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Abstract
In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms
(HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed
to explore whether improvements in the remote sensing detection of the Florida Red Tide was
possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two
pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a
function of chlorophyll concentration) and a Bio-optical Technique (using particulate backscatter
along with chlorophyll concentration). The long-term evaluation of the new multi-algorithm method
was performed using a multi-year MODIS dataset (2002 to 2006; during the boreal Summer-Fall
periods – July to December) along the Central West Florida Shelf between 25.75°N and 28.25°N.
Algorithm validation was done with in situ measurements of the abundances of K. brevis; cell counts
≥1.5×104 cells l−1 defined a detectable HAB. Encouraging statistical results were derived when either
or both algorithms correctly flagged known samples. The majority of the valid match-ups were
correctly identified (~80% of both HABs and non-blooming conditions) and few false negatives or
false positives were produced (~20% of each). Additionally, most of the HAB-positive identifications
in the satellite data were indeed HAB samples (positive predictive value: ~70%) and those classified
as HAB-negative were almost all non-bloom cases (negative predictive value: ~86%). These results
demonstrate an excellent detection capability, on average ~10% more accurate than the individual
algorithms used separately. Thus, the new Hybrid Scheme could become a powerful tool for
environmental monitoring of K. brevis blooms, with valuable consequences including leading to the
more rapid and efficient use of ships to make in situ measurements of HABs.
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1. Introduction
A host of negative impacts can result when algal concentrations exceed background levels
particularly when the algal species are capable of producing toxic substances, often know as
“harmful algal blooms” (HABs) or as “red tides” (Smayda 1997a;1997b). Due to the apparent
worldwide increase of HABs over recent years, the study of the possible effects of certain
HABs on human health has spurred public attention from the media and society at large (e.g.,
Fleming and Laws, 2006;Schrope, 2008).

The West coast of Florida (Figure 1) often experiences severe HABs caused by the toxic
dinoflagellate, Karenia brevis, which produces potent neurotoxins called brevetoxins
(Steidinger, 2009). Human health can be effected during K. brevis blooms if brevetoxin-
contaminated shellfish are consumed and/or the aerosolized toxin is inhaled (Kirkpatrick et at.,
2004;Fleming et al., 2007). When present, blooms of K. brevis may also poison sea life, such
as seabirds, fish and marine mammals (Landsberg, 2002;Shumway et al., 2003). Serious
localized economic losses have also been linked with the “Florida Red Tide” (Hoagland et al.,
2009). Because of the recurring and undesirable consequences caused by K. brevis blooms,
monitoring of water quality for the occurrence of HABs is a continuing and pressing need in
this region, and thereby a fundamental requirement for mitigation efforts and sustainable
resource management (Dyble et al., 2008;Heil and Steidinger, 2009).

Improved capabilities for monitoring HABs with high temporal and spatial resolution have
long been desired (McCluney, 1974; Murphy et al., 1975). Indeed, there is a widespread interest
in the ability to locate and forecast HABs in the world’s coastal areas (e.g., Sacau-Cuadrado
et al., 2003; Olascoaga et al., 2008). Early warning systems using autonomous underwater
vehicles, prototypes of sentinel instruments, real-time monitoring, and other approaches such
as moorings, profiling floaters, drifting buoys, and sophisticated numerical modeling have all
added high-quality contributions to traditional environmental research and monitoring efforts
(e.g., Lee et al., 2005; Robbins et al., 2006). However, most in situ monitoring programs are
affected by spatial and temporal biases due to sparse non-uniform coverage. Thus, many
questions regarding the origin and development mechanisms of the Florida Red Tide (and other
HABs elsewhere) remain unanswered (Tester et al., 1993, Walsh and Steidinger, 2001, Brand
and Compton, 2007).

Since their inception, satellites carrying ocean color instruments proved to be a valuable
complementary tool for synoptically monitoring trends of oceanographic features associated
with K. brevis blooms (e.g., Haddad, 1982). Throughout the last decade, an analyst-dependent
HAB Forecasting System (http://tidesandcurrents.noaa.gov/hab) has been used by the National
Oceanic and Atmospheric Administration (NOAA) to detect potential blooms of K. brevis in
the Gulf of Mexico using data of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS;
McClain et al., 2004). In short, the conceptual basis of this “Operational Method” lies in using
satellite-measured chlorophyll (Chl) anomalies computed relative to the average of the
previous two months (with a window of two weeks to the start of the mean calculation); an
anomaly of 1 mg m−3 indicates a likely increase of 10×104 cells l−1 in the concentration of K.
brevis (Stumpf et al., 2003; Tomlinson et al., 2004; 2009).
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More recently, two other satellite-based algorithms have also shown promise at the remote
detection of K. brevis blooms. Both are applied to single images, therefore avoiding the use to
construct a reference field. The Empirical Approach, introduced by Carvalho (2008) and
Carvalho et al. (2010), identifies HABs when the magnitude of the satellite-measured water
leaving radiance (LwSAT(λ~550)) is lower than the value of modeled total scatter
(bMOREL(550); Morel, 1988), as a function of satellite-measured Chl. The Bio-optical
Technique, developed by Cannizzaro (2004) and Cannizzaro et al. (2008), employs a similar
approach but uses two independent criteria that should occur simultaneously for indicating a
pixel as HAB-positive: the satellite-measured Chl value must be high (≥1.5 mg m−3) at the
same time as the value of a more highly-derived satellite product, i.e., the particulate backscatter
(bbpSAT(λ~550)), should be less than the calculated value for this product using Morel
(1988) model (bbpMOREL(550)). In both algorithms, pixels not satisfying these conditions were
classified as HAB-negative cases. A similar cell count threshold was used to define a detectable
HAB in the identifications of the Empirical and Bio-optical algorithms: ≥1.5×104 and
≥1.0×104 cells l−1, respectively; samples containing fewer cells than these thresholds were
classified as non-bloom cases.

These two algorithms were based on the same reference wavelength, i.e.,λ~550nm. While the
Bio-optical Technique was developed with a shipboard optical dataset but tested originally
with one SeaWiFS image, which has λ=555nm as its closed band (Cannizzaro et al, 2008), the
Empirical Approach was developed using data from MODIS (MODerate Resolution Imaging
Spectroradiometer; Esaias et al., 1998) where the closest band is centered at λ=551nm. At these
wavelengths, total absorption is small and bbp(λ~550) is the major attenuation facto allowing
factor allowing one to estimate bbp(λ~550) from Lw(λ~550) measurements ( Pope and Fry,
1997; IOCCG, 2006).

In a preliminary investigation, Carvalho (2008) demonstrated that the Empirical Approach was
able to produce spatially-coherent outcomes comparable to the HAB detection produced in the
original Bio-optical Technique application of Cannizzaro et al. (2008) – a field-verified bloom
of K. brevis at the end of August 2001 was successfully identified in a multi-sensor case of
study using both algorithms applied to data of both SeaWiFS and MODIS. The application of
the Bio-optical Technique to a long-time series of SeaWiFS data did not produce persuasive
results (Hu et al., 2008), but this technique has subsequently been successfully applied to
MODIS data in conjunction with data from three ~5-day cruises in 2005 and 2006 (Cannizzaro
et al., 2009). In the study of Carvalho et al. (2010), an analysis of the Bio-optical Technique
was carried out using a nearly five-year MODIS dataset from 2002 to 2006; results suggested
that this technique could perform well provided the satellite dataset was carefully quality
controlled and considering data distribution with seasonal and latitudinal restrictions.

Carvalho et al. (2010) also completed a long-term comparative investigation of the
performances of the Empirical Approach, the Bio-optical Technique and the Operational
Method. With an automated pixel-based match-up analysis that used the same in situ dataset
for validation of the three algorithms, the Operational Method did not identify distinct
populations of HABs and non-blooms as effectively as did the other two algorithms using
MODIS data. When cell counts were plotted against the optical parameters used in the
algorithms, the two populations produced by the Operational Method overlapped significantly
(refer to Figures 7.10 through 7.18 in Carvalho (2008)). The Empirical and Bio-optical
algorithms could be optimized by varying the appropriate threshold values – this was done
with geographical and seasonal restrictions – and this resulted in modified versions which had
improved performance in differentiating HABs from non-blooming conditions – summarized
in Table 1 [panels X-XII]. The user was left with a choice of using one or the other of the
optimized algorithms.
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There is still scope for improving HAB detection with satellite measurements, and the objective
of the current study was to determine whether the sequential application of the optimized
versions of the Empirical Approach and the Bio-optical Technique would lead to improvements
in identifying the optical characteristics related with the Florida Red Tide. The combination
of these two algorithms has not been attempted previously, and represents a new approach to
the problem. Thus, by exploiting the detection capabilities of the Empirical and the Bio-optical
algorithms, a new method to detect K. brevis blooms using satellite measurements was
explored.

2. Methods
In the current study, the methodology used to establish the long-term detection capabilities of
the optimized versions of the Empirical Approach and the Bio-optical Technique was followed
(Carvalho et al., 2010). This involved performing an analysis with the same rigorous quality
control to produce the “valid cloud-free match-ups” between satellite and in situ measurements
(Figure 2). Shipboard and satellite measurements were matched in space (i.e., the pixel
containing the in situ measurement) and time (i.e., in situ data within the same day of the
satellite overpass). The rationale behind using only satellite measurements from the pixel
containing the position at which the sample was taken avoids uncertainties from the use of
larger areas including neighboring pixels to the field location, while the use of this time-
acceptance window was justified by the slow growth rate of K. brevis cells (i.e., between 0.05
to 0.5 doublings day−1; Shanley and Vargo, 1993). As the optimal accuracies of the Empirical
and Biooptical algorithms were temporally and spatially constrained (Carvalho et al., 2010),
the data selected for the current investigation were taken only during the boreal Summer-Fall
periods (i.e., July to December) along the region of the Central West Florida Shelf (CWFS;
south of 28.25°N close to Tampa Bay and north of 25.75°N near Cape Romano; Figure 1).

A comprehensive in situ database containing historical and current K. brevis monitoring data
(Haverkamp et al., 2004) was used to validate the outcome of the new multi-algorithm method;
the Florida Fish and Wildlife Conservation Commission’s Fish and Wildlife Research Institute
provided this database. As this database has been previously used for validating the long-term
performance of the Empirical, Bio-optical and Operational algorithms (Carvalho et al.,
2010), the same cell count threshold was used to evaluate the accuracy of the new
multialgorithm. A binary classification sorted the database for the presence of Florida Red Tide
(i.e., “red tide”; samples containing ≥1.5×104 cells of K. brevis l−1) and for the absence of
HABs (i.e., “non-blooming” conditions; samples with <1.5×104 cells of K. brevis l−1).

The satellite imagery used was obtained from the Ocean Color Website
(http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=am) for the period of July 2002 to mid
October 2006. All level-1A MODIS-Aqua scenes (L1A files), covering the region of interest
(Figure 1), were processed to level 2 (L2 files) with SeaDAS version 5.0.3 using default settings
of the MSL12,4 version 5.2.3 (http://oceancolor.gsfc.nasa.gov/seadas). A large library of
geophysical parameters derived from the satellite data was generated: total scatter(b(λ));
particulate backscatter (bbp(λ)); total absorption (a(λ)); absorption due to detritus and colored
organic dissolved matter together (adg(λ)); and absorption due to phytoplankton (aph(λ)); these
inherent optical properties (IOPs) of sea-water were derived with the Carder semi-analytical
algorithm (Carder et al., 1999). This library also included: water-leaving radiance (Lw(λ));
normalized water-leaving radiance (nLw(λ)); remote-sensing reflectance (Rrs(λ)); and were
produced in 9 bands centered at λ~ 412, 443, 488, 531, 551, 667, 678, 748 and 869nm. In
addition, Chl (derived with the global OC3M band-ratio algorithm; O’Reilly et al., 2000);
downwelling diffuse attenuation coefficient (K490); fluorescence line-height (FLH); sea-
surface temperature (SST); and satellite zenith angle (θ) were included. Figure 2 shows the
flowchart illustrating the processes to obtain the pairs of valid match-ups to determine the
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accuracy, and test the performances, of the specific HAB-detection algorithms applied to
satellite imagery. More detail is given elsewhere (Carvalho, 2008;Carvalho et al., 2010).

3. Statistical assessment
The ability to differentiate between HABs and non-blooming conditions, i.e., the satellite-
detection effectiveness, was evaluated using basic statistical metrics (Congalton, 1991; Sokal
and Rohlf, 1995; Mangnusson and Mourão, 2004), as described below. Following Carvalho et
al. (2010), these measures were also used in the current study to evaluate the accuracy of the
new multi-algorithm method; and in a comparison with the accuracies of the individual
optimized versions of the Empirical Approach and the Bio-optical Technique. Error matrices
(Table 1 [panel I-III]) give details of some applicable quantities used in the process of
evaluating the accuracies of the algorithms derived from the numbers of: a priori known red
tide samples correctly flagged as HAB-positive (designated as A); a priori known red tide
samples incorrectly flagged as HAB-negative (B); a priori known non-bloom samples
incorrectly flagged as HAB-positive (C); and a priori known non-bloom samples correctly
flagged as HAB-negative (D) – see Table 2.

A standard and widely-used metric to assess the accuracy of classification algorithms is the
overall accuracy, i.e., total of successful identifications divided by the total population ([A+D]/
[A+B+C+D]; Table 2). However, the user can be misled if this metric is used alone; thus other
basic metrics should be considered collectively. To help to understand these metrics they were
divided in two groups; as shown in Table 1 [panels II and III].

The first set of metrics evaluated how many in situ samples, among the a priori known observed
presence or absence of K. brevis blooms, were correctly identified by the algorithms, so as it
gave the rate of failure in the detection (Table 1 [panel II]). Thus, four questions should be
answered:

Question 1a. What portion of the red tide population was correctly flagged as HAB-
positive (i.e., A/[A+B])? This is the sensitivity of the algorithm, also called as producer’s
accuracy (Congalton, 1991).

Question 1b. Among the red tide population, how many samples were not correctly
detected by the algorithm (i.e., B/[A+B])? This is the fraction of false negatives.

Question 1c. Among the non-bloom population, how many samples were wrongly
classified by the algorithm (i.e., C/[C+D])? This is the fraction of false positives.

Question 1d. What portion of the non-bloom population was correctly identified as HAB-
negative (i.e., D/[C+D])? This is the specificity of the algorithm.

The second set of metrics evaluated the accuracies of the algorithms (i.e., the predictive values;
Table 1 [panel III]). These metrics are important as they represent the probability of the
algorithm correctly identifying observed in situ conditions (i.e., the actual satellite
identification based on the presence or absence of K. brevis blooms determined by microscopic
analysis of the water samples). Hence, the answer to four other questions were sought:

Question 2a. What portion flagged as HAB-positive was represented by red tide samples
(i.e., A/[A+C])? This is the positive predictive value, also known as user’s accuracy
(Congalton, 1991).

Question 2b. Among the cases flagged as HAB-positive, how many samples were in fact
non-blooms (i.e., C/[A+C])? This is the inverse of the positive predictive value.

Question 2c. Among the cases identified as HAB-negative, how many samples were in
fact red tides (i.e., B/[B+D])? This is the inverse of the negative predictive value.
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Question 2d. What portion identified as HAB-negative was represented by non-bloom
samples (i.e., D/[B+D])? This is the negative predictive value.

Predictive values are strongly dependent on the prevalence of red tides (i.e., the number of
known red tide samples over the total population; [A+B]/[A+B+C+D]; Table 2). One should
note that ideal algorithms should have both of the inverse, positive and negative of the
predictive values equal to zero. Also, an ideal algorithm should have no cases of false negatives
nor false positives.

4. The Hybrid Scheme
Despite the satisfactory performances of the optimized version of the Empirical Approach and
the Bio-optical Technique (Table 1 [panels X-XII]), there were still some samples that were
correctly identified by one algorithm, but not by the other; and vice-versa (Carvalho et al.,
2010). Therefore, we hypothesized that HAB-detection improvements could be possible with
the sequential application of the Empirical and Bio-optical algorithms into a single multi-
algorithm method. Thus, we proposed a Hybrid Scheme dedicated to detect K. brevis blooms
in the CWFS Summer-Fall using satellite ocean color imagery.

The new Hybrid Scheme was applied in two configurations; as depicted by the color-code in
Figure 3a. In the 1st configuration of the Hybrid Scheme, a positive identification occurred
when either or both algorithms correctly flagged known samples (Figure 3a: YELLOW
+BLUE), while both algorithms had to fail simultaneously in detecting a known sample to
establish false conditions (Figure 3a: WHITE). To determine the detection accuracy of the
2nd configuration of the Hybrid Scheme, both algorithms had to flag simultaneously known
samples correctly for a positive identification (Figure 3a: BLUE), while false conditions
occurred when either or both algorithms failed to classify a known sample correctly (Figure
3a: YELLOW+WHITE).

The two configurations of the Hybrid Scheme were compared to quantify whether improved
detection of the K. brevis blooms could be achieved compared to the separate use of the
Empirical Approach and the Bio-optical Technique, and if so, proposed as a potential remote-
sensing monitoring tool. The basic statistical assessments (as described by the eight questions
of Section 3) were calculated individually at the two configurations of the Hybrid Scheme.

5. Results
Of the 371 in situ samples of the CWFS Summer-Fall that passed the match-up analysis quality
control tests (Figure 2), 145 counted as red tides while the rest were non-bloom cases (n=226).
The detection frequency observed by the identification of red tide and non-blooming conditions
in the satellite data are shown in Figure 3 [b, c] for the individual optimized versions of the
Empirical and Bio-optical algorithms, and in Table 2 for both configurations of the Hybrid
Scheme. The answers to the first set of four questions (Section 3: 1a-1d) can be found in Table
1 [panels V, VIII, and XI], while the answers to the second set of four questions (Section 3:
2a-2d) can be found in Table 1 [panels VI, IX, and XII].

In terms of the observed incidence of red tide, established by the cell count threshold of
1.5×104 cells l−1, both configurations of the Hybrid Scheme had equal values: prevalence of
red tides of ~39%; n=145/371 (Table 2). On the other hand, the results of the overall accuracy
varied (Table 2), as this metric was determined by the total number of correct samples each
configuration detected: the 1st configuration of the Hybrid Scheme had a good value (~79%;
n=293/371), while the 2nd configuration had a moderate value (~62%; n=227/371). In
comparison, the overall accuracies of the individual optimized versions of the Empirical and
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Bio-optical algorithms were between these values (~70%; refer to Table 6 in Carvalho et al.
(2010)).

The 1st configuration of the Hybrid Scheme had better detection rates than the 2nd configuration
(Table 1). The sensitivity (80%; n=116/145) and specificity (78%; 177/226) observed for the
1st configuration were good, and were accompanied by low levels of false negatives (20%;
n=29/145) and false positives (22%; n=49/226); as shown in Table 1 [panel V]. Poorer
sensitivity (62%; 90/145) and specificity (61%; n=137/226) were observed at the 2nd

configuration along with more cases of false negatives (38%; n=55/145) and false positives
(39%; n=89/226); as shown in Table 1 [panel VIII]. The long-term detection accuracies of the
individual optimized versions of the Empirical Approach and Bio-optical Technique, derived
in Carvalho et al. (2010), are summarized in Table 1 [panel XI].

As can be seen in Table 2, of the total population (n=371), the 1st configuration of the Hybrid
Scheme flagged 165 as HAB-positive ([A=116] plus [C=49]), while 206 samples were
classified as HAB-negative ([B=29] plus [D=177]); Table 1 [panel IV]. In the case of the 2nd

configuration, 179 samples were flagged as HAB-positive ([A=90] plus [C=89]), while 192
samples were classified as HAB-negative ([B=55] plus [D=137]); Table 1 [panel VII]. Thus,
the derived positive predictive value of the 1st configuration of the Hybrid Scheme (Table 1
[panel VI]) was satisfactorily good (70%; n=116/165), so was the negative predictive value
(86%; n=177/206). The excellent predictive values of the 1st configuration did not translate
into the corresponding values of the 2nd configuration, which was less accurate (Table 1 [panel
IX]). The predictive values of the individual optimized versions of the Empirical and Bio-
optical algorithms (Carvalho et al., 2010) are summarized in Table 1 [panel XII].

6. Discussion
The identification of HABs using satellite measurements and the establishment of the reliability
of such retrievals are challenging tasks, largely because of the limited information in the
satellite data, the problems of validating satellite ocean color retrievals in near-shore areas and
the associated difficulties in finding a representative field dataset (Bailey and Wang, 2001;
Werdell et al., 2003). Nevertheless, in this study, the use of the in situ database maintained by
the Florida Fish and Wildlife Conservation Commission’s Fish and Wildlife Research Institute
successfully achieved the purpose of validating the detection of K. brevis blooms containing
≥1.5×104 cells l−1 using MODIS measurements.

Although the relatively large native surface resolution of MODIS ocean color bands (of 1
km2 at the nadir point) along with the fairly relaxed time-acceptance match-up window (in
situ and satellite data within the same day) may have added some uncertainties to the analysis,
the stringent exclusion criteria, which retained only pairs as free as possible of undesired
artifacts, greatly improved the validity of our results (Figure 2). The final cloud-free match-
ups (n=[371/3420] ~11%; comprising ~95 samples year−1) served as a dataset for determining
the long-term accuracy of the new Hybrid Scheme in the CWFS Summer-Fall. The number of
red tide samples and the total population used in the current study ([n=145 and n=371;
respectively]; Tables 1 and 2) was larger than those used in other related published studies to
detect K. brevis blooms along the CWFS using satellite measurements – e.g., [n=42 and n=119;
respectively] refer to Table 2 in Tomlinson et al. (2004); and [n=27 and n=90; respectively]
refer to Table 3 in Cannizzaro et al. (2009).

The use of 2-by-2 tables to display the basic statistical results has been done to help the
interpretation of the metrics used to establish the accuracy of the satellite-based algorithms
(Table 1). Requiring the Empirical Approach and the Bio-optical Technique to flag correctly
a sample at the same time (Figure 3a), the 2nd configuration of the Hybrid Scheme produced
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modest detection results (i.e., sensitivity and specificity) with almost twice the number of false
negatives and false positives than those of the 1st configuration (Table 1 [panels V and VIII]).
This pattern was also observed in their predictive values (Table 1 [panels VI and IX]). Thus,
after answering the eight questions of Section 3, the comparison of the HAB detection
accuracies of both configurations of the Hybrid Scheme with the accuracies of the individual
optimized version of the Empirical and the Bio-optical algorithms (Table 1 [panels X-XII])
revealed that the 1st configuration had better detection qualities (being in average ~10%
superior; Table 1 [panels IV-VI]) while the 2nd configuration was not as accurate, being roughly
~10% worse (Table 1 [panels VII-IX]) than the individual algorithms used separately.

The strength of the Hybrid Scheme lies in the use of a multi-parameter approach (i.e.,
Lw(λ~550), bbp(λ~550) and Chl), as the identification of K. brevis blooms was not solely
derived from Chl retrievals. Therefore, the effectiveness of the 1st configuration of the Hybrid
Scheme in correctly flagging red tide samples as HABs-positive was observed together with
the ability to classify correctly as HAB-negative most of the non-blooming conditions, whether
at low-Chl or at high-Chl concentrations dominated by other non-toxic algal species. Thus, the
good detection accuracy of the 1st configuration suggests that the Hybrid Scheme could be an
asset for reliable environmental monitoring. Indeed, it can be used to direct field-monitoring
campaigns improving the timeliness of in situ sampling of HABs. This would assist scientists
to investigate the Florida Red Tide in a more focused manner, thus generating better
understanding of major issues related with the occurrence of HABs, e.g., the mechanisms that
trigger, perpetuate and disperse blooms (Kusek et al., 1999; Smayda, 2007).

It is important to bear in mind that sensitivity and specificity are independent variables, as are
false negatives and false positives; however, sensitivity is coupled with false negatives, and
cases of false positives are the complements of specificity. From a resource manager’s
standpoint, an error in flagging a HAB (i.e., a false negative case) is not desirable given possible
human and environmental health impacts (e.g., a failure in public protection may occur if
shellfish beds are contaminated). The failure to identify correctly non-blooming conditions
(i.e., false positive cases) is not financially acceptable since no HABs are present and erroneous
announcements may have large localized economic consequences (e.g., loss of tourism). It can
be argued under variations of the “Precautionary Principle” (Kriebel et al., 2001) that in the
case of false positive errors, at least undesirable public health risks are avoided, which would
be a more socially acceptable alternative to be integrated into decision-making management
and strategies.

At the present time, the capabilities of the ocean color satellite sensors are not yet able to
provide sufficient information for a confident identification of HABs species. Neither can the
algorithms determine a decision for the closure of recreational and commercial shellfish beds
based on remote sensing data alone as the reference threshold of 1.5×104 cell l−1 is still above
the guidelines used in monitoring and regulatory decisions (i.e., 0.5×104 cell l−1; FDA,
2005). However, the reference level used in the current study to define detectable K. brevis
bloom within the satellite measurements is more realistic and more sensitive than other values
found in the published literature (e.g., 10×104 cells l×1 in Tester et al. (1998) – this is also the
same threshold implemented in the Operational Method; Fisher et al., 2005).

On the other hand, as good monitoring capabilities were demonstrated in the current analysis,
the uncertainties in detecting HABs with satellite imagery could indeed be reduced by using
the Hybrid Scheme in the 1st configuration (where either or both algorithms correctly detecting
a sample positively). Thus, resource managers or scientists studying HABs would have a better
chance to be aware of, or to locate sites suspected of having the presence or absence of blooms
of K. brevis based on the outcomes of the 1st configuration of the Hybrid Scheme. Similarly,
beach-goers would have a more confidence in avoiding potentially contaminated areas. And,
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as the new multi-algorithm method achieved potential for scientific and operational
applications, the Hybrid Scheme could assist in accurately directing field monitoring, which
would promote improved seafood safety action and reducing the risk of Neurotoxic Shellfish
Poisoning (Watkins et al., 2008).

Even though K. brevis is believed to be mainly restricted to Gulf of Mexico waters, the genus
Karenia can be found in different oceans and seas around the globe (Haywood et al., 2004;
Steidinger et al., 2008). Therefore, the detection capabilities presented by the Hybrid Scheme
could also be applicable, in principle, to other regions where blooms of Karenia species may
impart the same optical characteristics to the water (Schofield et al., 1999).

7. Concluding remarks
The sequential application of the optimized versions of the Bio-optical Technique and the
Empirical Approach (Carvalho et al., 2010) produced a new multi-algorithm method
specifically dedicated to detect the Florida Red Tide using remote sensing measurements – this
was the first-time application that this new method, referred to as Hybrid Scheme, has been
reported. The validity of the Hybrid Scheme was verified with a comprehensive in situ database
of K. brevis cell abundances along the Central West Florida Shelf during the Summer-Fall
periods (i.e., July to December) using a multi-year MODIS-Aqua dataset (2002 to 2006).

With an automated analysis, the long-term performance of the Hybrid Scheme was evaluated
in two configurations. Better detection accuracies for K. brevis blooms containing ≥1.5×104

cells 1− were observed in the 1st configuration (i.e., equally good sensitivity and specificity
(~80%) with simultaneously good predictive values (>70%); Tables 1 and 2; Figure 3). The
1st configuration of the Hybrid Scheme benefited from the strengths of the individual
algorithms – when the Empirical Approach missed a red tide there was still a chance of the
same sample being correctly flagged by the Bio-optical Technique, and vice-versa.

The application of the 1st configuration of the Hybrid Scheme could provide a valuable low-
cost means of HAB surveillance. Resource managers would be able to inform the general public
about the location of HABs as they occur, adding confidence to mitigation action and reducing
local economic impacts. Moreover, the accurate detection of K. brevis blooms could assist
researches in the early identification of HABs as well as helping to create more appropriate
public guidance and medical health plans.
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Figure 1.
Florida Harmful Algal Bloom Historical Database (2002 to 2006; data provided by the Florida
Fish and Wildlife Conservation Commission’s Fish and Wildlife Research Institute;
Haverkamp et al., 2004). “Identified in situ samples to be considered” (see Figure 2) illustrating
the sampling location for Karenia brevis: red tides (≥1.5×10 4 cells l−1; “□”) and non-blooms
(<1.5×104 cells l−1; “×”). The region of the Central West Florida Shelf (CWFS – south of
28.25°N close to Tampa Bay and north of 25.75°N near Cape Romano) is indicated.
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Figure 2.
Flowchart representing the stringent quality control tests applied to all near-coincident satellite-
in situ pairs; adapted from Carvalho (2008) and Carvalho et al. (2010). Steps to identify in
situ samples to be considered (light gray); satellite processing to identify the geophysical
parameter library (dark gray); level-by-level of the match-up analysis performed to derive the
valid cloud-free match-ups (white); and data removed from the analysis (black). As the water
column depth was not specified for the in situ sampling within the Florida HAB Historical
Database provided by the Florida Fish and Wildlife Conservation Commission’s Fish and
Wildlife Research Institute (Haverkamp et al., 2004), the Earth TOPOgraphy database at two-
minute gridded resolution (ETOPO2 –
http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html#) was used. Refer to Figure 6.3 in
Carvalho (2008) for graphical representation of effective penetration depth (EPD; Gordon and
McCluney; 1975) and apparent optical depth (AOD; Bailey and Werdell, 2006). Inherent
optical properties (IOPs) includes: a(λ), aph(λ), adg(λ), b(λ), bbp(λ). For additional and
information see Section 2.

Carvalho et al. Page 14

Harmful Algae. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html#


Figure 3.
Venn diagrams showing the structure of the two configurations of the Hybrid Scheme (Section
4), which is based on the detection frequency of the Empirical Approach and the Bio-optical
Technique. a) The positive identifications of the 1st configuration are represented by YELLOW
and BLUE (when either or both algorithms correctly flagged known samples), while the
positive identifications of the 2nd configuration are represented only by the BLUE (both
algorithms had to flag simultaneously known samples correctly). b, c) All valid match-ups
(n=371=[145+226]) sampled along the Central West Florida Shelf during the Summer-Fall
periods (2002 to 2006). b) Shown in RED are red tide samples (RT; ≥1.5×104 cells l−1; n=145=
[12+90+14+29]). c) Shown in GREEN are non-bloom samples (NB; <1.5×104 cells l−1;
n=226=[25+137+15+49]). See Tables 1 and 2 for the detection frequency of the two
configurations of the Hybrid Scheme.
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Table 1

Detection frequency of the Hybrid Scheme along the Central West Florida Shelf during the Summer-Fall periods
(2002 to 2006). Panels I-II: Error matrices (use Table 2 for assistance with A, B, C, and D); Panels IV-VI: 1st

configuration of the Hybrid Scheme (when either or both algorithms needed to flag known samples correctly;
see Figure 3); Panels VII-IX: 2nd configuration of the Hybrid Scheme (when both algorithms must have flagged
simultaneously known samples correctly; see Figure 3); Panels X-XII: Individual versions of the Empirical
Approach and the Bio-optimal Technique, respectively (* adapted from Table 6 in Carvalho et al. (2010)). Panels
II, V, VIII, and XI take into account the rows of the table and are based on the number of a priori known in
situ samples (i.e., “in situ cell count”), where the RED indicates red tide samples (≥1.5×104 cells l−1) and the
GREEN indicates non-blooming conditions (<1.5×104 cells l−1); these panels answer the first set of questions
(Section 3: 1a-1d): sensitivity (Sens; A/[A+B]; Question 1a), false negative (Fneg; B/[A+B]; Question 1b), false
positive (Fpos; C/[C+D]; Question 1c), and specificity (Spec; D/[C+D]; Question 1d). Panels III, VI, IX, and
XII take into account the columns and are based on the identifications in the satellite data (i.e., “algorithm
outcome”), where the RED indicates samples flagged as HAB-positive and the GREEN indicates samples
classified as HAB-negative; these panels answer the second set of questions (Section 3: 2a-2d): positive predictive
value (posPV; A/[A+C]; Question 2a), inverse of the positive predictive value (IposPV; C/[A+C]; Question 2b),
inverse of the negative predictive value (InegPV; B/[B+D]; Question 2c), negative predictive value (negPV; D/
[B+D]; Question 2d). For an ideal algorithm, B=C=0.
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Table 2

Detection frequency of the Hybrid Scheme: 1st configuration (Left) and 2nd configuration (Right). The RED
shows the incidence of red tides (n=[A+B]; samples containing ≥1.5 x104 cells l−1), and the GREEN shows non-
blooming conditions (n=[C+D]; samples containing <1.5x104 cells l−1). Use error matrices in Table 1 [panels I,
IV, and VII] and Venn diagrams in Figure 3 to assist with the interpretation and for the use of A, B, C and D to
access the accuracy of the Hybrid Scheme.

A = A priori known red tide samples correctly flagged as HAB-positive.

B = A priori known red tide samples incorrectly flagged as HAB-negative

C = A priori known non-bloom samples incorrectly flagged as HAB-positive

D = A priori known non-bloom samples correctly flagged as HAB-negative
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