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Abstract
Over the last few years many new genetic associations have been identified by Genome-Wide
Association Studies (GWAS). There are potentially many uses of these identified variants: a better
understanding of disease etiology, personalized medicine, new leads for studying underlying
biology, and risk prediction. Recently there has been some skepticism regarding the prospects of
risk prediction using GWAS, primarily motivated by the fact that individual effect sizes of
variants associated with the phenotype are mostly small. However, there have also been arguments
that many disease associated variants have not yet been identified so prospects for risk prediction
may improve if more variants are included.

From a risk prediction perspective, it is reasonable to average a larger number of predictors, of
which some may have (limited) predictive power, and some actually may be noise. The idea being
that when added together, the combined small signals results in a signal that is stronger than the
noise from the unrelated predictors.

We examine various aspects of the construction of models for the estimation of disease
probability. We compare different methods to construct such models, examine how
implementation of cross-validation may influence results, and examine which SNPs are most
useful for prediction. We carry out our investigation on GWAS of the Welcome Trust Case
Control Consortium. For Crohn’s disease we confirm our results on another GWAS. Our results
suggest that utilizing a larger number of SNPs than those which reach genome-wide significance,
for example using the lasso, improves the construction of risk prediction models.
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It is the hope that genome-wide association studies (GWAS) not only identify regions in the
genome (e.g. SNPs) that are associated with phenotypes, but also that the genetic variants
that are identified can contribute to (risk-)prediction models for those phenotypes. In some
GWAS publications there have been initial attempts to look at the predictive power of the
few identified “top-SNPs” [e.g. Zheng et al, 2008; Lin et al. 2009; Miyaki et al. 2009;
Myocardial Infarction Genetics Consortium. 2009]. A recent commentary suggested that
more and larger studies would help yield more effective prediction models [Kraft and
Hunter, 2009]. The results of Gail [2009] are in line with the commentary. In Evans et al.
[2009] it was investigated how models, combining marginal results for SNPs in a sensible
way, can be used to compute a prediction score. Wu et al. [2009] recently carried out a
similar experiment using Support Vector Machines. In our paper we take this several steps
further: (i) we use sparse regression models, which deal with correlation between SNPs, and
yield estimates of the probability of disease; (ii) by varying some aspects of the cross-
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validation we critically examine the effect of selecting significant SNPs in the same study as
on which the prediction models are constructed; and (iii) we evaluate one of the constructed
prediction models on an entirely different GWAS.

Most published GWAS have identified one to a few SNPs associated with a phenotype.
Further meta-analyses of GWAS studies with the same phenotype often identify additional
SNPs, but for most phenotypes the number of consistently confirmed SNPs is less than a
dozen. Exceptions are some continuous phenotypes, such as lipids, for which GWAS have
more power. The lack of power of GWAS suggests that there may very well be many more
SNPs associated with some phenotypes that have smaller effect sizes. It would be expected
that such SNPs are among the SNPs that have larger, but statistically insignificant, test-
statistics. Another argument for the existence of more SNPs that are associated with a
disease is that often the Q-Q plots for the P-values start showing deviations from the identity
(diagonal) well before the effects are significant. The International Schizophrenia
Consortium [2009] also combined large numbers of variants; in the current paper we are
exploring more systematically different ways to combine large numbers of variants.

Sparse regression methods, such as the lasso [Tibshirani, 1996] and the elastic net [Zou and
Hastie, 2005] are increasingly used in high-dimensional settings [Hastie et al., 2001]. The
advantage of those approaches is that in regression models they simultaneously carry out
variable selection, and provide estimates of the coefficients of the selected variables. In this
paper we explore the use of such methods for the construction of risk prediction models
using GWAS data. In Wu et al. [2009] the lasso is used for finding significant SNPs in
GWAS data. In Park and Hastie [2008] sparse regression methods are used to identify gene
× gene interactions in smaller genetic association studies. However, to the best of our
knowledge, sparse regression methods have not yet been used to construct prediction models
in GWAS to estimate the probability of disease and validate these probabilities on an
independent data set.

When constructing such models, it is important to keep the “training data” and “test data”
strictly separate. As such, we cannot start from the consensus list of disease associated
SNPs, as typically all data sets were used to obtain such a list. Instead we need to use the
training data to select the set of SNPs that will be used in constructing the prediction model
and the actual construction of that model. Additionally, the high bar that typically exists for
a SNP to be declared genome-wide significant (e.g. p < 10−7) is not necessary for a SNP to
be useful in risk prediction. In particular, a group of SNPs that have promising False
Discovery Rates, but are not genome-wide significant will likely make a positive
contribution to a risk prediction model, as some of these SNPs will predict, while the other
ones just add some noise.

Our experiments consist of two parts. In the initial phase we used the Welcome Trust Case
Control Consortium (WTCCC) GWAS data for several diseases with about 3000 controls
and 2000 cases [Welcome Trust Case Control Consortium, 2007], and split those in a
training and a test data set. Model selection (based on cross-validation) was performed on
the training data, and the selected model was evaluated on the test data. This paper contains
the results for the Crohn’s disease GWAS; the results for type 1 diabetes and type 2 diabetes
data are mostly similar; we refer to the results for these phenotypes in a few places. It should
be noted that Wu et al. [2009] used a Support Vector Machine approach for the WTCCC
type 1 diabetes data. Test data log-likelihood, receiver operator characteristic curves (ROC)
and the area under the ROC curve (AUC) are used to evaluate the models. In addition we
check whether estimated probabilities of “a subject being a case” correspond to the fraction
of subjects that are a case. Other methods for assessing risk models, such as positive and
negative predicted value and misclassification rate exist [e.g. Pepe 2003], though it has been
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argued that well calibrated probabilities are of critical importance in individual risk
prediction [Cook, 2007].

As a confirmation experiment, we used the complete WTCCC Crohn’s disease data,
consisting of UK subjects, as our training data, and the National Institute of Diabetes and
Digestive and Kidney diseases (NIDDK) GWAS data on Crohn’s disease, consisting of US
subjects, as our test data. We should note here that the NIDDK data was genotyped on the
Illumina platform, and the WTCCC data on the Affymetrix platform, thus to apply the
WTCCC derived model to the NIDDK data we needed to impute the Affymetrix SNPs on
the NIDDK data.

Overall our results suggest that prediction models (when applied to GWAS cohort data) like
the one we develop may provide well calibrated risk estimates. But the predictive value
overall is somewhat limited, as demonstrated by the overall AUC of these risk models; they
may be most useful for designing trials, and weighing risk-benefits for preventive
treatments. For individual risk prediction the genetic factors would presumably be more
useful if combined with other established risk-factors.

METHODS
DATA PROCESSING

We obtained GWAS data from the Welcome Trust Case Control Consortium [Welcome
Trust Case Control Consortium, 2007], and data from the NIDDK GWAS on Crohn’s
disease [Duerr et al. 2006, Rioux et al 2007] from dbGaP. We refer to these data sets as the
WTCCC and the NIDDK data, respectively.

WTCCC DATA
The WTCCC data consists of 2000 cases for each of seven diseases and 3000 shared
controls. The subjects in this study, from the UK, were genotyped on the Affymetrix 5.0
platform. Separately for the Crohn’s disease data, the type 1 diabetes data, and the type 2
diabetes data, we removed all samples with call rate smaller than 0.95, removed SNPs that
had a Hardy Weinberg P-value smaller than 10−5, SNPs that had more than 10% missing
data, SNPs that were in the WTCCC list of “bad SNPs” that was provided with the data, and
SNPs with minor allele frequency smaller than 0.05.

The small amount of remaining missing data was imputed using a probabilistic imputation
based on a three SNP sliding window. That is, if SNP i was missing for participant j, we
calculated the probability distribution of SNP i given the values of SNP i − 1 and i + 1 (for
the appropriate case or control portion of the data) and imputed a random realization of this
probability distribution. This imputation was quick and easy, and allowed us to carry out
initial experiments using multiple imputation (not reported here). Other more sophisticated
imputation methods, such as MACH [Li et al., 2006] could have been used as well. Given
the small amount of missing data this would not have had any qualitative effect on our
results.

NIDDK DATA
The NIDDK GWAS consists of 792 cases of Crohn’s disease and 932 controls. These
subjects, Caucasians in the US, were genotyped on the Illumina HapMap300. As for the
WTCCC data, we removed subjects with large percentages of missing data, and SNPs that
had high missingness rates, or very small Hardy Weinberg P-values. SNPs with small minor
allele frequency were retained.

Kooperberg et al. Page 3

Genet Epidemiol. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



All prediction models that were applied on the NIDDK data used (a subset of) the 3000
marginally most significant SNPs in the WTCCC Crohn’s disease data. As most of the SNPs
that were part of the Affymetrix 5.0 panel of SNPs are not part of the HapMap300 panel of
SNPs, we used MACH [Li et al., 2006] to impute the data. In particular, we used ten sets of
probabilistic inputs based on the CEPH HapMap data, using MACH options --greedy --
phase. Since some of the SNPs in the prediction models may be in the same haplotype
blocks, we did not want to impute either the “best” imputation, or use marginal posterior
probabilities, as those approaches do not acknowledge joint imputation probabilities
between two SNPs. The results reported in this paper are based on the average posterior
probability of a subject being a case over the ten imputed data sets.

PREDICTION METHODS
Let Yi, be a binary indicator for the phenotype of subject i = 1, … , n, and let Xij be the value
of SNP j = 1, … , p for subject i, coded as 0,1,2 for the number of minor alleles. We write Y
= (Y1, … , Yn)t, Xj = (X1j, … , Xnj)t, and xi = (Xi1, … , Xip)t. All approaches that we consider
are carried out on data sets of the p most significant SNPs (p ≤ 3000). These most
significant predictors are consistently pre-selected on just the training data, and this selection
is repeated each of the cross-validation steps. (As the results we report here typically do not
change beyond p ~ 2000 and computations are getting increasingly slow, we did not
systematically investigate p > 3000.) For the remaining, assume that we have ordered the
SNPs, and that X1 is the marginally most significant SNP, X2 the next most significant one,
and so on.

Since for most phenotypes that are studied in GWAS the signal is small, and often other risk
factors are known, we focus on modeling the probability that a subject is a case using
logistic regression, rather than looking at classification. We also believe that a probabilistic
risk estimate can convey more subtilty than a simple classification. If a classification rule is
needed probabilistic estimates can be thresholded taking miss-classification costs in
consideration. The simplest approach to model the probabilities is to fit a linear logistic
regression model on the p pre-selected SNPs:

Traditionally parameters in this model are estimated using maximum likelihood. When large
numbers of predictors are used, the logistic regression model is known to overfit the data.
Instead, we consider the lasso and the elastic net, two examples of penalized regression
methods. Let ℓ(β; Yi, xi, i = 1, … , n) be the logistic log-likelihood. The lasso and elastic net
estimates of β are the maximizers of

and
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respectively, where λ1 and λ2 are estimated using cross-validation. Both of these approaches

effectively carry out model selection, as the l1 penalty ; will set many of the
coefficients βj to 0. The potential advantage of the elastic net is that when many of the

predictors are highly correlated the l2 penalty  encourages averaging of multiple
correlated predictors, while the lasso would select just a single predictor. The elastic net
penalty can be viewed as a combination of the lasso penalty and the l2 penalty form ridge
regression, an early penalized regression method [Hoerl and Kennard, 1970]. We applied
both approaches, using the R [R Development Core Team, 2009] package glmnet. The
implementation of this package has the advantage that computation time does not
significantly increases even when 1000s of values of λ1’s are used in the lasso, making the
optimization over this parameter using cross-validation straightforward.

In addition to these penalized regression methods, we considered traditional (stepwise)
fitting of logistic regression models. In particular, we considered fitting models of the p
marginally most significant predictors (referred to as “GLM”), fitting models of the p
marginally most significant predictors, omitting any predictor that is correlated with
correlation larger than R = 0.9 to a more significant predictor (referred to as “filtered
GLM”), stepwise addition of predictors (considering the top p marginally most significant
SNPs) using AIC and BIC to select the number of SNPs (referred to as “stepwise GLM-
AIC” and “stepwise GLM-BIC”). The parameter p for GLM and filtered GLM was selected
using cross-validation of the log-likelihood. We investigated alternative cut-offs for the
correlation between predictors for the filtering and found that the actual value has little
influence over a range of about (0.7, 0.95).

CROSS-VALIDATION
There are two model selection steps in our procedure: selecting the parameters λ1 (lasso and
elastic net), λ2 (elastic net), and p (stepwise glm), and pre-selecting the marginally most
significant SNPs that will be considered by the modeling approaches. The parameters were
all selected using 10-fold cross-validation on the training data. We considered three
approaches to pre-selecting the marginally most significant SNPs:

1. Pre-select those SNPs based on the training and test data combined.

2. Pre-select those SNPs based on the complete training data.

3. Re-select those SNPs for each cross-validation step, using only nine-tenth of the
training data that are used to fit the model. After the parameters are selected, the
SNPs are once more selected using the complete training data, and the final model
is estimated using the complete training data.

In the model selection literature the consensus is that such a pre-selection of SNPs should
only use the data that is trained for in a particular validation run (as in Approach 3), and that
it should not include the 10% of the training data used for validation (as in Approach 2), and
definitely not the test data (as in Approach 1) [Hastie et al. 2001]. Since we noted that each
of these approaches to pre-selection have occurred frequently in the GWAS literature we
wanted to quantify the magnitude of the problem that using Approaches 1 or 2 causes. For
example, in Evans et al. [2009] the AUC values in their Table 1 appear to follow the strict
selection rules of Approach 3, but the AUC values in their Table 2, which include variants
that were identified in the same study as the one on which they are evaluated, would be
considered closer to Approach 1. The International Schizophrenia Consortium [2009] used a
separate training and test set when constructing their model, more in line with Approach 2.
The model developed in Myocardial Infarction Genetics Consortium [2009] is a mixture of
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Approaches 1 and 3, as some of the included variants were identified in the study on which
the risk model was evaluated, while others were identified in other studies.

EVALUATION
For each of the models, we evaluated the predicted probability of disease using the logistic
regression model for the selected model on test data. We summarize these fitted
probabilities using test data log-likelihoods, receiver operating characteristic (ROC) curves,
and the area under the curve (AUC). For Figures 5 and 7 we fitted a generalized additive
model with smoothing splines for logistic regression, using default settings in the R package
gam, of fitted probability on case-control status.

RESULTS
After the initial data processing described in the METHODS section, there were 4686
subjects (1748 cases, 2938 controls) in the WTCCC data, which we divided in a training set
of 2808 subjects (1045 cases, 1763 controls) and a test set of 1878 subjects (703 cases, 1175
controls).

CROSS-VALIDATION AND THE SELECTION OF SIGNIFICANT PREDICTORS
In Figure 1 we show the log-likelihood for the lasso with the three approaches to pre-select
the most significant predictors in conjunction with cross-validation for the WTCCC Crohn’s
disease data. For Approach 1 all training and test data is used to pre-select the most
significant predictors. The effect of this is that the test data is more similar to the training
data than would be the case for new independent data. As a result, when the number of SNPs
considered increases substantially, even the test results show overfitting. This overfitting,
which is very apparent when the number of SNPs considered is larger than 100, is already
evident from comparing to Approach 3 when the number of SNPs reaches 10. This result
raises concern regarding predictive models for GWAS, where the same data is used to
discover the SNPs and to construct the prediction models, even if only the “top established
hits” are used.

Approach 2 uses the complete training data but not the test data to pre-select the most
significant SNPs. As a result, the 90% learning part of the training data during cross-
validation is more similar to the 10% validation part of the training data than to the test data.
The effect is that because of this similarity between the validation data and the training data
the selected model is larger than it is in Approach 3 (i.e. the λ1 in the lasso is smaller than
what it is in Approach 3), as a result the training data overfits more, the model is too big,
and the test data, which is more different from the training data, performs worse. Since the
cross-validation results are used to select the model size, this would results in a too complex
prediction model being selected.

Approach 3 pre-selects the top SNPs for each cross-validation fold. The effect of this is that
the validation 10% of the data is as (dis)similar to the training data as the test data is to the
training data. The results for Approach 3 start to deviate from Approach 2 when more than
about 50 SNPs are considered. As a result we do not get the incorrect picture that model fits
keep on improving with increased model size (such as for Approach 1), or overfitting (such
as for Approach 2).

When we compare the test data log-likelihood results that are displayed in Figure 1 with
what we would obtain if we used the test data to select the best parameters after the most
significant SNPs are pre-selected on the complete training data we find that the difference of
this approach, which would generally be considered “cheating”, with the “correct” Approach
3 is much smaller than the differences between Approaches 1 and 3 or the differences
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between Approaches 2 and 3 (data not shown), suggesting that incorporating pre-selection of
the significant SNPs in cross-validation is in fact very important.

CHOICE OF MODELING METHOD
When larger numbers of predictors (SNPs) are used to model a regression outcome, sparse
regression methods, such as the lasso [Tibshirani, 1996] and the elastic net [Zou and Hastie,
2005] can be used both to carry out model selection, and for estimation of the parameters in
a (generalized) linear model. These sparse regression methods are alternatives to standard
generalized linear models (GLM), where model selection is implicitly included by either
restricting the generalized linear model to the most significant SNPs, or by using stepwise
regression, where at each step of the algorithm the most significant SNP is selected for
inclusion in the model.

We obtained prediction models using the lasso, the elastic net, GLM, filtered GLM, and
stepwise GLM on a training data set of 60% of the WTCCC data. When we applied these
models to the remaining 40% of the WTCCC data as test data, leading to test-sample
validated predictions, we noted that the lasso and the elastic net gave very similar results,
both with respect to the test data log-likelihood and area under the curve (AUC) (Table 1
and Figure 2; the results for the diabetes data are similar).

For Crohn’s disease the results for the lasso compare favorably to a standard GLM which,
when using the best 18 SNPs selected by cross-validation, had a test data log-likelihood of
−1223.1 and an AUC of 0.606. When highly correlated SNPs were omitted a larger model
of 26 SNPs (out of the top 58 SNPs) was selected with a log-likelihood of −1224.9 and an
AUC of 0.626. A standard stepwise algorithm using the Akaike Information Criterion (AIC)
selected 38 SNPs and had a log-likelihood of −1287.7 and an AUC of 0.631, and using the
Bayesian information Criterion (BIC) selected 14 SNPs and had a log-likelihood of −1236.3
and an AUC of 0.614. (The maximum number of SNPs considered in the stepwise
procedures was 100; when we used a larger maximum virtually no SNPs beyond number
100 were selected.) The AIC selected model has a much worse likelihood because on a few
of the test samples some of the correlated SNPs that perform well in the training data yield
very bad results. (a few estimated probabilities of a cases close to 0 “sink” the log-likelihood
which is all that AIC uses to select the model). This does not effect the AUC, which is
comparable to results obtained by the lasso. The filtered GLM, which could be considered as
a very simple regularization method for the regression, performs the best of the GLM
methods, considering both AUC and log-likelihood.

For most of the elastic net models displayed the λ2 penalty parameter selected by cross-
validation was 0; for models using these number of SNPs the elastic net results are thus the
same as the lasso results. For the few models that were different between the lasso and the
elastic net the differences in log-likelihood were small, and the differences in AUC
negligible. Therefore we do not display the results obtained using the elastic net. Use of the
lasso and cross-validation limits the amount of over-fitting, but while the test-data results
flatten off when more than 100 SNPs are considered, the training data results still improve,
suggesting some over-fitting (Figure 2). For type 2 diabetes there is much less signal in the
WTCCC data. The results for type 1 diabetes are somewhat better than for Crohn’s disease
because of the strong dependence of type 1 diabetes on the HLA genes. In fact, on the test
data for type 1 diabetes we achieved an AUC of 0.88, very similar to the AUCs of between
0.87 and 0.89 that Wu et al. [2009] achieved on the validation part of the training data using
Support Vector Machines.

The number of SNPs that have non-zero coefficients in the lasso models levels off at about
175 for Crohn’s disease (Table 1). When 100 of the top SNPs were considered as predictors,
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33 ended up having nonzero coefficients in the lasso models. A paired t-test on the
likelihoods of the test set, suggests that the model where the top 100 SNPs were considered
was significantly better than the model where the top 25 SNPs were considered (p ~ 0.025).
While in meta-analysis with other Crohn’s disease data sets such a number of disease
associated SNPs in GWAS have been identified, this is a much larger number than what was
identified using just the WTCCC data. Similar results were obtained for the WTCCC data
for type 1 and 2 diabetes. An advantage of the lasso over other machine learning techniques,
such as support vector machines, is the effective selection of SNPs when some parameters
corresponding to SNPs get set to zero. In Figure 3 we display for several of the lasso models
which of the SNPs that were considered were used with nonzero coefficients, and which
SNPs were not used. We note that most SNPs used in models where fewer SNPs are
considered are also used in the models where more SNPs are considered, as is evident from
the vertical stripes in Figure 3. Some of the highly significant SNPs are not used in a
prediction model: for example, the column for SNP 5 is completely yellow, indicating that
this SNP is not used in any model. Typically these SNPs are highly correlated with more
significant SNPs. (For example, SNP 5 has correlation larger than 0.99 with SNP 4.) On the
other hand, a few SNPs that are less significant are used: for example three SNPs with ranks
larger than 500 have nonzero coefficients. These SNPs maybe less significant in marginal
models, but are more significant in models where the other SNPs are already included.

Receiver Operating Characteristic (ROC) curves based on the test data also improve until
approximately 100 SNPs are used for Crohn’s disease (Figure 4) and type 1 diabetes. For
type 2 diabetes there is no improvement after about 5 SNPs.

CALIBRATION OF PREDICTION PROBABILITIES
In Figure 5 we show the results of a smoothed regression estimate of the fraction of the data
that is a case as a function of the estimated probability. We would like the curves for the test
data to follow the dashed diagonal; if there was no signal in the data the curves would be
horizontal. For the lasso model considering 100 SNPs, and the model considering 2000
SNPs this is the case for the test data, while the curves for the training data become much
worse when the number of SNPs that is considered increases. The WTCCC data is case-
control data, but we here treat it as cohort data, which is reasonable as both cases and
controls are samples of the UK population of cases and controls (be it obtained in different
ways). As such, the “incidence” in this data is 40% by design. The population incidence in
the US is between 1 in 500 and 1 in 1000; with different population probabilities the axes in
Figure 5 would both be rescaled, but the angle of the curve would remain unchanged. To
practically use a prediction model, we would want to combine this prediction model with
established risk factors, such as age, ethnicity, smoking, and family history. A prediction
model using genetics could be seen as a refinement of the family history risk factor.

APPLYING A MODEL OBTAINED FROM ONE GWAS TO ANOTHER POPULATION
We applied the results from the lasso on the WTCCC data to the data from a GWAS on
Crohn’s disease carried out by the NIDDK. While the populations for both GWAS studies
are Caucasian, the population for the WTCCC GWAS is from the UK, and the one for the
NIDDK GWAS from the USA. There are also many technical differences between these two
GWAS; for example, since the NIDDK data were generated on a different platform,
genotypes were imputed. See the methods section for details. Figure 6 compares the AUC
for models considering different numbers of SNPs for the test data part of the WTCCC data
and the NIDDK data. We note that, surprisingly, the AUC for the NIDDK data is larger than
for the WTCCC data. Figure 7 shows the results of a smoothed regression estimate of the
fraction of the data that is a case as a function of the estimated probability for models
considering 100 SNPs, arguably the best model size for the WTCCC data. We note that the
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probabilities appear well calibrated. (In fact, the models using both 50 and 250 SNPs
appeared even better calibrated.)

DISCUSSION
We believe the results from our experiments on three of the diseases studied in the WTCCC
GWAS (using a 40% test sample for validation) and full test data from the NIDDK Crohn’s
disease GWAS convincingly support the feasibility for constructing multi-SNP risk models
from GWAS (albeit with modest predictive strength). These models include SNPs that
would have failed a genome-wide significance test. We obtained similar results for the
WTCCC GWAS of type 1 diabetes and type 2 diabetes, suggesting that our results are
generalizable to other diseases.

Our model building strategy incorporated several important but generally accepted statistical
components.

1. The genotyped SNPs were first filtered with respect to missingness, Hardy-
Weinberg equilibrium, and minor allele frequency.

2. Smaller numbers of SNPs <3000 were pre-selected for more model building; this
step controls the variability of subsequent regression analysis.

3. The penalized regression modeling (e.g. lasso) incorporates variable selection and
estimation properties that further controls the variability of the risk estimates.

4. To avoid models which are overly optimistic “the winners curse” (with too many
SNPs ) we used cross-validation of the entire model building process, including the
pre-selection of the larger number of SNPs that are considered by the penalized
regression modeling, to obtain relatively unbiased estimates of prediction error.

In other words, our GWAS risk model statistical recipe includes a small number of
ingredients: quality control, variance control, well structured SNP combinations and
prediction optimism adjustment via cross-validation.

We believe that applying the model fit on the WTCCC GWAS to the NIDDK GWAS
provides a strong confirmation of our approach because of the differences between the two
studies: (i) the WTCCC GWAS and NIDDK GWAS were carried out on different
genotyping platforms, so that the NIDDK prediction is for more than 90% based on imputed
SNPs; (ii) both studies were carried out on different populations, the WTCCC GWAS was
carried out in the UK, the NIDDK GWAS within the US; (iii) there is no information
whether other important characteristics, such as disease adjudication for the cases and risk
profile of the controls, was comparable. Notwithstanding these differences, the estimated
probabilities from the WTCCC GWAS derived model, calibrated well on the NIDDK
cohort. It has been argued that whether a probability estimate is well calibrated is more
important for individual risk prediction than a focus on classification methods or AUC
[Cook, 2007].

The predictive ability of the models that we derive, as measured by the area under the curve
(AUC) is modest and the greatest utility of these models is probably for risk calculation in
research studies. However, we should put that in perspective in that these genetic factors can
be used in addition to already established other risk factors. Also, many frequently used risk
prediction models have modest AUCs. For example, the often used Gail model for
prediction of breast cancer risk [Gail et al. 1989] has an AUC of only about 0.58-0.6
[Rockhill et al., 2001], nevertheless it is used frequently for identifying risk groups for
research studies and even sometimes for individual risk prediction, see for example
www.cancer.gov/bcrisktool.
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Constructing risk prediction models with many predictors requires some form of
regularization, as well as careful model selection using, for example, cross-validation. The
lasso and the elastic net achieve this in an automated way, but the relatively good
performance of the filtered GLM suggests that even some simpler regularization can do a
decent job. The lack of regularization in (unfiltered) GLM and the less careful model
selection using stepwise GLM can sometimes lead to less impressive results.

We think the success of the lasso algorithm for risk prediction in GWAS is not surprising.
The performance of the lasso and several variants has been studied in considerable
theoretical detail in the statistics literature. For instance, in early work, Donoho and
Johnstone [1994] showed near-minimax risk of the predictions for case of orthogonal
predictors. And while orthogonality is not true for GWAS SNPs (since p > n) there is
typically small correlation between SNPs that are not close together in the genome.

Theorem 2 in [Zou and Hastie, 2005] implies that the elastic net is a stabilized version of the
lasso. It also suggests that if the predictors that are considered are uncorrelated the elastic
net solution should be similar to the lasso. Thus, the observation that most of the top SNPs
in a GWAS are fairly uncorrelated explains the fact that the elastic net and the lasso perform
equivalently in our experiments.

More recently, mathematical studies have shown success of the adaptive lasso algorithm
[Zou, 2006], which adaptively weights the penalty function based on initial estimators of the
regression coefficients. Such a strategy directly relates to our pre-selection of a smaller
number of SNPs to include in the regression based on univariate regression p-values. As the
sample size gets large, good performance of the procedure (for both correctly selecting
SNPs associated with outcome and prediction error) is obtained if the SNPs that are
associated to the phenotype have low only correlation to those SNPs that are not associated
with the phenotype. We believe this is a reasonable assumption for most SNPs in GWAS.

We also establish that to get unbiased prediction results it is critical to have a strict
separation of training and test data: cases in the test data should not even be used to identify
the most significant SNPs. In estimating odds ratios related to the most significant SNPs this
effect is generally accepted as the “winners curse” [Zöllner and Pritchard, 2007; Zhong and
Prentice, 2008]. Unfortunately, in risk prediction models we have noted that many GWAS
publications publish small “prediction models” on the hand-full of SNPs implicated in the
same publication.
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Figure 1.
Log-likelihood for the WTCCC Crohn’s disease data using three different ways to carry out
the pre-selection of significant SNPs in relation to the cross-validation. The training data
log-likelihood was rescaled by a factor of 1878/2808 to be on the same scale as the test data
log-likelihood.
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Figure 2.
Log-likelihood and AUC for the WTCCC Crohn’s disease data for prediction models for test
and training data. The training data log-likelihood was rescaled by a factor of 1878/2808 to
be on the same scale as the test data log-likelihood. Note that not all SNPs considered have
nonzero coefficients, see Table 1. The log-likelihood for stepwise GLM using AIC (GLM-
AIC) is −1287.7. The insert figure at the left bottom vertically expands the curves for the
models with 100 SNPs or less.
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Figure 3.
Which SNPs are and are not used with nonzero coefficients for the lasso model and other
prediction models for the WTCCC Crohn’s disease data. The SNPs are ordered on the
horizontal axis by significance. The vertical stripes suggest that frequently the same SNPs
are selected.
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Figure 4.
ROC curves for the WTCCC Crohn’s disease data for prediction for lasso models
considering different numbers of SNPs. The AUCs for these models are displayed in Table
1.
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Figure 5.
Smoothed estimates of the probability of being a case as a function of the predicted
probability of being a case with 95% confidence intervals for the WTCCC Crohn’s disease
data. The steeper curves for the training data suggest some overfitting, while the test data
appears better calibrated.
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Figure 6.
Comparison of test data AUC for the NIDDK and WTCCC data. The model for the NIDDK
data is trained on the complete WTCCC data, the model for the test part of the WTCCC data
is trained on the training part of the WTCCC data.
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Table 1

Number of SNPs used in the prediction models with non-zero foefficients, log-likelihoo, and AUC (area under
the curve) for the test data (n = 1878: 1175 controls and 703 cases) for the WTCCC Crohn’s disease data using
the lasso.

method SNPs used Log-likelihood AUC

no SNPs used 0 −1241.77 0.500

GLM 18 −1223.12 0.606

filtered GLM1 26 −1224.94 0.626

stepwise GLM AIC 38 −1287.68 0.631

stepwise GLM BIC 14 −1236.35 0.614

lasso 1 top SNPs considered 1 −1239.33 0.528

lasso 2 top SNPs considered 2 −1231.84 0.551

lasso 5 top SNPs considered 4 −1232.09 0.569

lasso 10 top SNPs considered 6 −1232.71 0.568

lasso 25 top SNPs considered 14 −1207.98 0.612

lasso 50 top SNPs considered 25 −1197.59 0.630

lasso 100 top SNPs considered 33 −1193.20 0.637

lasso 250 top SNPs considered 91 −1196.24 0.634

lasso 500 top SNPs considered 155 −1195.61 0.635

lasso 1000 top SNPs considered 176 −1195.04 0.636

lasso 2000 top SNPs considered 177 −1194.78 0.637

1
For filtered GLM SNPs with correlation larger than 0.9 with a more significant SNP were omitted. The highest rank SNP among the selected

SNPs for filtered GLM was 58.
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