thinning, this gave us a
combined 1000 draws from the posterior distribution of the parameters.

In all cases, our Wishart prior used υ = 1, and we set the scale matrix B to have diagonal elements
of 0.25 and off-diagonal elements of 0. Note that we use the Bernardo and Smith (1994), pages
138–139, parameterization, with an expected value of υB−1 = B−1. Our choice of υ was
motivated by the fact that this is the smallest possible value for which moments exist for the
Wishart distribution, and higher values would have lead to a more informative prior. The choice
of B gave an expected standard deviation of about 30 degrees and assumed a priori that there
was no correlation between ϕ and ψ, which seemed to work well in practice. For our
noninformative prior on the means, we took h1 to have μ0 = ν0 = 0, κ10 = κ20 = 0.1 and λ0 = 0.
This provided a diffuse centering distribution.

In all cases we took the DP mass parameter α0 to be 1. However, our results were robust to
departures from this value. For example, for two randomly selected proteins we gave values
for α0 ranging between 0.2 and 15, giving prior expected numbers of clusters from
approximately 2–30. For our first peptide the observed mean cluster number ranged from 3.96
to 4.46, while the second had values from 4.40 to 4.65. Thus, even our most extreme choices
for the mass parameter changed the posterior mean number of clusters by less than 1.

5.3. Results of comparison to library
We performed pairwise comparisons for each of our models using the Bayes factor, defined
as

(5.1)

where M1 and M2 are density estimates generated by two of our three possible models. We
present the results of the analyses for our 94 leave-one-out models in Table 2.

First we will address the comparison between the DPM–HMM and noninformative models
using the globin data. These models show far more similarity to each other than to the
noninformative model using the library data, both in terms of the number of Bayes factors
indicating superiority on each side, and the fact that those Bayes factors tended to be smaller
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in magnitude than those generated by comparisons to the library models. Indeed, at positions
with more than 30 observations the marginal distributions generated by the two models appear
to be very similar. Consider the null hypothesis that the probability that the DPM–HMM is
superior to the noninformative model is less than or equal to 0.5. A binomial test of this
hypothesis yields a p-value of 0.009. Of these Bayes factor results, 68 met standard criteria for
substantial evidence of superiority (|log10(B) | > 1/2) [Kass and Raftery (1995)], of which 45
supported the use of the DPM–HMM model, giving a p-value of 0.005. This evidence, in
addition to the fact that the combined Bayes factor, the product of all of the individual
comparisons, has a value of 1038, provides overwhelming evidence in favor of using the DPM–
HMM rather than the noninformative model. For this reason, in the remainder of the paper, we
will only refer to the DPM–HMM model when making use of the globin data set.

Recall that the library model made use of loops of the same length as the target, and which had
a certain degree of similarity in terms of amino acid sequence. Thus, the coil library does not
exhibit any sparse data behavior. It is also unlikely to recapture the globin family EF loops due
to the considerable variability in both length and amino acid composition. Our results indicate
that the DPM– HMM model overwhelmingly outperforms the library-based method. Not only
is the relevant Bayes factor greater than 1 in 93 out of 94 cases, it is greater than 100 in 92
cases. The case in which the library-based method outperformed the DPM–HMM was also
significant according to the Kass and Raftery (1995) criteria, so there were no ambiguous
individual cases. The combined Bayes factor was 10959, indicating that the DPM–HMM model
was definitely superior to the library overall.

Figure 3 shows marginal density estimates generated for prototypical globin “1jebD” for both
models, along with the true (ϕ, ψ) sequence for the protein for a portion of the EF loop. By
searching the PDB for loops that are similar to the target in terms of length and sequence
identity, the library method tends to place considerable mass in areas of conformational space
that are not occupied by members of the globin family. While the members of the data set for
the globin family may not match the target loop in terms of length or amino acid sequence, by
virtue of being globins themselves they provide a better match to the target conformation. This
pattern of improvement held true regardless of loop length. Significant improvement was found
even for the length 13 and 14 loops, for which sparse data was a particular problem.

5.4. Results of comparison to DBN-torus
In addition to comparing the DPM–HMM to the knowledge-based library method, we have
also conducted a comparison to the de novo DBN-torus sequence prediction method of
Boomsma et al. (2008). Unlike the previously addressed library-based methods, DBN-torus
uses continuous density estimates, but is not customized for loop regions. It can be used to
generate sequences of predicted angle pairs given amino acid data, secondary structure data,
or no input at all. The best results for DBN-torus are generated using amino acid data and
predicted secondary structure data. For each of our 94 targets, we generated 1000 candidate
draws using the DPM–HMM, DBN-torus with predicted secondary structure data from PsiPred
[McGuffin, Bryson and Jones (2000)], and DBN-torus using the true secondary structure data.
Although having exact knowledge of secondary structure for a target protein is unrealistic in
practice, it gives an idea of how well DBN-torus can perform with optimal secondary structure
prediction. We followed the strategy of Boomsma et al. (2008) of using the angular RMSD to
judge the accuracy of our predictions. For each target, the best draw judged by minimum
aRMSD was selected, and the results are summarized in Figure 4.

The DPM–HMM provides a better minimum aRMSD estimate than DBN-torus in 75/94 cases
with predicted secondary structure information and 67/94 cases with true secondary structure
information. Note that even under this best case scenario, the DPM–HMM provides better
predictions than does DBN-torus. This is unsurprising, as template-based methods typically
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outperform de novo methods where a template is available. Proteins for which DBN-torus
outperforms our DPM–HMM method often contain an EF loop whose conformation is not a
close match to other members of the globin family. In such cases, good conformations are more
likely to be sampled from DBN-torus, which is based on the entire PDB, rather than the DPM–
HMM mimicking the behavior of the other globins.

6. Discussion
We have presented a novel model for protein torsion angle data that is capable of estimating
the joint distribution of around 15 angle pairs simultaneously, and applied it to extend template-
based modeling to the notoriously difficult loop and turn regions. In contrast to existing
methods such as library-based loop prediction and DBN-torus, our model is designed to make
use of only data from highly similar proteins, which gives us an advantage when such data is
available. This is a significant advance in terms of statistical models for this type of data, as
well as a new approach to template-based structure prediction. In addition to providing the
basic model, we proposed two possible prior formulations with interesting properties.

Our noninformative prior model, which is the direct extension of the single position model of
Lennox et al. (2009a, 2009b), provides a method to jointly model sequence positions which
may or may not be adjacent in terms of a protein’s primary structure. This model allows for
the estimation of joint and conditional distributions for multiple sequence positions, which
permits the use of innovative methods to generate candidate distributions for protein structure.

While the noninformative prior model represents a significant advance over existing methods,
we also present an alternative model that incorporates prior information about protein structure.
This DPM–HMM model, which uses a hidden Markov model as the centering distribution for
a Dirichlet process, uses the unique characteristics of a protein’s secondary structure to generate
superior density estimates for torsion angles at sequential alignment positions. We use a Bayes
factor analysis to demonstrate that density estimates generated with this model are closer to
the true distribution of torsion angles in proteins than our alternative ignoring secondary
structure.

Regardless of our prior formulation, the model is capable of accommodating the sparse data
problem inherent in protein structural data, and in the case of the DPM–HMM formulation can
leverage information at adjacent sequence positions to compensate for sparse data. This allows,
for the first time, the extension of template-based modeling to the loop regions in proteins. We
show that within family data provides superior results to conventional library and PDB-based
loop modeling methods. As loop modeling is one of the critical problems in protein structure
prediction, this new model and its ability to enhance knowledge-based structure prediction
represents a significant contribution to this field.

Recall that our model treats the parameters of the bivariate von Mises sine model
nonparametrically through the use of the Dirichlet process prior centered on a parametric
distribution. We explored the effect of this treatment relative to the parametric alternative of
using the centering distribution itself as the prior for the bivariate von Mises parameters. This
parametric alternative is equivalent to limiting our model to a single mixture component.
Although not every sequence position gives a strong indication of multiple mixture
components, there is at least one such sequence position for every loop in our data set. (See,
e.g., position 94 for the coil library data set in Figure 3.) Attempts to model this data using
only a single component distribution lead to poor results, particularly since our model enforces
unimodality for each component via the Wishart prior. While the HMM prior does allow for
a mixture of bivariate von Mises distributions, all of these components will converge to the
same distribution as the number of observations increases, effectively reducing us to a single
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component model again. The inadequacy of such a single component model is reflected in the
strong preference of the data for multiple clusters. While the prior expected number of clusters
goes to 1 as the mass parameter α0 goes to 0, we found that the posterior mean number of
clusters only decreased by 1 (typically from 4 to 3) when α0 decreased from 1 to 10−10.

In working with our sampling schemes for both the DPM–HMM and noninformative prior
models we did occasionally encounter slow mixing and convergence problems, particularly as
the number of sequence positions under study increased. Figure 5 shows the effects on the total
number of clusters and entropy [Green and Richardson (2001)] per iteration caused by
increasing sequence length. As the number of positions under study increases, there is a greater
chance of getting stuck in particular conformations, and also a subtler tendency toward having
fewer observed clusters. Although in this example the effects are fairly mild, more severe issues
can occur even at relatively short sequence lengths. However, even when problems appear to
be evident on plots of standard convergence diagnostics, the density estimates generated by
separate chains can be quite similar. For this reason we recommend comparing the density
estimates generated by multiple chains in addition to the standard methods of diagnosing
convergence problems.

We do not recommend that our method be used for simultaneous modeling of more than about
15 sequence positions and convergence diagnostics should always be employed. The use of
multiple MCMC chains with different starting configurations is also highly encouraged.
Particular care should be taken with the noninformative prior model, which seems to be more
prone to these sorts of problems. We did not observe any effect of sparse data on the speed of
convergence or mixing.

Increases in sequence length and sample size both increase run time for our software, although
sequence length is the primary practical restriction as protein families tend to have fewer than
100 members. For the analysis of the full globins data set with 5, 10, 15 or 20 sequence
positions, the run times for two chains with 11,000 iterations using a 3 GHz processor were
between 1 and 3.5 hours for the noninformative model and 2–8 hours for the DPM–HMM.

As the emphasis in this paper is on loop modeling, which by its very nature is limited to
contiguous sequence positions, our application does not reflect the full extent of the flexibility
of our model. Our general method is a good source of simultaneous continuous density
estimates for large numbers of torsion angle pairs. This allows us to generate candidate models
by sampling from joint distributions, or to propagate a perturbation of the torsion angle
sequence at a single position up and down the chain through the use of conditional distributions.
Our noninformative prior model, while less impressive than the DPM–HMM for contiguous
sequence positions, can be applied to far richer classes of torsion angle sets. This allows the
modeling of the behavior of tertiary structure motifs, which are composed of amino acids which
are not adjacent in terms of primary structure, but which are in close contact in the natural
folded state of a protein. It can even be used to investigate the structure of polypeptide
complexes, as the (ϕ, ψ) positions modeled are not required to belong to the same amino acid
chain. The ability to model large numbers of (ϕ, ψ) pairs simultaneously is an exciting advance
which will offer new avenues of exploration for template-based modeling, even beyond the
field of loop prediction.

The software used in this analysis is available for download at
http://www.stat.tamu.edu/~dahl/software/cortorgles/.
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APPENDIX A: MARKOV CHAIN MONTE CARLO
Here we give the details of our MCMC scheme to sample from the posterior distribution. A
concise description is provided in Table 3. After the state of our Markov chain has been
initialized, our first step is to update the clustering associated with our Dirichlet process. We
use the Auxiliary Gibbs sampler of Neal (2000) with one auxiliary component for this purpose.
Having updated the clustering, we now must update the parameter values θ for each cluster by
drawing values from full conditional distribution f(θ|xc), where xc = {xi : i ∈ c} and c is the set
of indices for members of said cluster. Once again, this distribution is difficult to sample from
directly, so we update instead using the full conditional distributions f(µ, ν|Ω, xc) and f(Ω|µ,
ν, xc).

In the case of the precision parameters Ω, the full conditional density cannot be written in
closed form, but is generally well approximated by the Wishart full conditional distribution
that results from the assumption that the data have a bivariate normal distribution rather than
a bivariate von Mises distribution. We update Ω by implementing an independence sampler
that uses this “equivalent” Wishart distribution as its proposal distribution at each sequence
position. Note that under our model, the full conditional distribution of Ω does not depend on
the choice of centering distribution of the mean parameters. The full conditional is proportional
to

(A.1)

where h2 is our component Wishart prior for a single sequence position, and f is a bivariate
von Mises sine model with the relevant parameters. Notice that the positions are independent
given the clustering information, so it is trivial to update each Ωj separately.

After updating the precision parameters at each sequence position, we proceed to update μ and
ν using an independence sampler. For our noninformative prior, with a centering distribution
consisting of a single sine model, we use the update method described in Lennox et al.
(2009a). In this case, with H1 = (h1)n where h1 is a bivariate von Mises distribution, the full
conditional distribution is proportional to

(A.2)

The DPM–HMM case where H1 is defined to be a hidden Markov model is somewhat more
complicated. The positions are no longer a priori, and therefore a posteriori, independent given
the clustering information. In addition, the inclusion of an HMM in the model makes the nature
of the full conditional distribution unclear. However, if the state chain s is known, draws from
the full conditional are trivial. Therefore, we rewrite our full conditional distribution, which is
proportional to

(A.3)
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where f(μ, ν|sj) is the prior distribution determined by the state at position j. Recall that our
priors are finite mixtures of bivariate von Mises sine distributions. Thus, if we can generate
draws from the full conditional distribution of s, we can update μi and νi at each sequence
position much as we did before. We use the forward–backward (FB) algorithm of Chib
(1996) to sample the full conditional distribution of s. Note that s given μ and ν is independent
of the data. Once we have the state information, generating samples from the distributions μj,
νj|sj, Ωj, xcj is a straightforward process using an independence sampler, the details for which
are given in Appendix B.

APPENDIX B: VON MISES MIXTURE PRIORS
We present the full conditional distribution of the mean parameters μ and ν given that the
precision matrix Ω. is known and the prior is a single bivariate von Mises distribution with
parameters μ0, ν0, κ10, κ20 and λ0. Using this information, we then prove that a finite mixture
of bivariate von Mises distributions is a conditionally conjugate prior for this model, and
present a finite mixture of sine models which serves as a good proposal distribution.

We consider now a single sequence position, and so our data set consists of the set .
The full conditional distribution for a set of observations with bivariate von Mises sine model
distributions and a sine model prior is an eight parameter bivariate von Mises distribution.
Lennox et al. (2009a) showed that this distribution could be represented as

with parameters

(B.1)

where C is the appropriate constant of integration and the prior mean parameters (μ0, ν0) are
treated as an additional observation (ϕ0, ψ0) from a bivariate von Mises sine model with
parameters μ, ν, κ10, κ20 and λ0.

Now consider a prior distribution of the form
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where Ck is the constant of integration for a von Mises sine model with parameters κ10k, κ20k

and λ0k given in equation (2.2), pk ≥ 0 for k = 1,…,K and . The full conditional
distribution is proportional to this distribution times the likelihood, giving

where L(μ, ν|ϕ, ψ) is the likelihood excluding the constant of integration.

Each term in the sum depends on the unknown parameters only through the product of the
likelihood and a single von Mises sine distribution. This product is proportional to an eight
parameter bivariate von Mises distribution with parameters given by (B.1). Call the resulting
posterior parameters μ ͂i, ν ͂i and so on. Then the full conditional distribution is proportional to

which integrates to

where C͂k is the constant of integration for an eight parameter bivariate von Mises distribution
with parameters μ͂k, ν ͂k, κ͂1k, κ͂2k and λ͂k. Therefore, the full conditional distribution takes the
form

where f is an eight parameter bivariate von Mises distribution and

. Note that  for k = 1,…,K, and .

Unfortunately computational formulas for the constant of integration of a bivariate von Mises
distribution do not exist in the general case. Therefore, we do not sample directly from this full
conditional distribution, but rather use an independence sampler which replaces each full
conditional eight parameter distribution with a five parameter sine model, and uses the
corresponding constant of integration from (2.2). This is accomplished by replacing the four

parameter Ã with a . [This method is a direct extension of the
single sine model prior case presented in Lennox et al. (2009a).] Using this sampler, we found
mean and median acceptance rates around 0.52, which was comparable to the acceptance rates
for the single sine model noninformative prior, which were around 0.55.
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FIG. 1.
Ramachandran plot for the 130,965 angle pairs that make up the PDB data set for the amino
acid alanine. Angles are measured in radians.
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FIG. 2.
Graphical and numerical representations of our von Mises mixture distributions for each of the
four secondary structure states Note that this is the general set of secondary structure
distributions and is not used at positions containing the amino acids proline or glycine.
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FIG. 3.
Density estimates for positions 94, 95 and 99 for protein “1jebD.” The gray dots indicate the
data used to fit the model, while the triangles show the true (ϕ, ψ) conformation of the target
protein.
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FIG. 4.
Comparison of prediction accuracy between the DPM–HMM and DBN-torus DBN-torus has
been given either predicted or real secondary structure information as input Small aRMSD
values here given in radians indicate predictions which are close to the target’s true tertiary
structure.
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FIG. 5.
Convergence diagnostics for density estimates using the noninformative prior model on the
globin data with contiguous sequences beginning at position 93. Notice how mixing worsens
as the number of sequence positions increases.
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TABLE 1

A table giving the details on the EF loop for an alignment of 94 members of the globin family The columns are
the alignment position the number of proteins represented at the position the most conserved amino acid (s) at
the alignment position and the total number of distinct amino acids observed at the alignment position

Position # of proteins Most conserved AA # of AAs

93 94 LEU 7

94 94 ASP 10

95 94 ASN 9

96 26 ALA 11

97 28 GLY 8

98 28 LYS 10

99 94 LEU 7

100 1 THR 1

101 2 VAL 1

102 2 THR ARG 2

103 93 LYS 13

104 94 GLY 15

105 94 ALA 15

106 94 LEU 10
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TABLE 2

Comparison between the DPM–HMM model on the globin family data, noninformative prior with globin data,
and noninformative model with library data. The columns Model X and Model Y give the percentage of the time
that the likelihood for the target conformation using Model X was greater than the likelihood of the same
conformation using Model Y. This is the equivalent to a Bayes factor comparison with Model X in the numerator
being greater than 1

Loop length Total DPM–HMM to
library (%)

Noninf to
library (%)

DPM–HMM to
noninf (%)

8 66 100 100 70

10 3 67 67 67

11 23 100 96 39

13 1 100 100 100

14 1 100 100 100

All 94 99 98 63
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TABLE 3

Computational procedure

1 Initialize the parameter values:

a. Choose an initial clustering. Two obvious choices are: (1) one cluster for all of the angle pair sequences, or (2) each angle
pair sequence in a cluster by itself.

b. For each initial cluster c of observed angle pair sequences, initialize the value of the common bivariate von Mises parameters
µ, ν, Ω by sampling from the centering distribution H1(µ, ν)H2(Ω) of the DP prior.

i. For the noninformative prior model, sample from each of m independent von Mises and Wishart
distributions.

ii. For the DPM–HMM, obtain initial values for Ω from m independent Wishart distribution and µ, ν from
the hidden Markov model.

2 Obtain draws from the posterior distribution by repeating the following:

a. Given the mean and precision values, update the clustering configuration using one scan of the Auxiliary Gibbs sampler
of Neal (2000).

b. Given the clustering configuration and mean values, update the precision matrix Ω for each sequence position in each
cluster using the Wishart independence sampler described in Lennox et al. (2009b).

c. If using the DPM–HMM, obtain a draw from the full conditional distribution of the state sequence s using the FB algorithm
developed by Chib (1996) for each cluster.

d. Given the clustering configuration, precision values, and (if applicable) state information, update the values of (μ, ν) for
each sequence position in each cluster using the independence sampler given in Appendix B.
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