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Abstract

Gene flow between populations that are adapting to distinct environments may be restricted if hybrids inherit maladaptive,
intermediate phenotypes. This phenomenon, called extrinsic postzygotic isolation (EPI), is thought to play a critical role in
the early stages of speciation. However, despite its intuitive appeal, we know surprisingly little about the strength and
prevalence of EPI in nature, and even less about the specific phenotypes that tend to cause problems for hybrids. In this
study, we searched for EPI among allopatric populations of the butterfly Euphydryas editha that have specialized on
alternative host plants. These populations recall a situation thought typical of the very early stages of speciation. They lack
consistent host-associated genetic differentiation at random nuclear loci and show no signs of reproductive incompatibility
in the laboratory. However, they do differ consistently in diverse host-related traits. For each of these traits, we first asked
whether hybrids between populations that use different hosts (different-host hybrids) were intermediate to parental
populations and to hybrids between populations that use the same host (same-host hybrids). We then conducted field
experiments to estimate the effects of intermediacy on fitness in nature. Our results revealed strong EPI under field
conditions. Different-host hybrids exhibited an array of intermediate traits that were significantly maladaptive, including
four behaviors. Intermediate foraging height slowed the growth of larvae, while intermediate oviposition preference,
oviposition site height, and clutch size severely reduced the growth and survival of the offspring of adult females. We used
our empirical data to construct a fitness surface on which different-host hybrids can be seen to fall in an adaptive valley
between two peaks occupied by same-host hybrids. These findings demonstrate how ecological selection against hybrids
can create a strong barrier to gene flow at the early stages of adaptive divergence.
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Introduction

The idea that ecological divergence can drive speciation has

been discussed, studied, and widely accepted since the time of

Darwin [1–9]. It is thus surprising that we know so little about one

of the most important mechanisms by which ecological divergence

may contribute to species formation. Imagine two populations

adapting to different ecological niches. Such adaptation will

reduce gene flow between the populations if hybrids have

intermediate phenotypes that fare poorly in both parental

habitats—in essence, if hybrids fall in an adaptive valley between

the fitness peaks associated with the niches of their parents. This

phenomenon is called extrinsic postzygotic isolation (EPI) because

it obstructs gene flow after hybrid zygotes have formed (hence

postzygotic) and arises from an interaction between hybrids and

their environment rather than from inherent developmental

defects (hence extrinsic).

Verbal theory and intuition suggest that EPI may be a

widespread and important component of speciation. For one, it

is expected to develop early, at the onset of phenotypic divergence.

Barriers that develop early are critical to speciation because they

can facilitate subsequent divergence and speed the accumulation

of additional forms of isolation. Early barriers that are postzygotic,

in particular, can lead to direct selection for assortative mating via

reinforcement [2,10]. Second, EPI has the potential to act in any

system involving ecological divergence, regardless of its biological

particulars. This sets it apart from several forms of prezygotic

isolation, which can only contribute to speciation when the

alternative niches are directly linked to mate choice (e.g., habitat

isolation, temporal isolation, pollinator isolation, and sexual

isolation based on ecological traits that double as mating cues

[6,8]).

Given the potential importance and generality of extrinsic

postzygotic isolation, many have lamented how little we know

about its prevalence, strength, and character in nature (e.g., [6–

8,11]). It has received much less empirical attention than any other

major form of reproductive isolation, perhaps because its

ephemeral nature makes it difficult to study. The clearest examples

PLoS Biology | www.plosbiology.org 1 October 2010 | Volume 8 | Issue 10 | e1000529



in which ecological selection against hybrids has been established

and quantified include benthic and limnetic morphs of the

threespine stickleback [12–15], large and small billed Geospiza

ground finches [16,17], basin and mountain subspecies of big

sagebrush [18], mimetic races of Heliconius butterflies [19], and

Neochlamisus leaf beetle host races [20] (see also [21–30]). In host

races of Rhagoletis fruit flies [31,32] hybrids possess intermediate

traits that are almost certain to be maladaptive, though the effect

has not been directly quantified (see also [33]). While these studies

confirm the existence of extrinsic postzygotic isolation in natural

systems, major gaps in understanding remain.

One gap involves the relative importance of EPI to other

ecological forms of isolation known to contribute to speciation. As

noted above, prezygotic isolation can provide a potent barrier to

gene flow when divergent selection acts directly on characters that

influence mate choice [6–8]. Such mating barriers are better

documented than EPI and appear to be stronger than EPI in the

systems where EPI has been shown to exist (e.g., sexual isolation in

sticklebacks, Darwin’s finches, and Heliconius butterflies [19,34–

36]; habitat isolation in Neochlamisus leaf beetles and other insect

host races [20,23,37]). We are aware of no cases where ecological

selection against hybrids is the primary isolating factor between

diverging populations and it remains possible that it is often

incidental to speciation. Or perhaps its most important contribu-

tion comes at an early stage of divergence that has rarely been

examined—among allopatric populations at or before the time

they come into contact in sympatry.

We also know relatively little about the mechanistic bases of

EPI. The most common empirical approach to studying the

phenomenon focuses on quantifying it and distinguishing it from

intrinsic postzygotic isolation, where hybrids perform poorly due

to inherent developmental defects. Postzygotic isolation is detected

by showing that hybrids are less fit than their parents in the specific

environments to which the parents are adapted. Confirmation that

the isolation is extrinsic is then achieved by showing that the fitness

deficit disappears in a ‘‘neutral’’ environment [12] or, more

rigorously, by showing that the rank order of fitness of the two

backcross types switches between parental environments [14,38].

This approach has the advantage of assaying fitness directly in

hybrid individuals, but it does not reveal which interactions

between hybrids and their environment are dysfunctional. Are

certain types of traits (e.g., morphological, physiological, or

behavioral) more likely to lead to hybrid dysfunction than others?

A third gap in current knowledge of EPI is that, with a few

notable exceptions (e.g., [15–17]), existing estimates of its strength

come from laboratory environments [20,23,25,27,29,30] or from

modified field environments (e.g., enclosures that exclude

predators/grazers [12–14,18,21]). There are obvious reasons for

this practice. Tracking individual organisms and measuring their

fitness in nature is difficult, if not impossible, in most systems. Yet

fitness estimates that come from artificial environments will only

be accurate to the extent that key aspects of the ecological niches

in question have been replicated. For example, bringing the

alternative host plants of diverging insect populations into the lab

or greenhouse allows researchers to evaluate the costs hybrids face

due to intermediate digestive physiology but will likely miss those

associated with factors such as host-specific predators, pathogens,

and microclimates. The scarcity of field studies raises the

possibility that we have systematically underestimated the true

strength of extrinsic postzygotic isolation in nature.

The checkerspot butterfly Euphydryas editha provides a tractable

system in which to begin addressing these gaps in understanding.

The species is made up of multiple, allopatric populations in various

stages of adaptation to distinct host plants [39]. Those populations

adapted to Collinsia torreyi and Pedicularis semibarbata (Figure 1A) are

distributed along the western slope of the Sierra Nevada in

California (Figure 1B) in patches of coniferous woodland habitat

where the two host plants are intermingled at the scale of inches to

feet [40]. Despite host sympatry, the butterflies at any given site have

evolved to lay eggs on just one of the two plant species and ignore the

other, with the identity of the used host flip-flopping back and forth

between sites (Figure 1B). The populations that use different hosts

have diverged in several important host-related traits, ranging from

larval performance and foraging height to adult female host

preference, oviposition site height, and clutch size (Figure 2) [40].

Consistent host-associated differences in morphology and random

genetic markers, on the other hand, remain elusive. A previous

examination of .400 AFLPs revealed significant genetic differen-

tiation among populations [39,41], but this differentiation was not

associated with the use of the two host plants examined here (subset

of analyses from [41] summarized in Text S1).

Here, we obtain field-based estimates of the strength of extrinsic

postzygotic isolation in this system and describe its underlying

mechanisms. For one trait known to have diverged among

populations, we directly measure the fitness of hybrids expressing

that trait in the field. For the five remaining traits, we first determine

the extent to which hybrids are intermediate and then manipulate a

control group of organisms to quantify the effects of intermediacy on

fitness in the field. This approach mirrors the way we think about

EPI intuitively. In particular, it allows us to empirically estimate the

shape of a fitness surface on which hybrids can be seen to fall in a

valley between two peaks corresponding to the phenotypes of ‘‘pure’’

parental populations. Our results provide compelling evidence that

extrinsic postzygotic isolation can provide a strong and primary

barrier to gene flow at the early stages of ecological divergence.

Results

We estimated the extent to which divergence in six important

ecological traits (Figure 2) generates extrinsic postzygotic isolation

among checkerspot populations adapted to feed on Pedicularis

semibarbata and Collinsis torreyi (hereafter referred to as Psem and

Ctor, respectively). We do so by comparing the traits and associated

Author Summary

When two populations adapt to different ecological
environments, they may become reproductively incom-
patible with each other and eventually form distinct
species. One form of incompatibility thought to contribute
to this process occurs when hybrids between diverging
populations are ecologically maladapted. They suffer
reduced survival and reproduction because they possess
intermediate traits that are ill-suited to both parental
environments. Although this phenomenon is potentially
important at the early stages of speciation, it is difficult to
study in the field and is often invisible in the laboratory—
leaving us with few empirical examples. We use a series of
behavioral assays and manipulative field experiments to
examine hybrids between populations of a butterfly that
have adapted to use distinct host plants. We show that the
hybrids are perfectly healthy in the laboratory. However,
when taken into the field, they interact with their host
plants in intermediate and anomalous ways that lower the
growth and survival of both themselves and their
offspring. Our findings confirm that ecological selection
against hybrids has great potential to block gene flow at
the early stages of adaptive divergence.

Ecological Mismatch Causes Reproductive Isolation
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fitnesses of two classes of hybrid insects: hybrids between

populations adapted to different host plants (different-host hybrids)

and hybrids between populations adapted to the same plant (same-

host hybrids). This comparison isolates the consequences of

divergent host adaptation (affecting only different-host hybrids)

from those of genetic drift and other types of local adaptation

(affecting both different- and same-host hybrids) [34,42,43]. All

insects used in our experiments were produced by crossing

butterflies from four populations—two adapted to Psem and two

adapted to Ctor (Figure 1C). Throughout this article, we refer to

particular types of hybrids using two-letter symbols (PP, PC, CP,

CC) where the first letter indicates the mother’s traditional host

and the second letter indicates the father’s traditional host. We

refer to ‘‘pure’’ insects stemming from crosses within a single

population using one-letter symbols (P or C) indicating the

population’s traditional host. We address each trait and its fitness

impacts, below, in the temporal order with which those impacts

occur during the life cycle of a hybrid insect.

Early Larval Performance Mediates Weak Asymmetric
Isolation

We examined the performance of young hybrid larvae by

placing hybrid eggs on naturally growing host plants in the field

one day before hatching and then monitoring the growth and

survival of the resulting larvae for 10 d. Hybrids were only

examined on the host to which their mothers were adapted, and

thus on which their mothers would have laid their eggs: CP and

CC on Ctor, and PC and PP on Psem. Pure larvae were also

included on their traditional hosts for reference: C on Ctor and P

on Psem. Same-host hybrids did not differ from the corresponding

pure larvae in either growth or survival (CC = C on Ctor, PP = P

on Psem; Figure S1). Different-host hybrids performed well on

Ctor (CP = CC/C for both growth and survival; Figure S1A,

Table S1). However, on Psem they grew 15%–30% more slowly

(PC,PP/P for growth; PC = PP/P for survival; Figure S1B,

Table S2). The trend for reduced growth on Psem was significant

only when predators were excluded (ANOVA p = 0.0001 and

0.18 in the absence and presence of predators, respectively;

Table S2), probably because our predator exclusion technique

allowed us to control for variation in the quality of indivi-

dual Psem plants (see Methods). In summary, hybrids

between populations adapted to Psem and Ctor were at a slight

disadvantage on one of the two host plants. This weak,

asymmetric effect is likely to be extrinsic since it disappeared

on a third host (see section entitled ‘‘Different-Host Hybrids Are

Not Intrinsically Unfit’’).

LK

TR
CM/RM

PI

Pedicularis semibarbata Collinsia torreyi

A B

C

LKTRPI CM
PC

CP

PP CC

CP

RM

BM
MK

BB

MAM

MT

SS

Figure 1. Study system background and experimental design. (A) Sketches of the two host plants addressed in this study: Pedicularis
semibarbata (Psem, Orobanchaceae), a perennial herb with basal rosette morphology, and Collinsia torreyi (Ctor, Plantaginaceae), a small upright
annual herb. (B) Map of California highlighting E. editha populations that use Ctor (blue circles), Psem (yellow circles), or other plants (grey dots) as
primary hosts (see [39] for a description of patterns of host use in this species overall). This study specifically addresses the four populations in bold:
Leek Spring (LK), Tamarack Ridge (TR), Colony Meadow/Rabbit Meadow metapopulation (CM/RM), and Piute Mountain (PI). (C) Schematic of the
crosses performed to produce insects examined in this study. Colored circles represent populations from which parents were sampled. Each black
arrow represents a specific type of cross and leads from the native population of the female to the native population of her male mate. Bold black
two-letter symbols above or below arrows symbolize the offspring produced by the cross, the first and second letters corresponding to the host
affiliations of the mother and father, respectively (P, Psem; C, Ctor). Thus, the left-most arrow indicates that females from the Psem-adapted CM
population were mated to males from the Psem-adapted PI population to produce PP offspring. Likewise, the middle arrows show the crosses used to
produce PC offspring (with a Psem-adapted mother and Ctor-adapted father) and CP offspring (reciprocal of the previous). Grey circular arrows
represent within population crosses that were not conducted by us but occurred naturally prior to the capture of mated females. These crosses
produced ‘‘pure’’ offspring symbolized as simply P or C.
doi:10.1371/journal.pbio.1000529.g001
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Intermediate Larval Foraging Height Mediates Moderate
Isolation

Different-host hybrid larvae forage at intermediate

heights. Different-host hybrid larvae foraged at intermediate

heights relative to larvae with two parents adapted to the same

host. On Ctor, the mean positions of first instar CP and PC larvae

were slightly lower than those of CC and C larvae, and

substantially higher than those of P and PP larvae (Figure 3A;

ANOVA p,0.0001). The difference between CP/PC and P/PP

was replicated when second instar larvae were tested on Psem

(Figure 3B; ANOVA p,0.0001). On neither host did we observe a

significant difference between reciprocal different-host hybrids

(CP = PC) or between pure larvae and the corresponding same-

host hybrids (C = CC, P = PP).
Intermediate foraging height slows growth on Ctor. The

intermediate foraging heights of CP larvae on Ctor did not affect

their fitness to the extent that we could detect a significant effect

when they were placed on young, budding Ctor plants in the

experiments described under ‘‘Early Larval Performance Mediates

Weak Asymmetric Isolation’’ (Figure S1A). Ctor senesces from the

bottom up, however, and we hypothesized that foraging height

might affect fitness on more mature plants, whose lower leaves are

senescing despite the presence of new growth at the top.

Checkerspot larvae are often found on such plants in nature

[44–48].

To test this, we first asked whether different-host hybrids do

indeed suffer reduced fitness when placed on more mature,

blooming to post-blooming Ctor plants. Growth rates varied as

expected. CP and PC larvae grew more slowly than CC larvae but

faster than PP larvae (Figure 3C; ANOVA p,0.0001; Table S3).

Survival did not vary (ANOVA p = 0.7; Table S3). We then asked

whether differences in foraging height might generate this growth

effect due to variation in the nutritional quality of plant material

found at different heights. We separated the base, middle, and top

sections of blooming to post-blooming Ctor and fed them to pure C

and P larvae in small cups. Both types of larvae grew faster on top

plant sections, consisting of flowers, developing buds, and young

leaves, than they did on middle sections, consisting of slightly older

leaves (Figure 3D; ANOVA p = 0.0004 and 0.0017 for C and P

larvae, respectively; Table S4). P larvae raised on the oldest leaves

from the base of the plant grew the most slowly (Figure 3D).

Survival did not vary (ANOVA p = 0.3; Table S4). These results

indicate that intermediate foraging height puts different-host

hybrids at a disadvantage on mature Ctor plants.

Intermediate foraging height slows growth on Psem.

Intermediate foraging height did not contribute to the reduced

growth rates of newly hatched PC larvae on Psem (described in the

section on early larval performance) since all larvae remained at

their natal site for the duration of our experiment (see ‘‘Natural

History’’ section in Methods). However, foraging height may affect

the fitness of older, late second and third instar larvae that stray

from their natal site. We tested this by monitoring paired groups of

larvae, one group placed low and one group placed middle to high

on naturally growing Psem plants in the field. Larvae placed on mid

to high leaves grew ,50% more slowly than those placed on low

performance
foraging
height

oviposition
site height

preference
within Ctor

preference
for species

clutch
size

larval traits adult female traits

1-20

30-100older plants

young plants high

low

Ctor

Psem

high

low

good poor

good good

traditional
host

Figure 2. Summary of traits addressed in this study. E. editha populations adapted to Collinsia torreyi (top row) and Pedicularis semibarbata
(bottom row) have diverged in the six traits illustrated—two expressed in larvae and four expressed in adult females [40]. Larval performance: Both
types of larvae grow and survive well on Ctor, but only Psem-adapted larvae are able to survive on Psem. Larval foraging height: Ctor- and Psem-
adapted larvae tend to feed at the top and base of their hosts, respectively. Female oviposition preference: Adult females prefer to lay eggs on the
host to which they are adapted. Moreover, when forced to lay on Ctor, Ctor- and Psem-adapted females prefer individual plants at earlier and later
phenological stages, respectively. Oviposition site height: Ctor-adapted females tend to lay their eggs at the top of their host near the point where
they first land. Psem-adapted females invariably drop to explore the basal leaves of their host and lay near the ground. Clutch size: Ctor-adapted
females lay 1–20 eggs per clutch while Psem-adapted females lay 30–100 eggs per clutch. This does not translate into a difference in either daily or
lifetime fecundity since Ctor-adapted females lay more frequently than Psem-adapted females. No major phenotypic differences have been described
in pupae or adult males.
doi:10.1371/journal.pbio.1000529.g002
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leaves near the ground (Figure 3E; ANOVA p = 0.0002; Table S5).

Whether larvae were placed on upper or lower leaves had no effect

on survival (ANOVA p = 0.4; Table S5). In summary, intermediate

foraging height slows larval growth on Psem as well as Ctor, putting

different-host hybrids at a disadvantage and thereby generating

moderate EPI.

Intermediate Oviposition Behavior in Adult Females
Mediates Strong Isolation

Different-host hybrid oviposition behaviors are

intermediate. We quantified the host species preference of

ovipositing adult hybrids using a continuous variable called the

discrimination phase or d-phase, measured in units of time (see

Methods for more detail). Same-host hybrid females expressed

preferences that were indistinguishable from those of their pure

counterparts, reported elsewhere [40]; PP females moderately

preferred Psem (mean d-phase = 20.7 d), and CC females strongly

preferred Ctor (mean d-phase = +1.2 d). Different-host hybrids

were intermediate, differing significantly from both same-host

hybrid classes (Figure 4A; ANOVA p,0.0001). They readily

accepted both hosts and showed little to no preference (CP mean

d-phase = +36678 min, PC mean = +182655 min). The margi-

nally significant tendency for PC females to be more Ctor

preferring than CP females (ANOVA contrast p = 0.14, t test

p = 0.03) is suggestive of sex linkage at loci of small effect, since

females are the heterogametic sex in butterflies and inherit their

only Z chromosome from their fathers.

We also tested hybrid female oviposition preferences for Ctor

plants of varying phenological stage. Although we were only able

to test a few same-host hybrid individuals, CC females appeared to

share the tendencies of pure Ctor-adapted butterflies; all 3 CC

females tested preferred budding Ctor over blooming Ctor

(Figure 4B). Interestingly, different-host hybrids were more similar

to Psem-adapted females; all 8 females tested (3 CP and 5 PC)

preferred blooming plants (Figure 4B). This difference (CC versus

CP/PC) was significant both in terms of the proportion of

butterflies with one or the other preference (FET p = 0.0006) and

in terms of quantitative d-phases (t test p = 0.03).

We tested hybrid female oviposition site height on Psem only

since Ctor does not offer many oviposition site options near the

ground (Figure 1A). PP females resembled their parents, showing a

strong innate tendency to drop to the base of the plant and lay
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Figure 3. Different-host hybrid larvae forage at intermediate heights, slowing growth on both host plants. (A) Mean foraging height on
Ctor plants (expressed as a percentage of the height of the plant). Different-host hybrids foraged lower than larvae with 2 Ctor-adapted parents (C/
CC) but higher than larvae with 2 Psem-adapted parents (P/PP). Data analyzed using an ANOVA that examined differences among major groups (C/CC
versus CP/PC versus P/PP) and among cross types within groups (C versus CC, CP versus PC, P versus PP). The former effect was significant
(p,0.0001); the latter was not (p = 0.3). Circles show means 6 SEM. Capital letters at top of panel show Tukey’s HSD groupings. Data on pure types (C
and P) were previously published in [40]. (B) Mean foraging height on Psem leaves. C and CC larvae were not included since they do not accept Psem
as a host. Data analyzed as in (A). (C) Mean weight of hybrid larvae allowed to forage freely on mature Ctor plants for 10 d. Variation was significant
(ANOVA p,0.0001; Table S3). Capital letters at top of panel indicate Tukey’s HSD groupings. (D) Growth rates of pure larvae reared on basal, middle,
and top sections of mature Ctor plants in small cups. Larvae grew more quickly when fed top sections than when fed middle/basal sections. LS means
come from ANOVAs described in Table S4. All means were different from one another using Tukey’s HSD. (E) Growth rates of pure P larvae placed on
low versus mid-high leaves of naturally growing Psem plants in the field. Lines connect data from paired groups placed on the same plant. Larvae on
lower leaves grew more rapidly than those placed on mid-high leaves (Table S5).
doi:10.1371/journal.pbio.1000529.g003
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their eggs within a few cm of the ground (Video S1; Figure 4C;

mean height = 2.560.6 cm). While a few different-host hybrids

seemed to share this phenotype, most neglected to explore the

plant and chose oviposition sites near the point where they were

first placed (Video S2; Figure 4C; PC mean height = 6.260.6, CP

mean height = 7.260.7). The few CC females that accepted Psem

also neglected to explore the plant and laid their eggs well above

5 cm (Figure 4C). Overall, variation among hybrid types was

significant (ANOVA p,0.0001), with different-host hybrid females

placing their eggs significantly higher than PP insects and slightly,

but insignificantly, lower that CC insects.

We assayed hybrid clutch sizes by counting the number of eggs

they laid per clutch on their preferred host species (or both host

species for different-host hybrids). Same-host hybrids laid the same

number of eggs per clutch as their pure counterparts, reported

elsewhere (Figure 4D; CC mean = 463 eggs, PP mean = 5165)

[40]. Different-host hybrids laid intermediate sized clutches on both

host plants. They laid significantly larger clutches on Ctor than CC

females (ANOVA p,0.0001; CP mean = 2262, PC mean = 1762)

and significantly smaller clutches on Psem than PP females (ANOVA

p = 0.003; CP mean = 2166, PC mean = 2965) (Figure 4D).

In summary, different-host hybrid butterflies exhibited ovipo-

sition behaviors that were either intermediate to those of same-

host hybrids (preference for host species, oviposition site height,

clutch size) or at least significantly different from the same-host

hybrid type whose behavior was relevant on the given host

(preference for individual Ctor plants). In the following sections, we

describe experiments designed to estimate the effects of these

behaviors on offspring fitness.

Intermediate oviposition behaviors reduce offspring

fitness on Ctor. Different-host hybrid females ovipositing on

Ctor chose to lay larger clutches on phenologically older plants

than Ctor-adapted butterflies. To estimate the effects of this

behavior on offspring fitness, we examined the performance of

newly hatched larvae placed in small to medium-sized groups on

blooming versus senescing plants in the field. Note that the lifespan

of Ctor is short, such that placing neonate larvae on blooming and

senescing plants simulates the experience of larvae hatching from

eggs laid 10–14 d earlier on plants that were budding and

blooming, respectively (see Methods). Single larvae grew slightly

more slowly than those placed in groups of 5, 10, 15, and 25, but

there was no clear overarching relationship between clutch size

and growth rate (Figure 5A, left-hand panel; ANOVA p = 0.001;

Table S6). In terms of survival, however, single larvae performed
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oviposition behavior. Colored circles show means 6 SEM and small
grey circles show raw data. (A) Host Preference for Ctor versus Psem.
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phase (d-phase), whose absolute value and sign reflect preference
strength and direction, respectively. The dashed line at zero indicates
no preference. Variation among cross types was significant (ANOVA
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(ANOVA p = 0.003).
doi:10.1371/journal.pbio.1000529.g004

Ecological Mismatch Causes Reproductive Isolation

PLoS Biology | www.plosbiology.org 6 October 2010 | Volume 8 | Issue 10 | e1000529



significantly better than the other group sizes. There was a clear

trend for decreasing survival with increasing clutch size on both

blooming and senescing plants (Figure 5A, right-hand panel;

ANOVA p,0.0001; Table S6). As expected in light of previous

field observations and experiments [44–47], larvae placed on

senescing plants suffered serious reductions in both growth and

survival in comparison to those placed on blooming plants

(Figure 5A, both panels, compare black and grey circles). They

grew ,28% more slowly and were ,70% less likely to survive to

10 d of age (ANOVA p,0.0001 for both response variables; Table

S6). We did not detect an interaction effect between clutch size

and plant phenology on either growth or survival (p.0.3). In

summary, the oviposition behavior of different-host hybrids is

doubly maladaptive on Ctor. Medium-sized clutches reduce

offspring survival, and choosing to lay on phenologically

advanced plants reduces both offspring survival and growth.

Intermediate oviposition behaviors reduce offspring

fitness on Psem. Different-host hybrids ovipositing on Psem

laid medium-sized clutches relative to the large clutches laid by

Psem-adapted butterflies. We estimated the fitness effects of this

behavior by examining the growth and survival of newly hatched

larvae put out in medium to large-sized groups on naturally

growing plants in the field. Clutch size had a significant effect on

survival, but not weight (Figure 5B; ANOVA p survival = 0.01, p

weight = 0.4; Table S7). More specifically, survival tended to

increase with increasing clutch size (Figure 5B, right panel), a

relationship opposite to that observed on Ctor (Figure 5A, right

panel).

Most different-host hybrids ovipositing on Psem also differed

from Psem-adapted butterflies in failing to drop to the bottom of

their host to place their eggs near the ground. The data presented

in Figure 3E indicate that this failure would significantly slow

offspring growth during the period of time when larvae remain at

the natal site (10–14 days or 1–2 instars). To test for parallel effects

on egg development time, we manipulated pure Psem-adapted

females into laying paired clutches, one high and one low, on

naturally growing Psem plants in the field and recorded the time to

hatching. Eggs laid on middle to upper leaves took ,27% longer

to hatch than those laid within a few centimeters of the ground

(Figure 5C; ANOVA p,0.0001; Table S8). In summary, the

oviposition behavior of different host hybrid females is maladap-

tive on Psem, just as it was on Ctor, further enhancing EPI. Medium

clutch sizes reduce offspring survival and high oviposition sites

slow offspring development.
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Different-Host Hybrids Are Not Intrinsically Unfit
The nature of the behavioral phenotypes addressed in this

article makes it clear that their effects on fitness are extrinsic

rather than intrinsic. This distinction is not as clear, however, with

regard to the reduced growth rates of young PC larvae on Psem

(see first section of Results). We therefore examined larval growth

rate on a third host plant, Castilleja applegatei. If the original

reduction in growth on Psem is extrinsic, it may dissipate on this

‘‘neutral’’ host [12]. Indeed, PC larvae grew just as quickly as P

and PP larvae when reared on C. applegatei (p = 0.11; Figure S2A).

The neutral environment test is not fail-safe since intrinsic fitness

problems may also fail to penetrate in certain environments ([6]:

p. 250). We therefore searched for other signs of inherent

incompatibilities in different-host hybrids by examining egg

viability, female teneral weight, sex ratios, and fertility. We found

none (Figure S2).

Visualizing EPI Using an Adaptive Surface
Extrinsic postzygotic isolation is often conceptualized using the

metaphor of an adaptive surface; it occurs when hybrids are

intermediate and fall in an adaptive valley between two fitness

peaks occupied by the parental populations. We transformed our

empirical data on hybrid host preferences and clutch sizes into

such a surface in order to help visualize the extent to which

intermediate values of these traits generate isolation. Other

phenotypes were not included since doing so would require more

than three dimensions. The shape of the surface was estimated by

combining our field data on the survival of various sized clutches

(Figure 5A and 5B, right panels) with a logical translation of host

preference values into probabilities of laying on each host (see

Methods). The surface has two peaks corresponding to the optimal

clutch size on each host plant (Figure 6). The position of same and

different-host hybrids on the surface was simulated based on the

results of our host preference and clutch size assays (Figure 4A and

4D; see Methods). The two types of same-host hybrid females

resemble pure insects and sit upon the two peaks; CC females

strongly prefer Ctor and lay small clutches (Figure 6, blue dots),

while PP females prefer Psem and lay large clutches (Figure 6,

yellow dots). Different-host hybrids, on the other hand, fall in the

adaptive valley between the peaks; they readily accept both host

species and lay their eggs in medium-sized clutches (Figure 6,

green dots).

Discussion

The idea that extrinsic postzygotic isolation can create a strong

barrier to gene flow at the early stages of ecological divergence and

play a critical role in speciation is relatively unsubstantiated.

Examples of this type of reproductive isolation are few and tend to

involve taxa at the intermediate to advanced stages of the

speciation process—forms or sister species that are also separated

by substantial mating barriers and have already proven their

ability to coexist in sympatry or parapatry. Moreover, EPI has not

been found in several systems where the magnitude of ecological

divergence suggests that it should be strong (e.g., [49,50]).

In this study, we searched for EPI among allopatric populations

of a single butterfly species that have adapted to different host

plants. Rather than examining the overall fitness of hybrid insects,

we attempted to tease apart potential underlying ecological

incompatibilities one by one. For traits known to have diverged

between the parental host-adapted populations, we first asked

whether different-host hybrids were intermediate, and second

whether intermediate phenotypes reduced growth and survival in

the insects’ natural field setting. This approach has the advantage

of cleanly dissociating the fitness effects of intermediate hybrid

traits from those of inherent incompatibilities and provides a

mechanistic understanding of EPI that mirrors the way we think

about the phenomenon intuitively. Our results demonstrate that

different-host hybrids lack intrinsic developmental defects but

display intermediate phenotypes that are maladaptive on both

hosts in nature, resulting in substantial extrinsic isolation.

Mechanisms of EPI Among E. editha Populations That
Specialize on Ctor and Psem

Among the traits we examined in different-host hybrid insects,

oviposition behaviors were the most maladaptive. First, medium

clutch sizes lowered offspring survival on both hosts—with small

clutches being optimal on Ctor and large clutches being optimal on

Psem. This effect is distilled in Figure 6. Interestingly, predator

pressure is substantially higher on Psem than on Ctor (compare

mean survival of all larvae on two hosts in Figure S1; [46]) and

unpublished experiments indicate that the advantage enjoyed by

large clutches on Psem disappears when predators are excluded.

Host-specific predator regimes may therefore help explain why the

relationship between clutch size and offspring survival was

opposite on the two hosts.

Different-host hybrid females accrue further fitness losses due to

additional maladaptive oviposition behaviors. When laying on

Ctor, they preferred phenologically older plants on which offspring

fitness was severely compromised (30% growth deficit, 70%

survival deficit). It makes sense that a preference for older plants

would be maladaptive on an annual plant like Ctor. Coping with

early host senescence is a major challenge for E. editha populations

that use annual hosts [44,45,47,48]. Larvae cannot enter diapause

until mid to late 3rd instar, yet many find themselves on senescing

plants as 1st or 2nd instars (28% of 53 clutches censused in 1995

and 32% of 25 clutches censused in 2009 at TR). When laying on

Psem, different-host hybrids differed from Psem-adapted insects in

failing to lay their eggs near the ground. Instead, they laid at the

place where they first contacted and tasted the plant (compare

Videos S1 and S2). Field experiments again revealed that this

behavior is maladaptive, reducing offspring development time by

30%–50%. Preliminary thermal data suggest that eggs and larvae

found near the ground develop more quickly than those found on

middle to upper Psem leaves because they are closer to the hot,

sandy soil and therefore experience a warmer microenvironment.

Although the behavior of hybrid larvae was less deleterious than

that of adult females, it affected both sexes and is also expected to

contribute to isolation. Different-host hybrid larvae foraged at lower

levels on Ctor than insects with two Ctor-adapted parents, which

foraged at the top. This behavior did not have a detectable fitness

effect when larvae hatched onto young, still budding Ctor plants but

probably contributed to the 15% growth deficit observed when

larvae were reared on mature plants. Ctor senesces from the bottom

up, and plant material found at the base and middle of the plant was

less nutritious than that found at the top. Psem, on the other hand, is

a perennial herb that retains moisture throughout the summer. Host

senescence is not a problem for larvae on this host. Moreover, the

youngest leaves appear in the center of the plant, being neither high

nor low (Figure 1A). These differences, in combination with the

potential temperature effect mentioned above, help explain why the

relationship between foraging height and growth rate on Psem was

opposite to that on Ctor.

The last trait we show to contribute to isolation among E. editha

populations adapted to Ctor and Psem is early larval performance.

However, the effect was asymmetric and relatively weak,

consisting of a 15%–30% growth deficit on Psem only. We suspect

Ecological Mismatch Causes Reproductive Isolation
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that different-host hybrids have problems digesting or detoxifying

Psem, but could not test this directly due to the difficulty of

manipulating an insect’s physiology independently from other

traits. We can at least rule out the contribution of foraging height

since the larvae in our experiments on Psem did not stray from

their natal site. It is also unlikely that intrinsic incompatibilities

contributed, since different-host hybrids showed no signs of any

developmental defects and grew just as quickly as PP insects on

both Castilleja applegatei and young Ctor.

An Overall Estimate of EPI in E. editha?
Although we could attempt to synthesize the various growth and

survival deficits described above into a single measure of overall

hybrid fitness, this exercise would give the false impression that our

understanding of the system is complete. For one, although we

expect E. editha growth rates to correlate with lifetime fitness, the

exact relationship between growth, survival, and reproduction is

poorly defined. Second, there may be other relevant trait

differences between populations of which we are unaware—for

example, in males or post-diapause larvae. Lastly, our estimates

come from a single year and do not incorporate annual

environmental fluctuations likely to influence the overall strength

of EPI (e.g., [16,51]).

Despite these caveats, the diversity of traits that we show to

affect hybrids and the surprising strength of their effects in at least

one place and time make it clear that extrinsic postzygotic isolation

provides a substantial overall barrier to gene flow in this system.

We found not a single positive effect of hybridization on fitness.

Neither do we expect that effects associated with one trait might

mitigate those stemming from another. Instead, the deleterious

effects are likely to accumulate over the life cycle. As an example of

how this might occur, consider the hybrid offspring of an adult

male E. editha that immigrated from a Psem-adapted population to

a Ctor-adapted population and mated with a local female. Eggs

would be laid on Ctor, the plant preferred by the female. Hatching

larvae would forage lower on the host than local larvae and, in

most years, would grow more slowly due to their failure to locate

the best food at the host meristems. This reduction in growth rate

Figure 6. Divergence in host preference and clutch size among Psem- and Ctor-adapted populations generates strong extrinsic
postzygotic isolation. Each dot represents a hypothetical CC (blue), CP/PC (green), or PP (yellow) female. Different-host hybrids fall in an adaptive
valley between the two peaks occupied by the two types of same-host hybrids, signaling the presence of significant EPI. The phenotypes of these
hypothetical females were drawn from the distributions that best fit our observed data (see Methods). The scatter of the dots thus represents the
biological variation and experimental noise present in our data. The shape of the surface was estimated based on field experiments. The small red
arrows point to the curved edges of the surface that illustrate the relationship between offspring survival and clutch size on Ctor (foreground curve)
and Psem (background curve). These curves were estimated directly from the data shown in Figure 5A and 5B and are represented in that figure as
light grey lines. The front to back axis represents host preference. Thus, for females with large intrinsic clutch sizes (right-hand side of the plot),
expected offspring survival goes from being relatively low for females that are most likely to lay on Ctor (foreground = positive d-phases) to relatively
high for females that are most likely to lay on Psem (background = negative d-phases).
doi:10.1371/journal.pbio.1000529.g006
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would increase larval mortality due to host senescence and extend

the period of exposure to parasitoid attack. Those hybrids that

survived to adulthood would be smaller and/or eclose later than

local Ctor-adapted butterflies—with a penalty paid in fecundity

and/or time. Adult female hybrids would have weak host

preferences, sometimes choosing to lay eggs on Psem and

sometimes choosing Ctor. When laying on Psem they would lay

clutches too small for optimal survival on that host and oviposit

high enough on the plant to slow the development of their eggs

and young larvae. When laying on Ctor, they would tend to choose

the least suitable, most phenologically advanced individuals and

then lay clutches too large for optimal survival on that host. Note

that the majority of these fitness costs stem from behaviors specific

to females. EPI should therefore be most effective at blocking the

flow of maternally inherited genes, including those found on the W

chromosome and in the mitochondrial genome.

We cannot rule out the possibility that different-host hybrids

would perform well on a host plant that we have not investigated,

for example, one of the host plants used by E. editha in other parts

of its range. However, no other known E. editha host plants are

associated with butterflies showing the unique combination of

phenotypes that characterize the different-host hybrids studied

here. Moreover, work from other systems suggests that coloniza-

tion of a novel environment by hybrid organisms sometimes

generates a third species, rather than impeding or reversing

divergence between the two parent species [52–55].

The Importance of Field-Based Studies
Although related, Ctor and Psem differ remarkably in chemistry

[40], growth form (Figure 1A), life history (annual versus

perennial), and visitation rate by E. editha predators [46]. As

discussed above, each of these is likely to play a role in mediating

the fitness costs of the traits addressed in this study. Several of

them, however, are difficult or impossible to replicate indoors, and

we would have underestimated the strength of EPI had we

conducted our experiments in the laboratory or greenhouse. For

example, the predators that put smaller clutches at a disadvantage

on Psem would not have been present in the laboratory. Even field

cages designed to prevent the movement of larvae on naturally

growing plants would have excluded predators and thus been

problematic. Likewise, the temperature gradient we suspect of

slowing the development of eggs and larvae found on the upper

leaves of Psem plants would have been difficult to duplicate in the

laboratory. This study thus highlights the importance of estimating

EPI in the field when possible.

Most previous studies of extrinsic postzygotic isolation in insects

that specialize on distinct host plants were conducted in the

laboratory ([20,23,25,27,30], but see [21]). These studies revealed

growth and survival deficits in F1 individuals ranging from 10%–

50% (averaged across both host plants; Table S9). We suspect,

however, that EPI may be significantly stronger and more

prevalent than the lab estimates suggest. Indeed, most existing

estimates of EPI, including our own, are best interpreted as

minima, either because they come from the laboratory or because

they incorporate only a subset of life stages and traits.

Behavioral Preferences as Widespread Drivers of Extrinsic
Postzygotic Isolation

By focusing on specific traits, we have shown that behavioral

divergence is a potent source of ecological selection against hybrids

in this system. There are a few additional examples of this kind.

One example involves apple and hawthorn host-races of the apple

maggot-fly Rhagoletis pomonella. These insects orient towards the

odor of their own host and avoid the odor of the alternative host.

F1 hybrids avoid the odors of both parental hosts and are likely to

have problems finding suitable oviposition sites in nature [32,56].

Other examples come from bird populations that use different

wintering grounds, or that migrate along different routes in order

to avoid geographic barriers on their way to the same wintering

grounds [33,57,58]. In at least one case, hybrids between SE- and

SW-migrating European blackcap populations inherited a genetic

tendency to migrate in an intermediate southerly direction—a

behavior expected to take them directly over formidable

geographic barriers including the Alps, the Mediterranean Sea,

and the Sahara desert [33]. Both of these examples involve the

inheritance of intermediate niche preferences—with the niches

taking the form of host plants in the first example and wintering

grounds in the second. One of the most deleterious behavioral

incompatibilities described in the current study also involved niche

preference (for phenologically unsuitable Ctor individuals). The fact

that adaptation to a new niche is often accompanied by the

evolution of a new preference for that niche suggests that

maladaptive behavioral preferences may be widespread drivers

of EPI in animals.

Strong EPI in the Absence of Direct Links between Niche-
Adaptation and Mate Choice

As outlined in the introduction, the best-documented ways in

which ecological selection leads to reproductive isolation involve

mating barriers. These barriers arise when niche-adaptation is

directly linked to mate choice. For example, many insects choose

mates from among those they meet on their preferred host plant,

causing habitat isolation (e.g., [37,59–62]). Many plants can only

exchange pollen with those whose flowers attract the same suite of

pollinators, causing pollinator isolation (e.g., [63,64]). In some

organisms, ecological traits are used as, or affect, mating cues,

causing sexual isolation (e.g., [35,65,66]).

Interestingly, ecological mating barriers appear to be absent in

this system. E. editha does not mate on its host on a micro-scale,

and the habitats occupied by populations adapted to Psem and Ctor

are essentially the same on a macro-scale. This means that neither

immigrant inviability nor habitat isolation should prevent local

insects from mating with differently adapted migrants. Further-

more, the growing seasons of the two host plants both begin at

snow melt in early spring, leaving little opportunity for temporal

isolation between the two types of populations. At first glance, the

absence of such host-associated mating barriers may explain why

E. editha host shifts are not generally associated with speciation

events [67–69]. Nevertheless, consideration of the particular host

plants and populations addressed here tells a complementary story.

Psem and Ctor (and their respective genera) are unique among hosts

of E. editha in the degree and dimensionality of divergent

adaptation that is associated with feeding on them [40]. Perhaps

as a result, the two plants are never used jointly by a single

generalized population. Instead the populations that use them

remain stubbornly allopatric, despite widespread host sympatry.

Our finding of substantial EPI in the absence of host-associated

mating barriers provides an explanation for this curious geo-

graphic scenario and suggests a potential route to complete

speciation. Imagine a mated female migrant from a Psem-adapted

population arriving at a site where local butterflies use Ctor (or vice

versa). She will likely lay eggs on her preferred host plant, Psem.

The apparent absence of premating barriers, however, will make it

difficult for her offspring to establish a stable, sympatric, host race.

Instead, they are expected to mate with local insects and produce

hybrids. Strong EPI, in turn, should stem the flow of genes from

those hybrids back into the local population. The combination of

little to no prezygotic isolation and strong EPI may thus explain

Ecological Mismatch Causes Reproductive Isolation
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the existence of a set of allopatric populations that are significantly

isolated yet unable to move into sympatry. If this situation persists,

non-ecological forms of prezygotic isolation may have time to

accumulate, or increased migration rates may trigger reinforce-

ment [70].

Whatever the ultimate fate of these populations, this study

illustrates how extrinsic postzygotic isolation can accumulate over

the life cycle of an insect and reduce gene flow between

populations that are adapting to distinct ecological niches.

Methods

Natural History
In the montane populations studied here, E. editha completes a

single generation per year. Adults fly anytime between May and

July. Females lay eggs in clutches, which hatch after approximately

2 wk. Young larvae must feed for a further 2 wk, until mid-third

instar, before they are able to enter diapause, which lasts through

winter to snowmelt the following spring. Post-diapause larvae then

resume feeding for 2–3 wk, pupate in the ground litter, and

eventually eclose as adults.

E. editha is most specialized on particular hosts during the adult

female and pre-diapause larval stages. Adult females are adapted

to recognize their host species and lay a particular-sized clutch at a

particular height upon it (Figure 2) [40]. Pre-diapause larvae are

adapted to digest/detoxify the host that their mother chose for

them (Figure 2) [40]. They tend to remain with their siblings and

commence feeding in the exact spot where they hatched until they

run out of edible leaf material in the immediate vicinity. This

means that larval position is determined by the mother’s

oviposition site choice for the first 2–4 d on Ctor (which has small,

quickly defoliated leaves) and 10–14 d on Psem (which has larger

leaves). After this time, pre-diapause larvae make their own

decisions about where to feed and rest on the natal plant and are

adapted to do so at particular heights (Figure 2) [40]. They

generally stay on the natal plant until it is completely defoliated

(usually at least 10 d). Post-diapause larvae are less specialized. For

example, in populations where eggs and pre-diapause larvae are

found only on Psem, wandering post-diapause larvae may feed

extensively on newly germinated Ctor seedlings in early spring [71].

Pupae and adult males have no particular relationship with host

plants.

Matings and Experimental Insects
We mated butterflies from the four populations highlighted in

Figure 1B according to the bold arrow combinations illustrated in

Figure 1C. The females used in these matings were collected as

pupae or final/penultimate instar larvae in the early spring of 2004

and 2005, reared to pupation on Ctor leaves in small cups, allowed

to eclose in small cages, and kept in sealed plastic containers on ice

for 0–7 d prior to mating. The males were caught as adults in their

native habitats. All mating configurations were equally easy to

achieve.

To obtain immature stages for our experiments, we solicited

eggs from mated females in captivity. Hybrid eggs (CC, CP, PC,

PP) were obtained from females mated as described above, while

‘‘pure’’ eggs (C and P) were obtained from wild-caught females

that had mated with males from their own populations prior to

capture. We incubated all eggs in the presence of leafy material

from both host plants to control for the possibility that host-

adaptive phenotypes may be induced by exposure of eggs to

volatile plant chemicals.

To obtain adults for our oviposition behavior assays, we set

aside 20–30 eggs from each of the females mated as described

above and reared them to adulthood on Ctor. Ctor was used for all

larvae, regardless of hybrid type, for three reasons: (1) Ctor is

abundant and easy to gather/transplant, (2) all larvae develop

faster on Ctor than on Psem, and (3) feeding all larvae the same host

controls for larval host effects. Upon hatching, young larvae were

reared to diapause on live or freshly gathered Ctor, and kept at 0–

4uC through the winter in the basement room of an unheated

cabin at Sagehen Creek Field Station (6,380 ft elevation in the

Sierra Nevada of California). Buffered from above-ground

fluctuations, the temperature conditions in this room mimic those

experienced by naturally occurring larvae that spend the winter at

similar elevations in the ground litter buried under many feet of

insulating snow. In the subsequent spring (2006), the larvae were

reared on live, potted Ctor under a shade cloth in the field. Those

individuals that developed through to pupation were allowed to

eclose in small cages and were weighed on a microbalance. Adult

males were then housed in cages hanging in the shade and fed

artificial nectar (honey, raw sugar, salt, and amino acids) once a

day and offered mud puddles every 2–4 d. Adult females were

placed in sealed plastic containers on ice for 0–21 d until we were

ready to mate them and test their behavior. We mated most same-

host hybrid females to different-host hybrid males and vice versa.

More than 1–2 wk on ice prior to mating caused some females

(regardless of cross type) to have difficulty laying eggs and/or to lay

unhealthy, shriveled eggs. We excluded such females from our

assays.

Larval Performance and Foraging Height
Early larval performance. To examine larval performance

on Ctor, we put out 2 clutches from each of 12 C families, 7 CC

families, and 9 CP families in a single study area with consistent

aspect and shade level. Each clutch comprised 4–6 eggs (typical

clutch size for a Ctor-adapted mother) laid in captivity on a small

piece of host material, referred to as an egg matrix. One day prior

to hatching, we wedged the matrices among the branching stems

at the top of Ctor plants growing in the study area (one clutch per

plant), left them for 10 d fully exposed to predators and natural

elements, and then returned to count and weigh remaining larvae.

We are confident that the number of remaining larvae reflected

their survival, because young E. editha larvae from our study

populations are sedentary and generally do not leave the natal

plant until it is defoliated. We used an ANOVA to examine the

effect of cross type (C versus CC versus CP) on log-transformed

weight and arcsine-transformed survival.

To examine larval performance on Psem, we conducted two

experiments. The first was analogous to that on Ctor (described

above) except that it involved P, PP, and PC families (n = 25, 23,

and 27, respectively), clutches comprised 25–30 eggs (typical

clutch size for a Psem-adapted mother), and Super Glue was used

to affix each egg matrix to the leaf of a Psem plant (with care to

avoid contact between the glue and the eggs themselves). Glue was

necessary because, unlike Ctor, Psem is frequented by ants that

quickly remove loose matrices. The study area configuration also

differed from the Ctor experiment. Since Psem does not grow as

densely as Ctor, we could not put out all clutches at a single site.

Instead, we put out 12 clutches (4 P+4 PP+4 PC) at each of 14 sites

(15 m615 m areas with consistent aspect and shade level). To take

this site effect into account during analysis, we saved the residuals

from an ANOVA testing the effect of site on survival/weight (log/

arcsine transformed) and then averaged these residuals across the

two replicate clutches within each family before finally testing for

an effect of cross type (P versus PP versus PC) on the resulting

family averages. The low survival characteristic of larvae on Psem

rendered several sites severely imbalanced with respect to the types
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of clutches for which we could obtain weight measurements at the

end of the experiment. We excluded the three most severely

imbalanced blocks (with ,half of the clutches remaining) when

analyzing larval weight.

In the second experiment on Psem, we excluded small, crawling

predators using a sticky substance, Tanglefoot. We encircled the

base of three leaves from each of 28 plants (two plants at each of

the same 14 sites described in the first experiment) with a sheath of

masking tape and smeared the Tanglefoot on top of the masking

tape. The tape prevented the Tanglefoot from eroding the petiole,

and the Tanglefoot prevented small, crawling predators from

reaching larvae on the leaf. The Tanglefoot also prevented larvae

from moving between leaves. One of the three leaves received 25

neonate P larvae, another received 25 PP larvae, and the last

received 25 PC larvae. We left the larvae in the field for 9–13 d

before returning to count and weigh the survivors. All larvae at a

single site were left in the field for the same period of time. We

used an ANOVA to examine the effects of site (14 sites), plant

nested within site (two plants per site), and cross type on log

transformed weight and arcsine transformed survival. The

inclusion of the plant effect in this analysis allowed us to control

for variation in the quality/microclimate of individual Psem plants

when comparing the fitness of P, PP, and PC larvae—something

we could not do in the first experiment since each clutch was

placed on a different plant.

Larval foraging height. We examined larval foraging height

on Ctor by placing groups of 10 neonate larvae on potted plants set

out under a shade cloth in the field, allowing them 2–4 d to

establish themselves, and then recording their position as a fraction

of the height of the plant. We tested the following number of

families for each cross type: C = 16, CC = 9, CP = 11, PC = 16,

PP = 15, and P = 18. In an analogous experiment on Psem, we

placed groups of five second instar larvae on a single Psem leaf with

three tiers of leaflets standing upright in an Eppendorf tube of

water. We then recorded, several times over the course of 2–3 d,

whether the larvae were on the ground (level 0) or on the first,

second, or third tier of leaflets (levels 1, 2, and 3). We tested the

following number of families for each cross type: P = 10, PP = 13,

PC = 19, and CP = 8. C and CC families were not included

because they do not readily accept Psem as a host. We used

ANOVAs to examine the effect of cross type on mean larval

position (averaged across siblings and observations within families)

for both experiments.

Fitness effects of larval foraging height on Ctor. We

reared larvae in small cups on the basal, middle, and top parts of

blooming to post-blooming Ctor plants. The basal parts included

the lowest part of the stem carrying the cotyledons and the lowest

pair of leaves. The middle parts included the middle section of the

stem carrying the next youngest 1–2 pairs of leaves. The top parts

included the young, developing leaves, buds, and flowers from the

apex of the plant. In each of 15 replicates, we divided a single plant

into its base, middle, and top, and fed each of the three parts to a

separate group of five neonate P larvae from the RM population.

Larvae were fed in small cups for ,10 d and were not allowed to

run out of food. We did the same with neonate C larvae from TR

except that we included middles and tops only, excluding bases.

We analyzed the two types of larvae separately in ANOVAs that

tested for the effects of plant (15 replicates) and level (base versus

middle versus top for P larvae; middle versus top for C larvae) on

log transformed weight and arcsine transformed survival. Plants

for which survival on one or more parts was zero were rendered

imbalanced with respect to weight measurements and were

therefore excluded from the weight analysis. We conducted a

second experiment to determine whether these growth effects have

the potential to translate into a fitness cost to freely roaming larvae

that forage at different heights on upright plants. Groups of 10

neonate larvae from same- and different-host hybrid families were

left to forage on potted blooming to post-blooming Ctor plants set

out under a shade cloth in the field. We tested the following

number of families: CC = 16, CP = 15, PC = 28, and PP = 23. We

recorded larval weight and survival after 10 d and tested for

variation among hybrid types using one-way ANOVAs.

Fitness effects of larval foraging height on Psem. To

examine the fitness effects of larval foraging height on Psem, we

collected naturally laid P eggs from the field at RM, divided them

into 36 groups of 20 eggs each, and allowed each group to hatch,

feed, and begin spinning a web on a freshly cut Psem leaf in a small

cup for 24 h. We then removed the leaves (and the larvae they

carried) from the cups and tied them with dental floss to one low

leaf and one high leaf from each of 18 naturally growing Psem

plants. We left them in the field for 10 d, or until either clutch

from a given plant ran out of food on the leaf to which it was tied,

before returning to count and weigh the survivors. The

opportunity to begin feeding and spinning a web together for

24 h, and the fact that we did not allow them to run out of food,

ensured that the larvae stayed where they were first placed on the

plant. We used an ANOVA to estimate the effects of plant

(replicate) and level (low versus high) on log/arcsine-transformed

growth/survival. Plants for which survival in either the low or high

clutch was zero were imbalanced with respect to weight

measurements and were excluded from the weight analysis.

Adult Female Oviposition Behavior and Their Effects on
Fitness

Host preference. We tested the oviposition preferences of

female butterflies using a bioassay in which we recorded their

responses to repeated encounters staged with each host in

alternation. This testing technique has been described in detail

and its assumptions tested by [72] and [73]. The goal is to estimate

the strength of a female’s preference for one host over the other by

determining how long she would continue searching unsuccessfully

for her preferred host before becoming willing to accept the less

preferred host upon encountering it. In an analogy to humans, one

can imagine trying to estimate the strength of a human’s

preference for chocolate over carrots in the following way. We

offer a woman the two items in alternation, without allowing

actual consumption. We record the time at which she first

expresses a willingness to eat the chocolate (‘‘accepts’’ the

chocolate). We then remove the chocolate (before she eats it)

and continue to offer the carrot every 30 min and record the time

at which she finally becomes hungry enough to accept that. The

length of time that passes from first acceptance of the chocolate to

first acceptance of the carrot provides a quantitative measure of

preference—the longer the time, the stronger the preference. We

call this period of time the discrimination phase (d-phase). It is not

necessary to know a priori that the woman prefers the chocolate. If

she had preferred the carrot, she would have accepted it first, and

we would have then continued by offering the chocolate every

30 min until it was also accepted.

We used this approach with butterflies, offering a female each

host in alternation and recording her response, without allowing

oviposition. We define acceptance as settling on the host, curling

the abdomen, extruding the ovipositor, and probing the underside

of a leaf for 3 s—at which time the female is removed from the

plant before laying any eggs. We define rejection as failing to

perform this complete behavioral sequence during a 2-min trial. In

practice, since hosts are offered at discrete points in time, we can

never know exactly when a female crosses the motivational
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threshold that causes her to switch from rejecting to accepting any

given host. Therefore, rather than reporting the exact d-phase, we

report the minimum d-phase. This is the time from the first

acceptance of the preferred host to the last rejection of the less

preferred host; we know that the motivational switch for the

preferred host happened at some point before the first accept and

that the switch for the unpreferred host happened at some point

after the last reject.

We tested between species host preference (Psem versus Ctor) using

live, naturally growing Psem plants and live, potted Ctor plants. We

tested females from 8 CC, 8 CP, 17 PC, and 11 PP families. Most

butterflies were tested multiple times, and we assigned females the

longest of their replicate minimum d-phases before averaging these

values across sisters within families. By convention, d-phases are

expressed in units of time relative to the first acceptance of Ctor.

Therefore, d-phases for females that accepted Ctor before Psem (i.e.,

who preferred Ctor) are positive values while those for females that

accepted Psem first are negative. The effect of cross type on these

values was analyzed in a one-way ANOVA.

We tested the within species host preference for immature,

budding Ctor versus mature, blooming Ctor using plants that we

grew from seed in a greenhouse at constant temperature. The two

types of Ctor were treated exactly the same way except that the

budding plants were germinated 1–2 wk later than the blooming

plants. We tested females from 3 CC, 3 CP, and 5 PC families. By

convention, d-phases associated with a preference for budding

plants are positive values while those associated with a preference

for blooming plants are negative. Data were compiled within

females and across sisters as described above for between species

preference.

Oviposition site height. We placed oviposition motivated

females, one at a time, at the top of a Psem plant ($5 cm above the

ground) and allowed them to freely explore the plant and choose

an oviposition site. We recorded the height of the chosen sites and

averaged first across replicates for individual females (anywhere

between 1 and 10 replicates) and second across sisters within

families. We tested females from 4 CC, 9 CP, 15 PC, and 13 PP

families. We used an ANOVA to examine the effect of cross type

on family averages.

Clutch size. We recorded the number of eggs laid by female

butterflies on Psem and Ctor during multiple, staged encounters

with the same, live plants used in the preference tests described

above. The number of eggs laid by a female on any particular host

is a function not only of the intrinsic physiological controls in

which we were interested but also of the amount of time that has

passed since she first became motivated to lay (the longer the time,

the more eggs she has matured and the more she will likely lay).

We therefore only considered clutches laid by females who had

recently become motivated to lay, or more precisely who had

rejected the host less than 1 h previously. If a female never rejected

a given host plant despite being given frequent opportunities to

lay, we considered her intrinsic clutch size for that host to be the

minimum size of all clutches laid on that host within 15 min of her

most recent oviposition event. We were forced to do this because

females with very small intrinsic clutch sizes almost never reject

their preferred host; it is difficult to catch them at a point when

they don’t have enough mature eggs in their abdomen to motivate

them to oviposit. Females with larger intrinsic clutch sizes will wait

longer periods of time after laying their previous clutch before

becoming motivated to lay again (an entire day in the case of Psem-

adapted females). We tested females from 7 CC, 9 CP, and 13 PC

families on Ctor and 6 CP, 9 PC, and 9 PP families on Psem. We

used an ANOVA to examine the effect of cross type on family

averages for each host separately.

Fitness effects of clutch size and preference for budding

versus blooming Ctor. We used a three-way factorial field

experiment to examine the effects of maternal clutch size and host

preference on the fitness of young larvae on Ctor. At each of 15

study sites, we identified and marked 14 young, still budding Ctor,

and 14 more mature, blooming Ctor. Approximately 10–14 d later

(when we would have expected eggs laid on the original plants to

begin hatching), we returned and placed neonate C and P larvae

(from TR and RM, respectively) on both types of plants in seven

groups of size 1, 1, 5, 5, 10, 15, and 25. By this time, the original

budding and blooming plants were blooming and senescing,

respectively. In summary, the two types of larvae were crossed

with the two types of plants and the seven group sizes for a total of

28 plants per site. We left the larvae in the field for ,10 d before

returning to count and weigh survivors. In cases where we found

the plants mostly or completely defoliated (n = 14 of 400 plants),

we guessed that absent larvae had actually left the plant in search

of food rather than having died. In support of this conclusion, we

sometimes found wandering larvae on non-experimental plants

located near defoliated test plants. We seldom, however, found

such wanderers on non-experimental plants located near test

plants with edible leaf material remaining. Since the emigration of

larvae from defoliated plants could bias analyses of survival, we

excluded such plants from our survival analyses. We do not expect

this behavior to bias analyses of weight since we could not detect a

difference between the mean weight of larvae remaining on a

defoliated test plants and the mean weight of wanderers collected

on nearby non-experimental plants (p = 0.3, unpublished data).

We used a multifactorial ANOVA to examine the effects of study

site, larval origin (C versus P), plant age (bud versus bloom), and

clutch size (1 versus 5 versus 10 versus 15 versus 25) on raw weight

and arcsine-transformed survival. We excluded interaction terms

from the final analyses because they were insignificant in

preliminary analyses.

Fitness effects of clutch size on Psem. We collected

naturally laid Psem-adapted eggs from RM, divided them into

multiple groups of 5, 10, 20, or 40 eggs, and allowed each group to

hatch, feed, and begin spinning a web on a small, freshly cut Psem

leaf in a 2 mL Eppendorf tube for 24 h. We then took the tubes

into the field and assigned each to a different Psem plant at each of

15 sites. Each site included 4–5 plants: 1–2 plants each with 5

neonate larvae, one plant with 10, one with 20, and one with 40

neonate larvae. Instead of transferring the larvae directly from the

Eppendorf tubes to their assigned plants, we wedged each tube

into the sandy soil beside its plant at an angle so that the opening

was pointing towards the plant and almost flush with the ground.

We then inserted the tip of one of the plant’s basal leaves into the

tube. This gave the larvae an opportunity to crawl out of the tube

onto the plant at their own pace, as the cut leaf in the tube dried

out (always within 12 h). We left the larvae there for 10 d before

returning to count and weigh the survivors. Raw survival

percentages and log-transformed weights were analyzed in

separate ANOVAs that included the effects of site and clutch

size (5 versus 10 versus 20 versus 40).

Fitness effects of oviposition site height on Psem. We

caught wild P females at RM and manipulated them to lay

clutches of ,20–50 eggs on one low leaf (,0–4 cm) and one high

leaf (,6–15 cm) from 40 naturally growing Psem plants in the field.

In most cases, the high and low clutches for a single plant were laid

by different females, but they never differed in size by more than

10 eggs. The Psem-adapted females readily laid on low leaves since

that is their preference. To trick them into laying on high leaves as

well, we pinned the leaves to the ground with a stick for the

initiation of oviposition, and then allowed them to spring back up
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after the clutch was complete. We checked the eggs in the field

every 2–3 d and recorded the date on which they hatched. We

used an ANOVA to estimate the effects of plant (replicate) and

level (low versus high) on development time (number of days to

hatching) for all plants that had surviving eggs in both the low and

high clutches (n = 17).

Adaptive Surface Estimation and Phenotype Simulations
Estimating the shape of the fitness surface. We used the

results of our field experiments to estimate the expected survival of

the offspring of females with particular combinations of host

species preference (Ctor versus Psem) and clutch size phenotypes.

First, we fit monotone cubic splines to the survival-by-clutch size

data collected on Ctor and Psem separately using the R function

smooth.monotone (see grey lines in Figure 5A and 5B, right-hand

panels). These give the expected survival of various clutch sizes on

each host. Second, we chose a tangent function to translate the

length of a female’s discrimination phase (her host preference) into

the probability of her choosing and laying her eggs on a particular

host species. In particular, given a female’s d-phase, d (in days),

Probability laying on Ctorð Þ~ tan 4dð Þz1ð Þ=2

Probability laying on Psemð Þ~1{Probability laying on Ctorð Þ:

We chose this function because it has the biologically realistic

property of transitioning rapidly from 0 to 1 for d-phases between

23 h and +3 h (Figure S3; see next paragraph). Finally, we

calculate the expected survival of a female’s offspring to be the

average of the expected survival of her clutch size on Ctor and the

expected survival of her clutch size on Psem, weighted by her

probability of laying on each respective host given her d-phase.

Rather than averaging the absolute survival probabilities on each

host, we used relative survival probabilities—relative to the

survival of the optimum clutch size for that host. We did this

because EPI is typically thought of as a decrease in hybrid fitness

relative to the parental types. The alternative surface based on

absolute survival probabilities is shown in Figure S4.

We consider the tangent function (described above and

illustrated in Figure S3) to be biologically realistic for the following

reason. Females search for host plants while flying using visual

cues [74]. Once they alight, they then decide whether or not to lay

eggs based on chemical cues. It is the latter decision that we

examine in this article and that we describe using the

discrimination phase. Whether or not a female will lay on the

host she prefers chemically thus depends on whether she alights on

it before the end of her discrimination phase (i.e., before she

becomes willing to accept the less preferred host). If she does, she

will lay her eggs and reset her motivational ‘‘clock’’ to the

beginning of her d-phase before starting her next flight search.

Edith’s checkerspot females alight on hosts frequently in nature

(often several per minute) and usually encounter both Ctor and

Psem regardless of which they prefer chemically [40,74,75]. In

preliminary tests we found the same to be true of within- and

between-host hybrid females (unpublished data). Thus, a butterfly

with a 3-h d-phase is highly likely to encounter her preferred host

within 3 h of initiating her search, and therefore highly unlikely to

ever lay on the less preferred host.

Placing female butterflies on the fitness surface. We

programmed a Bayesian MCMC to infer the distributions of clutch

size and host preference phenotypes of female butterflies based on

observed data from our oviposition behavioral assays. The ultimate

goal was to simulate realistic positions for CC, CP/PC, and PP

females on the adaptive surface (i.e., to simulate their oviposition

phenotypes) while taking the uncertainty in our observed data into

account. First, we assumed that clutch size and discrimination

phase were gamma and beta distributed, respectively. A beta

distribution, rather than a normal distribution, was chosen for the

discrimination phase because females with d-phases.1.5 d

sometimes died before finishing their tests, forcing us to truncate

all observed d-phase measurements at 1.5 d before estimating the

distribution. This should not affect our results since the probability

of laying on the less preferred host approaches zero well before d-

phases become as long as a day or two (previous paragraph, Figure

S3). Second, for the observed clutch size and d-phase data from a

given class of females, we programmed a Bayesian MCMC to walk

through the parameter space of the geometric and beta

distributions, spending the most time near parameters with high

probability given the data. Prior probabilities for the distribution

parameters were assumed uniform, and new parameter proposals

were made by drawing random, normally distributed deviations

from the current state. The variance of the normal distribution

from which these random deviates were drawn was adjusted such

that new proposals were accepted 20%–80% of the time. We

allowed the chain to run for 1 million generations and sampled it

every 1,000 generations once it had achieved stationarity. Third,

for each set of gamma and beta parameters sampled from the

MCMC, we randomly drew one clutch size phenotype and one d-

phase phenotype and plotted their position on the adaptive surface.

In essence, we simulated females of a certain type (e.g., CC, CP/

PC, or PP) by drawing oviposition behaviors from the distributions

that the Bayes MCMC simulation told us were mostly likely given

our observed data for females of that type.

Intrinsic Postzygotic Isolation
Larval growth and survival on Castilleja. To examine the

fitness of pure and hybrid larvae in a ‘‘neutral’’ host environment

that minimizes the ecological problems hybrids may face due to

intermediate phenotypes that are neither fully Psem-adapted nor

fully Ctor-adapted, we reared insects on Castilleja applegatei. We

chose Castilleja because separate analyses of mtDNA and nuclear

DNA suggest that it is the ancestral host genus of E. editha [39,68].

We reared 10 neonate larvae from multiple C, CC, CP, PC, PP,

and P families on cut C. applegatei stems standing upright in

Eppendorf tubes of water for 10 d and used an ANOVA to

examine the effect of cross type on log/arcsine transformed mean

weight/survival at the end of the experiment.

Other factors. We used a non-parametric Kruskal-Wallis test

to compare the viabilities of CC, CP, PC, and PP eggs laid in

captivity by the mothers mated as described under ‘‘Matings.’’ We

also examined variation in mean female teneral weight (a

surrogate for fecundity) and sex ratio among hybrid families that

produced adults in the summer of 2006 using an ANOVA and

Kruskal-Wallis test, respectively. To assess the fertility of various

types of individuals, we recorded the fertilization/viability rates of

the eggs that they parented. All E. editha eggs are bright yellow or

yellow-green when first laid. Unfertilized or inviable eggs remain

this color and never hatch. Fertilized and viable eggs change color

and become pink, purple, or brown within 48 h of development.

We recorded the color of eggs in the first clutch parented by

hybrid and pure mothers and fathers as either remaining yellow

(i.e., sterile/inviable) or changed. Our practice of mating same-

host hybrid females to different-host hybrid males and vice versa

prevented us from comparing color change in eggs laid by the two

types of hybrid parents directly. Instead, we used the color change

phenotype to compare the fertility of the hybrid parents to that of

pure, wild-caught individuals held in captivity over the same

period of time.
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Supporting Information

Figure S1 Early larval performance on Ctor (A) and
Psem (B). Pure and same-host hybrid insects grew and survived

at indistinguishable rates (compare C versus CC and P versus PP).

Different-host hybrids grew slightly more slowly on Psem, although

the effect was only significant when predators were excluded.

Colored bars show LS means 6 SEM. Numbers inside bars

indicate number of independent sibling groups tested. Capital

letters above bars show Tukey’s HSD levels for comparisons that

were significant.

Found at: doi:10.1371/journal.pbio.1000529.s001 (0.23 MB PDF)

Figure S2 No sign of intrinsic incompatibilities in
hybrids.Different-host hybrids showed no evidence of
reduced fitness in terms of egg viability, early larval
growth rate on a ‘‘neutral’’ host, adult female teneral
weight, sex ratio, or fertility. Plots show means 6 SEM for

various cross types. Both same- and different-host hybrid families

had mean egg viabilities of over 90% with no difference among

cross types (Kruskal-Wallis p = 0.2; data not shown). (A) Growth

rate of neonate larvae over a 10-d period on Castilleja applegatei.

Overall variation was significant when all six cross types were

compared (ANOVA p = 0.01), but no pairwise contrasts were

individually significant by Tukey’s HSD. The weak trend was for

one of the reciprocal different-host hybrid types to grow faster than

the others, rather than slower. (B) Teneral weight (weight at

eclosion) of females raised in captivity. Variation was significant

(ANOVA p = 0.0009). The trend is not indicative of different-host

hybrid-specific incompatibilities. (C) Sex ratio of individuals

reaching adulthood. Variation was marginally significant (Krus-

kal-Wallis p = 0.067). The trend was inconsistent with the presence

of different-host hybrid-specific incompatibilities. (D) Fertilization

rates of eggs in the first clutch parented by various types of insects.

The first two categories represent reciprocal crosses between same-

host hybrids and different-host hybrids. Mothers kept on ice for

more than 2 wk before mating were excluded. The last category

represents natural field matings between individuals from the same

population. Crosses between these two hybrid classes were just as

fertile as those between pure, wild-caught individuals (Kruskal-

Wallis p = 0.9). Our mating scheme prevented us from comparing

the fertility of different-host hybrids to that of same-host hybrids

directly.

Found at: doi:10.1371/journal.pbio.1000529.s002 (0.20 MB PDF)

Figure S3 The modeled relationship between the dis-
crimination phase (d-phase) and the probability of
laying on a particular host. Positive and negative d-phases

indicate a preference for Ctor and Psem, respectively. For a given d-

phase, d (in days), the probability of laying on Ctor was modeled as

(tan(4d)+1) / 2. It is biologically realistic that females with d-phases

longer than 3 h (|d|.3 h) are highly unlikely to lay on the less

preferred host.

Found at: doi:10.1371/journal.pbio.1000529.s003 (0.73 MB PDF)

Figure S4 Adaptive surface shown in terms of absolute
survival probability. This surface is the same as that shown in

Figure 6 except that its height reflects expected offspring survival

in absolute terms rather than expected offspring survival relative to

that of the optimal clutch size on each respective host (see

Methods).

Found at: doi:10.1371/journal.pbio.1000529.s004 (1.80 MB PDF)

Table S1 ANOVA tables from analyses of early larval
performance on Ctor.

Found at: doi:10.1371/journal.pbio.1000529.s005 (0.08 MB PDF)

Table S2 ANOVA tables from analyses of early larval
performance on Psem.

Found at: doi:10.1371/journal.pbio.1000529.s006 (0.08 MB PDF)

Table S3 ANOVA tables from analyses of larval perfor-
mance on mature Ctor.

Found at: doi:10.1371/journal.pbio.1000529.s007 (0.08 MB PDF)

Table S4 ANOVA tables from analyses of the effects of
foraging height on mature Ctor.

Found at: doi:10.1371/journal.pbio.1000529.s008 (0.09 MB

PDF)

Table S5 ANOVA tables from analyses of the effects of
foraging height on Psem.

Found at: doi:10.1371/journal.pbio.1000529.s009 (0.09 MB PDF)

Table S6 ANOVA tables from analyses of the effects of
oviposition behavior on offspring growth (A) and
survival (B) on Ctor.

Found at: doi:10.1371/journal.pbio.1000529.s010 (0.08 MB PDF)

Table S7 ANOVA tables from analyses of the effects of
female clutch size on offspring growth (A) and survival
(B) on Psem.

Found at: doi:10.1371/journal.pbio.1000529.s011 (0.07 MB PDF)

Table S8 ANOVA tables from analyses of the effects of
oviposition site height on offspring development time on
Psem.

Found at: doi:10.1371/journal.pbio.1000529.s012 (0.08 MB PDF)

Table S9 Summary of six studies of EPI in insects that
specialize on distinct host plants.

Found at: doi:10.1371/journal.pbio.1000529.s013 (0.07 MB PDF)

Text S1 Analyses of genetic variation among E. editha
populations that use Ctor and Psem at .400 polymor-
phic AFLPs.

Found at: doi:10.1371/journal.pbio.1000529.s014 (0.18 MB PDF)

Video S1 Oviposition site choice in a PP female
butterfly. Females whose parents were both adapted to Psem

are very deliberate in choosing oviposition sites near the ground.

In this typical example, a PP female is placed at the top of Psem

and immediately dips her antennae towards the leaf, signaling her

interest. Rather than laying right away, however, she then drops to

a lower leaf and eventually to the ground. After failing to find host

material on the ground she flies back to the top of the host and

repeats the routine. On her third attempt, she finally locates the

base of the plant and begins laying her eggs in an empty seed

capsule 1 cm above the ground. This type of exploratory behavior

results in the low oviposition site heights characteristic of Psem-

adapted butterflies.

Found at: doi:10.1371/journal.pbio.1000529.s015 (7.88 MB

MOV)

Video S2 Oviposition site choice in a PC female
butterfly. Females with one parent adapted to Psem and the

other adapted to Ctor do not usually take the time to explore their

host and instead lay their eggs at the point where they first contact

an acceptable host plant. In this example, a PC female is placed at

the top of Psem, immediately becomes interested, curls her

abdomen, and begins to lay her eggs. The lack of deliberate

oviposition site choice results in the moderate to high oviposition

site heights characteristic of most different-host hybrids and all

Ctor-adapted butterflies.

Found at: doi:10.1371/journal.pbio.1000529.s016 (2.42 MB

MOV)
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