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Abstract
The FFT EnKF data assimilation method is proposed and applied to a stochastic cell simulation of
an epidemic, based on the S-I-R spread model. The FFT EnKF combines spatial statistics and
ensemble filtering methodologies into a localized and computationally inexpensive version of EnKF
with a very small ensemble, and it is further combined with the morphing EnKF to assimilate changes
in the position of the epidemic.
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1. Introduction
Starting a model from initial conditions and then waiting for the result is rarely satisfactory.
The model is generally incorrect, data is burdened with errors, and new data comes in that
needs to be accounted for. This is a well-known problem in weather forecasting, and techniques
to incorporate new data by sequential statistical estimation are known as data assimilation
[1]. The ensemble Kalman filter (EnKF) [2] is a popular data assimilation method, which is
easy to implement without any change in the model. The EnKF evolves an ensemble of
simulations, and the model only needs to be capable of exporting its state and restarting from
the state modified by the EnKF. However, the ensemble size required can be large (easily in
the hundreds), the amount of computations in the EnKF can be significant, special localization
techniques need to be employed to suppress spurious long-range correlations in the ensemble
covariance matrix, and the EnKF does not work well for problems with sharp coherent features,
such as the travelling waves found in epidemics and wildfires.

We propose a variant of EnKF based on the Fast Fourier transform (FFT), which reduces
significantly the amount of computations required by the EnKF, as well as the ensemble size.
The use of FFT is inspired by spatial statistic: FFT EnKF assumes that the state approximately
a stationary random field, that is, the covariance between two points is mainly a function of
their distance vector. Then the multiplication of the covariance matrix and a vector is a
convolution. In addition, the morphing transform [3] is used here so that changes of the state
both in position and in amplitude are possible.

The FFT EnKF with morphing is illustrated here for tracking a simulated epidemic wave. The
use of data assimilation techniques can increase the accuracy and reliability of epidemic
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tracking by using the data as soon as they are available, and some applications of data
assimilation in epidemiology already exist [4,5]. The FFT EnKF with morphing has the
potential to reduce complicated simulations and accurate real-time use of data to a laptop or a
smartphone in the field.

For FFT EnKF in a wildfire simulation, see [6]. The Fourier domain Kalman filter (FDKF)
[7] consists of the Kalman filter used in each Fourier mode separately.

The covariance of a stationary random field can be estimated from a single realization by the
covariogram [8], which can be computed efficiently by the FFT [9]. We propose to use the
covariogram for an EnKF with an ensemble of one, which will be further developed elsewhere.

2. FFT EnKF
The EnKF approximates the probability distribution of the model state u by an ensemble of
simulations u1, …, uN. Each member is advanced by the simulation in time independently.
When new data d arrives, it is given as data likelihood d ~ N (Hu, R), where H is the observation
operator and R is the data error covariance matrix. Now the forecast ensemble [uk] is combined
with the data by the EnKF analysis [10]

(1)

to yield the analysis ensemble . Here, CN is an approximation of the covariance C of the
model state, taken to be the covariance of the ensemble, and ek is sampled from N (0, R). The
analysis ensemble is then advanced by the simulations in time again. In [11], it was proved
that the ensemble converges for large N to a sample from the Kalman filtering distribution
when all probability distributions are Gaussian. Of course, the EnKF is used for more general
cases as well.

When CN is the ensemble covariance, the EnKF formulation (1) does not take advantage of
any special structure of the model. This allows a simple and efficient implementation [12], but
large ensembles, often over 100, are needed [2]. In an application, variables in the state are
random fields, and the covariance decays with spatial distance [8]. Tapering is the
multiplication of sample covariance term-by-term with a fixed decay function that drops off
with the distance. Tapering improves the accuracy of the approximate covariance for small
ensembles [13], but it makes the implementation of (1) more expensive: the sample covariance
matrix can no longer be efficiently represented as the product of two much smaller dense
matrices, but it needs to be manipulated as a large, albeit sparse, matrix. Random fields in
geostatistics are often assumed to be stationary, that is, the covariance between two points
depends on their spatial distance vector only.

The FFT EnKF discussed here uses a very small ensemble, but larger than one. We explain the
FFT EnKF in the 1D case; higher-dimensional cases are exactly the same. Consider first the
case when the model state consists of one block only. Denote by u (xi), i = 1,…, n the entry of
vector u corresponding to node xi. If the random field is stationary, the covariance matrix
satisfies C (xi, xj) = c (xi − xj) for some covariance function c, and multiplication by C is the
convolution

Mandel et al. Page 2

Procedia Comput Sci. Author manuscript; available in PMC 2010 October 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



After FFT, convolution becomes entry-by-entry multiplication of vectors, that is,
multiplication by a diagonal matrix.

We assume that the random field is approximately stationary, so we neglect the off-diagonal
terms of the covariance matrix in the frequency domain, which leads to the the following FFT
EnKF method. First apply FFT to each member, . Next, approximate the forecast
covariance matrix in the frequency domain by the diagonal matrix with the diagonal entries
given by

(2)

Then define approximate covariance matrix CN by term-by-term multiplication · in the Fourier
domain

When H = I and R = rI, the evaluation of (1) reduces to

(3)

In general, the state has more than one variable, and u, C, and H have the block form

(4)

Here, the first variable is observed, so H(1) = I, H(2) = 0,…, H(M) = 0, and (1) becomes

(5)

and in the frequency domain

(6)

The cross-covariance between field j and field 1 is approximated by neglecting the off-diagonal
terms of the sample covariance in the frequency domain as well,

(7)

In the computations reported here, we have used the real sine transform, so all numbers in (7)
are real. Also, the use of the sine transform naturally imposes no change of the state on the
boundary.
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3. Morphing EnKF
Given an initial state u, the initial ensemble in the morphing EnKF [3,12] is given by

(8)

with an additional member uN+1 = u, called the reference member. In (8),  are random smooth
functions on Ω, Tk are random smooth mappings Tk:Ω → Ω, and ο denotes composition. Thus,
the initial ensemble varies both in amplitude and in position, and the change position is the
same in all blocks. The random smooth functions and mapping are generated by FFT as Fourier
series with random coefficients with zero mean and variance that decays quickly with
frequency.

The data d is an observation of u(1). The first blocks of all members u1,…, uN and d are then
registered against the first block of uN+1 as

 and Tk : Ω → Ω k = 0,…, N are called registration mappings. The registration mapping
is found by multilevel optimization. The morphing transform maps each ensemble member
uk into the extended state vector, the morphing representation,

(9)

whare , k = 0,…, N, are registration residuals. Likewise, the extended

data vector is defined by  and the the observation operator is (T, r(1),…, r(M))
↦ (T, r(1)). We then apply the FFT EnKF method (6) is applied to the transformed ensemble

. The covariance C(11) in (5) consists of three diagonal matrices and we neglect the
off-diagonal blocks, so the fast formula (6) can be used. The analysis ensemble u1,…, uN+1 is
obtained by the inverse morphing transform

(10)

where the new transformed reference member is given by

(11)

4. Epidemic model
The epidemic model that we used for this study is a spatial version of the common S-I-R
dynamic epidemic model. A person is susceptible or infectious in this context if he or she can
contract or transmit the disease, respectively. The removed state includes those who have either
died, have been quarantined, or have recovered from the disease and become immune. The
state variables are the susceptible (S), the infectious (I), and the removed (R) population
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densities. The core ideas for this model date back to the 1957 spatial formulation by Bailey
[14], but the specific version that we have employed here is due to Hoppenstaedt [15, p. 64].

The population is considered to be dispersed over a planar domain , and it is labelled
according to its position with respect to the spatial coordinates x and y. The (deterministic)
evolution of the state (S (t), I (t), R (t)) is given by

(12)

The function q (x, y, t) gives the rate of removal of infectives due to death, quarantine, or
recovery. The weight function w (x, y, u, v) measures the influence of infectives at spatial
position (u, v) on the exposure of susceptibles at position (x, y); in this simulation we used the
function w (x, y, u, v) = α exp [−((x − u)2 + (y − v)2)1/2/λ], which expresses the idea that the
influence of nearby infectives decays as an exponential function of Euclidean distance, with
constant, λ characteristic of the distance at which the disease spreads. More mobile societies
will have larger values of λ. The parameter α measures the infectiousness of the disease.

A stochastic cell model is created by treating the quantities on the right-hand-side of (12) as
the intensities of a Poisson process and by piecewise constant integration over the cells. The
domain Ω is decomposed into nonover-lapping cells Ωi with centers (xi, yi) and areas A (Ωi),
i = 1,…, K. The state in the cell Ωi is the random element (Si, Ii, Ri), advanced in time over the
interval [t, t + Δt] by

where the random increments ΔSi and ΔRi are sampled from

(13)

and qi (t) is the given removal rate in the cell. Ωi. The summation in (13) is done only over the
cells Ωj near Ωi; for far away cells, the weights w(xi,yi,xj,yj) are negligible. It is not necessary
to compute a Poisson-distributed transmission rate from each source cell to a given target cell,
because a finite sum of independent Poisson-distributed random variables, each with its own
intensity parameter, is itself Poisson-distributed with an intensity parameter equal to the sum
of the individual intensities.

5. Computational results
We have chosen to model an epidemic disease that first emerges in Congo. The computational
domain is a square portion of central Africa. In Figure 1 (a), we see the epidemic wave 120
model time steps after the emergence of the disease. The behavior of the model is such that
any spurious infection will tend to grow into a secondary infection wave. This is problematic
for data assimilation because the occurrence of spurious features is virtually guaranteed. We
attempt to reduce the occurrence and magnitude of these features using the morphing
transformation and FFT EnKF; however, some amount of residual artifacts will remain. We
have found that by processing the model state in the following manner, we can further reduce
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these artifacts. We begin by scaling the absolute quantities contained in the model variables to
a percentage of the local population before performing the data assimilation. After data
assimilation, we truncate the variables to the range [0, 1], and we apply a threshold so that any
infection rate below 1% is set to 0. Finally, we rescale the output in absolute units ensuring
that the number of people at each grid cell is preserved. We have applied the FFT EnKF to the
epidemic model described in Section 4 with an ensemble of size 5. Each ensemble simulation
was started with the same initial conditions, but with different random seeds, and advanced in
time by 100 model time units, then perturbed randomly to obtain the initial ensemble. The
analysis ensemble and data were advanced in time an additional 20 model time steps for further
assimilation cycles. In total, 3 assimilation cycles were performed in this manner.

We have perturbed each member of the initial ensemble randomly in space by applying (10)
to the each variable of the morphing representation of the model. The mappings Tk for this
perturbation were generated from a space of smooth functions that are zero at the boundary.
While the residuals rk are customarily initialized to smooth random fields as well, we have
chosen to set rk = 0 to avoid spurious infections. We instead multiply each field after the inverse
morphing transform by 1 + sk, where sk is another smooth random field. This ensures that an
initial infection rate of 0 is unchanged by the perturbation. A part of a typical ensemble with
spatial as well as amplitude variability is shown Figure 1 (b).

The output of the observation function used in this example consists of the Infected field of the
model. In this case, the data is a spatial “image” of the number of infected persons in each grid
cell. The data were generated synthetically from a model simulation, which was initialized in
the same manner as the ensemble.

Four variants of the EnKF were then applied: the standard EnKF and FFT EnKF and morphing
EnKF and morphing FFT EnKF. The same initial ensemble and the same data were used for
each method. The deviation of the initial ensemble and the model error were chosen so that
the analysis should be about half way between the forecast and the data. In the morphing
variants, the data deviation in the amplitude was taken very large, so that the filter updates
essentially only the position. Ensemble of size 5 was used. The result in the first assimilation
cycle for each method is shown in Figures 2 and 3. The first image in each column is the forecast
mean. In the morphing variants, the mean is taken over all ensemble members in all fields of
the morphing representation (9) and it plays the role of the comparison state for registration.
Thus, in the morphing variants, both the amplitude and the position of the infection wave in
the ensemble members are averaged. The second image in each column is the data, which is a
model trajectory started from the same initial state for each method. Because the model is itself
stochastic, the data images are slightly different. The third image in each column is the analysis
mean, which is taken in the morphing representation (11) for two morphing filters, so that both
the amplitude and the location are averaged.

We see that both standard EnKF and FFT EnKF filters cannot move the state towards the data;
a much larger ensemble would be needed. The morphing EnKF does move the state towards
the data, but there are strong artifacts due to the poor approximation of the covariance by the
covariance of the small ensemble. Finally, the morphing FFT-EnKF is capable of moving the
state towards the data better.

6. Conclusion
We have introduced morphing FFT EnKF and presented preliminary results on data
assimilation for an epidemic simulation. Morphing was essential to move the state towards the
data, but it resulted in artifacts for the small ensemble size used, yet small ensemble size is
important to perform simulations with data assimilation on general computing devices instead
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of supercomputers. We have observed that the estimation of the covariance matrix in the
frequency domain results in better forecast covariance in the algorithm, which has the potential
to reduce the artifacts due to small ensemble size.
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Figure 1.
(a) The number of people per kilometer squared infected, susceptible, and removed after 120
time steps in a simulation of an epidemic disease spreading through central Africa. These
images correspond to variables I, S, and R in Equation (12). (b) Number of people infected per
kilometer squared in three forecast ensemble members.
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Figure 2.
The number of people infected per kilometer squared in analysis cycle 1 using the standard
EnKF and FFT EnKF, each with ensemble size of 5. Both approaches are unable to move the
location of the infection in the simulation state.
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Figure 3.
The number of people infected per kilometer squared in analysis cycle 1 using the morphing
EnKF and morphing FFT EnKF, each with ensemble size of 5. Both approaches are able to
move the state spatially and perform similarly. However, EnKF suffers from stronger artifacts
due to low accuracy and low rank of the ensemble covariance than the morphing FFT EnKF.
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