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Abstract
Great skepticism has surrounded the question of whether modulation of voltage-gated Ca2+ channels
(VGCCs) by the polyunsaturated free fatty acid arachidonic acid (AA) has any physiological basis.
Here we synthesize findings from studies of both native and recombinant channels where micromolar
concentrations of AA consistently inhibit both native and recombinant activity by stabilizing VGCCs
in one or more closed states. Structural requirements for these inhibitory actions include a chain
length of at least 18 carbons and multiple double bonds located near the fatty acid’s carboxy terminus.
Acting at a second site, AA increases the rate of VGCC activation kinetics, and in CaV2.2 channels,
increases current amplitude. We present evidence that phosphatidylinositol 4,5-bisphosphate
(PIP2), a palmitoylated accessory subunit (β2a) of VGCCs and AA appear to have overlapping sites
of action giving rise to complex channel behavior. Their actions converge in a physiologically
relevant manner during muscarinic modulation of VGCCs. We speculate that M1 muscarinic
receptors may stimulate multiple lipases to break down the PIP2 associated with VGCCs and leave
PIP2’s freed fatty acid tails bound to the channels to confer modulation. This unexpectedly simple
scheme gives rise to unanticipated predictions and redirects thinking about lipid regulation of
VGCCs.
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1. Introduction
Voltage-gated ion channel activity is exquisitely regulated to maintain accurate flow of
information throughout the body allowing us to breathe, run, talk, learn, and remember. There
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is increasing appreciation that lipid molecules regulate and modulate ion channels that interact
directly with them in the plasma membrane. Particular interest surrounds lipid regulation of
voltage-gated Ca2+ channels (VGCCs) since changes in their activity affect not only membrane
excitability, but also neurotransmitter release, Ca2+-dependent biochemical events, and
activity-dependent gene transcription [1]. Thus, a change in VGCC activity may precipitate
acute (msec-sec), short-term (sec-min), and long-term changes (hrs-days). Lipid-induced
regulation of VGCC activity is incompletely understood; however there is growing
appreciation that phosphatidylinositol 4,5-bis phosphate (PIP2) and free fatty acids (Fig. 1)
play important roles in regulating VGCC activity. For example, PIP2 increases channel
availability to open and promotes slowed gating kinetics, whereas fatty acids exert the opposite
actions. In particular, growing evidence indicates that arachidonic acid (AA), a 20 carbon,
polyunsaturated fatty acid is liberated from the sn-2 position of phospholipids, such as PIP2
(Fig. 1A), by phospholipases to modulate the activity of pore-forming VGCC subunits of the
CaVα1 superfamily.

The following review synthesizes current knowledge of the mechanisms used by PIP2 and AA
to regulate VGCC currents. Basic chemistry about PIP2 and AA in the plasma membrane is
presented when deemed helpful. A number of recent, comprehensive reviews thoughtfully
address many of the physiological implications of phospholipid [2–4] and fatty acid [5–7]
regulation of VGCCs. Where useful, AA’s actions will be compared to other fatty acids (Fig.
1B) but not its metabolites. For a thorough account of the effects of fatty acid metabolites on
ion channels, see excellent reviews by Spector and Norris and by Meves [6,8,9]. Enzymes bind
AA with Kms in the μM range, indicating that μM concentrations of AA are physiological
[10]. At or above 20 μM, AA micelles can form though the exact value varies depending on
ionic concentrations [11]. Above the critical micelle concentration, lipids will aggregate into
spherical structures in solution where they can exert detergent effects on the lipid bilayer.
Therefore we discuss studies where fatty acid concentrations used are less than 20 μM. A
number of neurotransmitters that stimulate release of endogenous AA in a variety of cell types
also modulate VGCCs. Some controversy exists as to whether released AA participates in
transmitter modulation of VGCCs or whether simple dissociation of PIP2 is sufficient for
decreased channel activity. Therefore we discuss the controversy surrounding the putative roles
that PIP2 and AA may play in mediating VGCC modulation by Gq-coupled receptors
(GqPCRs). A unifying model for VGCC modulation is presented that takes into account data
from PIP2 and AA studies. Lastly we discuss the molecular significance of lipids in regulating
VGCC activity.

2. Exogenously applied AA inhibits VGCC currents by stabilizing closed or
inactivated conformations

The pore-forming CaVα1 subunits arise from a 4-fold repeat of 6 transmembrane segments
with a pore-loop inserted between S5 and S6 (Fig 2A). Cytoplasmic loops link the four domains
into a single polypeptide. Recent crystal structures of voltage-gated Kv channels serve as a
rough template for interpreting very basic structure-function studies of VGCCs. As with Kv
channels, S1-S4 form a voltage sensor unit with S4 containing multiple positively charged
residues that move in response to changes in membrane potential. S5 and S6 form the pore of
the channel with S6 serving as its inner lining. S6 contains amino acid residues responsible for
channel opening, closing and certain forms of inactivation [12]. However, members within the
VGCC family exhibit diverse gating behavior making it difficult to generalize about how their
different structures affect activity.

Nevertheless, from mutagenesis and kinetic studies there is general agreement that by
mechanisms not yet well understood, movements of the voltage sensor somehow cause each
S6 to flex away from one another, to open VGCCs. Closed times, measured from single channel
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patch-clamp recordings, distribute around several time points indicating that VGCCs have
multiple closed states. Some combination of each voltage sensor moving through the
membrane and S6 flexing may account for the multiple closed states [13]. Moreover when cells
are held very negative, the four voltage sensors reside in their most internal position within the
membrane. Upon depolarization, channels take a measurable amount of time to transition
through these multiple closed conformations to open; this time is referred to as the first latency.
An altered first latency indicates changes in stability of these closed conformations. As VGCCs
transition through the partially activated closed states during membrane depolarization, they
will undergo slow forms of voltage-dependent inactivation that develop over 100’s to
thousands of msec. These slow forms of inactivation, often referred to as C-inactivation for
K+ channels, are thought to occur following reorientation of residues within or near the outer
pore region. VGCCs also undergo faster forms of inactivation, developing over tens to several
hundreds of msec, where the mechanism underlying inactivation appears to vary depending
on the type of VGCC. For some VGCCS, cytoplasmic loops appear to interact with the inner
pore to block the current, giving rise to fast inactivation. Additionally fast forms of inactivation
for some VGCCs can exhibit characteristics of C-type inactivation, underscoring the
complexity of VGCCs’ biophysical properties. For more in depth discussion of VGCC gating
see reviews by [12–16].

Exogenously applied AA inhibits currents of both native and recombinant VGCCs from all
three families of α1 pore-forming subunits CaV1-CaV3. Where examined, all VGCCs exhibit
sensitivity to AA with an IC50 within 1–10 μM [17–25]. CaV1 (L-channel) and CaV2 (N-, P/
Q-and R-channels) pore-forming subunits exist in macromolecular complexes with accessory
subunits α2δ and β, which help increase functional expression and tune the channels’
biophysical properties [26]. The β-subunit also aids in trafficking these channels to the cell
membrane [27]. Despite the fact that multiple subunits form these VGCCs, they are referred
to by the name of their CaVα1 pore-forming subunit. In contrast, CaV3 (T-channel) subunits
give rise to recombinant current without a requirement for accessory subunits [28]. This latter
finding suggests that whether direct or indirect, AA acts on CaV pore-forming subunits.
Moreover, AA appears to alter the gating of VGCCs but not channel permeation. Details of
AA’s actions on each VGCC family are presented below.

2.1 T-type Ca2+ Channels
AA inhibits T-current in adrenal zona fasciculate cells [29], rat osteoblast cells [30], NG108-15
cells [31] and currents from all three recombinant T-channels (CaV3.1, CaV3.2 and CaV3.3)
[18,20,21] though CaV3.2 exhibits a greater magnitude of inhibition than CaV3.1 or CaV3.3
[18]. AA itself appears to modulate CaV3 channels since blocking AA metabolism has no effect
on the magnitude of current inhibition. Additionally, AA can robustly inhibit T-currents from
inside-out, ripped-off patches consistent with a direct effect [18,21]. No change in unitary
conductance was found, but rather, an increase in sweeps with no activity occurred following
AA [21]. Consistent with this finding, at the whole-cell level AA could inhibit channels in the
closed state. A Hill coefficient of 1.6 best describes inhibition of Cav3.1 by AA suggesting
that at least two AA molecules cooperatively interact with one channel [18,20,21]. A detailed
study by Chemin et al. demonstrated that other unsaturated free fatty acids can suppress
CaV3 currents while saturated free fatty acids have no effect [18]. Fatty acid inhibition of T-
current has a structural requirement of at least 18 carbons in chain length. Potency of inhibition
increases with increasing numbers of cis double bonds and with placement of the double bonds
near the carboxyl group [18].

Further kinetic studies examining the mechanism of inhibition indicate AA also increases the
voltage-sensitivity of slow forms of inactivation of all three T-channels [18,20,21]. Talavera
et al. (2004) found that the onset of current inhibition and changes in slow inactivation were
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different indicating AA has two different actions on CaV3.1. Changes in fast forms of
inactivation do not appear to underlie inhibition. Talavera et al. came to this conclusion through
studies using mutant CaV3.1 channels with decreased fast inactivation. Most notably, a point
mutation in IIIS6 of CaV3.1 (M1510I) leads to currents that inactivate with a time constant 4-
fold greater than for wt channels [32]. Despite the slower inactivation kinetics, AA inhibits
M1510I currents more rapidly and with an approximately 10-fold lower IC50 (~0.3 μM) than
wt currents (Fig. 2A) [21]. AA has little effect on the voltage-dependence of activation [18,
20,21]; however, a small, but significant negative shift in the foot of the activation curve in
CaV3.1 currents and a small change in the slope of the activation curve for CaV3.2 occurs
following AA that can be accounted for by changes in the rate constants between closed states
[20,21]. Thus, AA appears to decrease channel availability by stabilizing closed conformations
and also shifts the steady-state inactivation curve more negative.

2.2 L-type Ca2+ Channels
AA inhibits L-current in skeletal (CaV1.1) [22,36], cardiac (CaV1.2) [17,25,37] and smooth
muscle myocytes (CaV1.2) [38], SCG neurons (primarily CaV1.3) [23,39–41], recombinant
CaV1.3 current expressed in HEK 293 cells [42]; and in photoreceptors (primarily CaV1.4)
[19]. In hippocampal neurons, which express both CaV1.2 and CaV1.3 channels, AA exerts
similar inhibitory actions on the whole-cell L-current [43]. At the single channel level, AA
inhibits unitary L-channel activity in SCG neurons by increasing mean first latency and mean
closed time [41]. Additionally increased numbers of sweeps with no openings are observed,
raising the possibility that AA also stabilizes inactivated states. Conductance and mean open
time are unaffected by AA [41].

At the whole-cell level, AA increases the amount of CaV1.3b current inactivation at positive
test potentials, but does not alter the voltage profile of inactivation [35]. This form of CaV1.3b
has a truncated C-terminus ruling out AA binding to G-protein and calmodulin binding sites.
Findings from three additional experiments, designed to minimize L-current inactivation,
indicate AA decreases current independently of CaV1.3b inactivation [35]. 1) When CaV1.3b
is held at −90 mV, few channels inactivate; most reside in the closed state whereas at −60 mV
channels reside in a partially activated closed state become susceptible to slow forms of
inactivation. Holding the membrane potential more negative (−90 mV versus −60 mV)
approximately doubles CaV1.3b current inhibition by AA when cells were stepped to −10 mV
every four seconds, the potential where maximal inward current normally occurs [35]. 2) In a
similar experiment, current inhibition still occurs when L-channels are held closed during
application of AA [19,35,38,42], consistent with the hypothesis that AA stabilizes closed states.
3) Shortening the test potential duration from 40 ms to 10 ms decreases the number of channels
that will inactivate. Under these conditions the magnitude of inhibition increased. In each of
these three experiments the voltage protocol was manipulated to increase the time the channel
spent in a closed state while minimizing the probability that channels would transition to
inactivated conformations. In each case, inhibition remained the same or increased in
magnitude.

These data from recombinant channels best fit a model where AA stabilizes channels in a deep
closed state, rather than an inactivated state, and match whole-cell and single channel findings
of native L-currents in SCG neurons [23,41]. However, in other cell types, AA shifts the
voltage-sensitivity of inactivation for L-current more negative [25,37,38,44] similar to the
schematic shown in Figure 2C. Amino acid residues found in transmembrane S5 and S6
segments regulate opening, closing and slow forms of inactivation [14,32,45–48]. Sequence
variation in these regions among L-channels may explain these differences in response to AA.
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2.3 N-type Ca2+ Channels
AA inhibits native N-current in SCG neurons [23,39,41,49] and recombinant N-current
(CaV2.2) expressed in HEK 293 cells [39,50]. Other members of the CaV2 family [CaV2.1 (P/
Q) and CaV2.3 (R)] have not been tested for sensitivity to AA. Native N-channels display
distinct patterns of endogenous, heterogeneous activity called modes [51,52]. AA alters the
frequency of occurrence of particular modes to decrease unitary N-channel activity in cell-
attached patches that contain one channel (Fig. 3A). AA decreases open probability (Po) by
increasing the percentage of sweeps with no openings (nulls) and the number of null sweeps
that cluster together [41]. AA stabilizes a null mode but does not alter modes with amplitude
or open time changes. However, truncated closings (the last closing during the test pulse)
increase 2–3-fold in duration, indicating channels enter a non-conducting state (closed or
inactivated). Increases in first latency usually occur when channels transition through closed
conformations to the open state more slowly than normal. First latency increases approximately
3-fold, indicating that AA stabilizes one or more intermediate closed states rather than an
inactivated state.

N-current comprises 80–90% of the whole-cell current in rat SCG neurons [53]. Kinetic
analyses of these whole-cell currents revealed AA selectively decreases the frequency of non-
inactivating gating with little change in fast inactivation (Figs. 3C–D). These findings are
consistent with the single channel results where AA stabilizes one pattern of activity, the null
mode, while specifically decreasing another, the noninactivating mode (Figs. 3A–B).
Additionally whole-cell studies showed that AA increased the amount of holding potential-
dependent inactivation at positive voltages [23], similar to that observed with recombinant
CaV1.3b currents (Fig. 2B). This increase in inactivation may also contribute to the observed
increased incidence of the null mode at the single channel level. However, no shift in voltage-
sensitivity of inactivation was observed [23]. This lack of voltage dependency may be due to
AA stabilizing a closed state that is susceptible to undergoing transitions to inactivated
conformations [54]. Taken together, these findings support a model where AA may stabilize
a closed conformation of the N-channel that normally promotes inactivation. Alternatively, if
the rate of recovery from inactivation is also slowed, channels may accumulate in an inactivated
conformation. Future biophysical studies combined with mutagenesis should allow more
precise characterization of the mechanism of N-channel inhibition by AA.

In summary, the similar actions of AA across VGCC families suggest a common mechanism
for inhibition. N-channels, as with T- and L-channels, exhibit changes in closings following
exposure to AA. Additionally, AA appears to have a second though more varied effect on all
three channels where kinetic changes in inactivation occur. Consistent with the idea of common
mechanism, fatty acid inhibition of VGCC activity has similar structural requirements: 1) a
minimum carbon chain length of 18 carbons; 2) the magnitude of inhibition increases with
number of carbons 3) polyunsaturated bonds; 4) and double bond locations close to the carboxy
terminus [18,19,23,33–35,39].

3. AA exerts biphasic actions on VGGCs
Despite the attention given to inhibition, reports of biphasic effects suggest AA modulates
VGCCs at more than one site. In addition to inhibiting VGCC currents (Fig. 3C), AA acts at
a second, distinct site to enhance N-current at negative test potentials [23,39,49]. Enhanced N-
current exhibits an increased rate of activation that correlates in time with a leftward shift in
voltage-sensitivity of activation [39]. N-current enhancement by AA is manifest in the current-
voltage relationship at negative test potentials (such as depolarizations to −10 mV), whereas
N-current inhibition dominates the modulation observed at positive test potentials (such as
depolarizations to +10 mV). ETYA, myristic acid (Fig. 1B), and palmitic acid (5 μM) enhance,
but do not inhibit N-current, demonstrating that the two effects have different fatty acid
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specificities [23,39]. When alternating test pulses to −10 mV to monitor enhancement and to
+10 mV to monitor inhibition, the opposing effects can be observed in the same time courses.
The onset of enhancement develops significantly faster than inhibition, suggesting that the
opposing effects of AA occur by separate mechanisms [23,39].

Consistent with this possibility, the two actions separate with pharmacological manipulation
[39]; inhibition appears to occur intracellularly or in the inner membrane leaflet while
enhancement may occur extracellularly or in the outer membrane leaflet. When included in the
pipette solution, bovine serum albumin (BSA) dialyzes into cells and serves as an AA scavenger
since it binds AA quite effectively [55]. Dialyzing SCG neurons with BSA has no effect of its
own on control currents nor does it alter enhancement following exposure to AA. However its
presence minimizes N-current inhibition by AA, suggesting that the opposing effects have
different sites of action. This hypothesis was further tested with bath application of AA
covalently bound to coenzyme A. Very little of AA-coenzyme A (AA-CoA) crosses cell
membranes because of its hydrophilic nature. When introduced into the bath, AA-CoA
enhanced N-current at negative potentials but had no inhibitory effects at positive test
potentials. Thus, intracellular regions of N-channels appear to confer inhibition, whereas
enhancement by AA may be mediated extracellularly [23,39]. Alternatively, enhancement may
occur intracellularly but exhibit a higher affinity for free AA than the site of inhibition [23].

Two sites of action may exist for other types of VGCCs. In cardiac myocytes, AA produces
both a hyperpolarizing shift in L-current activation and inactivation as well as a reduction in
the maximum slope conductance [25]. In smooth muscle, myristic acid (Fig. 1B) enhances L-
current at negative potentials [38], with a similar current-voltage profile as N-current
modulation by myristic acid [39]. Other fatty acids such as palmitic acid stimulate L-current
in pancreatic α-cells [56] while palmitic and oleic acids stimulates L-current in pancreatic β-
cells [57,58]. In contrast, only inhibition by AA has been observed for L-current in skeletal
muscle myocytes (CaV1.1), smooth muscle myocytes (primarily CaV1.2) and SCG neurons
(CaV1.3) [23,38,49]. Similarly, an increased rate of activation occurs in T-currents following
AA with no increase in current amplitude [21,42]. Thus, inhibition by AA may dominate VGCC
activity, obscuring any appearance of the ongoing enhancing effects of AA [39]. When matched
with conditions used in earlier studies, these results taken together provide an explanation for
AA’s seemingly paradoxical actions on VGCC currents [38,44,59–62]. Future mutagenesis
studies should resolve whether homologous, distinct sites exist across the three VGCC families
that mediate enhancement and inhibition by AA.

4. Evidence for direct AA binding to channels
Once liberated, AA binds to a number of cytosolic proteins indicating that it can interact directly
with specific proteins in either a lipid environment or in the more hydrophilic cytosolic
environment [11,44,63–65]. Specific binding of AA to VGCCs remains difficult to
demonstrate because of the overall size of channel proteins and the large number of
hydrophobic residues that comprise the transmembrane domains that normally contact the lipid
bilayer. Examples of proteins that bind AA include the cystic fibrosis antigen complex S100A8/
S100A9 [66], certain forms of protein kinase C (PKC) [67], the catalytic subunit of protein
phosphatase 2B (PP2B or calcineurin) [68], PP5 [69], fatty acid binding protein [70], and BSA
[71]. In the C-terminal tail of S100A9, three consecutive histidine residues were identified for
AA binding [66]. AA binds to BSA at multiple sites with high affinity (Kd, 62 nM) [71].
Surprisingly no sequence homology or obvious three dimensional structure is shared among
the sites [72–74]. AA binding sites of other voltage-gated ion channels also remain mostly
undefined; however, mutational studies have identified key residues in the pore region of the
Na+ channel NaV1.5. A single point mutation (N406K) in IS6 (Fig. 2A) minimizes fatty acid
inhibition of channel activity [75]. In contrast, AA inhibits a double mutant (L409C/A410W
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in the S6 of domain I), suggesting that multiple amino acids contribute to channel sensitivity
to fatty acids. An asparagine is found in a homologous site in S6 of domains I–IV in all CaV
channels, suggesting a possible common site of interaction with AA. In contrast to the possible
common site of interaction for VGCCs and NaV1.5, three different potential sites of interaction
with AA have been identified for K+ channels. Hamilton et al. (2003) identified two amino
acids (Thr250 and Val275) in the pore-lining region of the human intermediate conductance,
Ca2+-activated K+ channel (hIK1) as key residues for current inhibition by AA [76] while the
amino terminus of ROMK1 and the carboxy terminus of Kir3 confer inhibition [77,78]. In
contrast, the carboxy terminus of TREK-2 confers enhancement by AA [79].

Thus, a common consensus sequence for AA binding may not exist across different protein
families. Nevertheless, since AA elicits similar changes in L-, N- and T-channel activity, AA
may act at one or more shared homologous sites. AA inhibits T-current recorded in ripped off,
inside-out patches [18] where most second messenger systems are absent, ruling out a number
of signaling molecules and suggesting direct binding. Moreover, T-channels require no
accessory subunits for current expression, yet AA inhibits T-current similarly to native and
recombinant Land N-currents [23,35,39], consistent with AA binding to homologous sites on
pore-forming subunits. Future mutagenesis studies should reveal whether VGCCs have a
common consensus site for AA binding and/or conferring modulation.

In the meantime, biochemical studies provide tantalizing clues as to regions of CaV1 that may
interact with AA. Three amino acids in the pore-region of L-channels have been identified by
extensive mutagenesis and chimera studies as critical for binding of dihydropyridines (DHPs)
[80,81], a class of L-channel agonists and antagonists (Fig. 2A). Docosahexaenoic acid
(C22:6), but not AA, inhibits the binding of the DHP antagonist nitrendipine in cardiac
myocytes [82,83]. AA displaces the specific binding of the radiolabelled DHP antagonist
PN200-110 with an IC50 of approximately 6 μM in rabbit skeletal muscle membrane assays
[84] and decreases PN200-110 binding and 45Ca2+ flux by 50% in skeletal muscle T-tubules
[22]. Blocking lipoxygenase activity has no significant effect on displacement of PN200-110,
consistent with AA, rather than a metabolite, competing with DHP antagonist for binding to
CaV1.1. Additionally, DHPs augment the binding of other CaV1 channel antagonists through
allosteric interactions [81], a profile similar to that observed with AA where AA augments the
binding of radiolabelled diltiazem and D888, L-channel antagonists with binding sites distinct
from DHPs [84]. These findings identify the DHP binding site as one potential site for AA
interaction with CaV1 channels. Whether AA interacts with analogous sites in the pore region
of CaV2 and CaV3 channels awaits testing; however it is an attractive idea since high
concentrations of DHPs will inhibit native N-current [85].

The canabinoids anandamide and 2-AG share structural similarities to AA and their binding
to cannabinoid GPCRs results in modulation of VGCC activity [86]. Additionally, anandamide
inhibits P-type Ca2+ currents in the cerebellum [87], L-current in T-tubule membranes [36],
N-current in SCG neurons [88] and recombinant T-current [18,89] independently of receptor
activation. Anandamide produces a greater inhibition of all three (CaV3.1, CaV3.2, CaV3.3) T-
currents than AA [18]. As reported for AA, anandamide competes with DHP agonist/antagonist
binding to L-channels [82,83], possibly by direct competition [84]. Together these findings
identify the pore-region as a potential binding site for AA or alternatively as important for
conferring Ca2+ channel modulation by AA [34].

5. Palmitoylation of the β2a subunit alters VGCC gating and modulation by
AA

Studies using recombinant L- or N-channels revealed that the magnitude of current inhibition
by AA varied with different β-subunits [50,90]. Whole-cell currents from CaV1.3b coexpressed
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with β2a showed approximately half the inhibition by AA than when coexpressed with either
β1, β3 or β4 [90]. Moreover, following AA the time to peak current decreased in channels
coexpressed with β1, β3 or β4 whereas no change in activation kinetics was observed with
β2a. Heterogeneous expression of β-subunits may explain the varied responses to AA by native
CaV1.2 channels. Interestingly, AA inhibited currents from CaV2.2, coexpressed with β1, β3
or β4, whereas coexpression with β2a resulted in sustained enhancement of approximately 2-
fold at negative test potentials [50]. Heterogeneous association of β-subunits with CaV2.2 may
explain the biphasic action of AA in SCG neurons of enhancement of N-current at negative
test potentials and inhibition at positive test potentials [23,39]. Thus, depending on the β-
subunit expressed with either L- or N-channels in a cell type, the profile of AA modulation
may differ.

Notably β2a differs from β1, β3 and β4 in that it is uniquely palmitoylated at cysteine 3 and 4
of its N-terminus [91]. Channels coexpressed with palmitoylated β2a exhibit noninactivating
currents and a rightward shift in the voltage sensitivity of slow forms of inactivation [35,92–
100]. By tethering β2a to the membrane, its movements as well as those of the intracellular
loops that interact with β2a are impeded. Restricting β2a’s movements results in noninactivating
CaV1 and CaV2 currents [94,101]. Coexpression of a mutant depalmitoyated βa, which has had
cysteine 3 and 4 substituted with serine (βaC3,4S), results in N-current inhibition rather than
enhancement by AA [50]. This finding raises the possibility that the fatty acid palmitoyl groups
of βa disrupt N-current inhibition by exogenously applied AA. When palmitoylation was
transferred to βb by substituting the 16 amino terminus of βa for βb’s amino terminus while the
rest of β1 remained unchanged, AA no longer inhibits currents of CaV2.2 coexpressed with the
palmitoylated βa β1 chimera. Instead, these currents exhibit enhancement at negative test
potentials similar to wt βa. This result suggests that the palmitoyl groups confer the block of
inhibition.

One consequence of tethering β2a is that the currents from CaV2.2 coexpressed with β2a exhibit
little inactivation compared to currents from CaV2.2 coexpressed with β1, β3 or β4. Since both
inactivation and modulation are different in β2a-containing channels, the question arises of
whether the dramatic slowing of channel inactivation rather than from palmitoylation underlies
β2a’s effects. Indeed, depalmitoylated β2aC3,4S containing L- and N-channels exhibit
increased inactivation as well as inhibition by AA [35,102]. In other words, the palmitoyl
groups may block inhibition – not by competing for the same putative binding site as AA –
but rather by keeping channels from inactivating. Though AA’s primary action appears to
stabilize channels in a closed conformation, AA also promotes channel inactivation. Since the
palmitoyl groups restrain channels from inactivating, perhaps no inhibition can occur.
However, several pieces of data indicate that differences in channel inactivation cannot account
for the ability of palmitoylated β2a to block inhibition [35]. First, when cells expressing
CaV1.3b and depalmitoylated β2aC3,4S are preincubated with free palmitic acid, inhibition by
AA is lost while fast inactivation remains. Second, attaching the transmembrane protein
segment CD8 to β2aC3,4S rescues noninactivating kinetics [97,98]. Despite the rescued non-
inactivating kinetics, coexpression of CD8-β2aC3,4S with CaV1.3b exhibits robust inhibition
by AA. Third, the β2e splice variant contains a unique hydrophobic N-terminus tail that may
insert into the membrane. When coexpressed with either CaV1.2 or CaV1.3b, the L-current
exhibits little inactivation [35,103], yet is robustly inhibited by AA similar to CD8-β2aC3,4S.
These studies indicate that free palmitic acid or the palmitoyl groups of β2a may competitively
block inhibition of CaV1.3 by AA independently of a channel’s ability to undergo fast
inactivation. Taken together, these L- and N-channel studies with β-subunits reveal a
potentially novel role for a palmitoylated protein. The palmitoyl groups ofβ2a don’t simply
tether the subunit to the membrane but rather may interact with VGCCs to block or interfere
with AA’s binding site that confers current inhibition (Fig. 5A). Whether other proteins such
palmitoylated syntaxins, G-proteins, or scaffolding proteins might also interact with VGCCs
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to alter their gating remains to be tested. Critical to developing this model will be further
experiments that test whether certain channel residues change the response to AA and to
palmitoylation.

6. PIP2 exerts actions that oppose AA on VGCC Currents
Currents from CaV1 and CaV2 channels decrease or “run down” irreversibly over time from
ripped off patches of membrane. This observation has led to the hypothesis that critical
intracellular components facilitate channel gating, but are lost upon ripping off the patch. What
that critical component might be remained elusive until a study by Wu et al., [104] found that
application of exogenous PIP2 slowed rundown of currents from giant, inside-out patches of
Xenopus oocyte membrane expressing CaV2.1 (P/Q), α2δ, and β4 subunits. In contrast
antibodies against PIP2 accelerated rundown. Similar decreases in rundown were obtained with
CaV1.2 and CaV2.2 channels, expressed in inside-out oocyte membrane patches following
PIP2 application [105,106] or with whole-cell N-current when dialyzing the PIP2 analog diC8-
PIP2 into SCG neurons [106]. When conditions were manipulated to increase endogenous
PIP2 levels, currents were maintained or enhanced. Similarly in portal vein myocytes whole-
cell L-current increased when dialyzed with 1 μM PIP3 or PI(3,4)P2 but not PI(4,5)P2
suggesting more specific structural requirements for enhancement [107]. Additional testing
may provide a more complete profile of specificity for each VGCC by different
phosphatidylinositols.

In contrast, conditions that decreased endogenous PIP2 levels caused currents to run down
more rapidly than observed under control conditions [104,108]. Interestingly, the presence of
active catalytic subunit of protein kinase A (PKA) also decreased rundown of CaV2.1 currents.
PKA’s effects were not additive with exogenously applied PIP2 [104]. These findings
suggested that PIP2 may directly associate with recombinant channel protein preventing
rundown by maintaining channel availability. Wu et al [104] further found that PIP2 has a
second action where it decreases CaV2.1 currents by promoting reluctant gating. Positive test
pulses minimize this effect of PIP2. Slowed activation kinetics accompanies the voltage-
dependence of PIP2’s actions similar to the modulation profile of CaV2.1 currents by Gβγ of
pertussis-toxin sensitive G-proteins [109]. Wu et al. [104] hypothesized that one binding site
stabilized CaV2.1 channels, increasing their availability to open and thus called it the “S” site,
whereas they named the second site that confers reluctant gating the “R” site. The actions of
PIP2 appear the opposite of AA: AA decreases availability of channels to open and also acts
at a second site to increase activation kinetics promoting willing gating. This mirror image of
action though antagonistic suggests that PIP2 and AA may act at similar sites.

The Yang lab has performed over 85 point mutations in the four S6 segments of CaV2.1 and
characterized current amplitude and kinetic activity of these mutants [46,105]. Mutating one
particular residue, an isoleucine located at the intracellular end of IIIS6 to histidine (I1520H)
or aspartate (I1502D), significantly decreased rundown whereas point mutations in
homologous positions in the other three domains had so significant effect [105]. Similarly
homologous point mutations in domain III of L- and N-channels to histidine or aspartate also
slowed rundown (Fig. 2A). Exposing mutant channels to PIP2 had no further effect; however
the mutant channels still required PIP2 since their currents rapidly ran down when endogenous
PIP2 was sequestered by exposing the membrane patches to a positively charged peptide
sequence from myristolated alanine-rich protein kinase C substrate (MARCKS). MARCKS
sequesters PIP2 through nonspecific electrostatic interactions between the negative charges of
the phosphorylated inositol headgroup [110]. These findings raise the possibility that PIP2 may
normally interact with positively charged amino acids that are spatially near IIIS6. The C-
terminus of CaV2.1 interacts with PIP2 as well as other phospholipids such as phosphatidic
acid in lipid-protein overlay assays consistent with direct interaction between pore-forming
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subunits and phospholipids [111]. Determining the precise locations of PIP2 interaction sites
remains an open and challenging question since complex interactions among the intracellular
loops appears to occur [112–114]. Potential PIP2 interactions with Ca2+ channel auxillary
subunits have not been tested.

7. Physiological implications of VGCC modulation by lipids
A number of neurotransmitters including acetylcholine, dopamine, and serotonin, hormones
and growth factors bind to GPCRs that stimulate phospholipases to liberate fatty acids, such
as AA, from autonomic end organs and from nerve cell membranes [115–120]. AA release
following muscarinic stimulation has been examined most extensively where AA is primarily
liberated from inositol phospholipids. This relationship raises the question of whether
neurotransmitters regulate PIP2 and AA levels to modulate VGCC activity. Muscarinic
modulation of L- and N-current by a slow signaling pathway [121–124], first described in SCG
neurons (see Hille 1994[125] and Suh & Hille 2005 [126] for review), mimics current
enhancement and inhibition by exogenously applied AA [23,39,49,127,128]. However,
whether endogenously released AA plays a role in modulating VGCC currents following
muscarinic receptor activation is controversial. Here, we discuss the evidence for and against
endogenously liberated AA downstream of GqPCRs mediating VGCC current modulation.

7.1 AA participation in Ca2+ current modulation by GqPCRs is controversial
The muscarinic agonist oxotremorine-M (Oxo-M) inhibits L- and N-current in SCG neurons
by the slow pathway via M1 muscarinic receptors (M1Rs), Gq and metabolism of PIP2 by
phospholipase C (PLC) [49,104,106,129–131]. Additional phospholipid breakdown appears
to participate in current modulation since decreasing AA release by pharmacologically
antagonizing PLA2 activity with oleyloxyethyl phosphorylcholine (OPC) or 7,7-dimethyl-5,8-
eicosadienoic acid (DEDA), minimized VGCC current inhibition in SCG and cortical (Fig.
5C) neurons [49,127,128,132]. This slow pathway contrasts the fast, voltage-dependent N-
current inhibition by direct G-protein binding to the pore-forming subunit [113]. OPC and
DEDA have no inhibitory effects on this fast pathway [133,134].

Little free AA is found in cell membranes. Instead AA is situated in phospholipids of the inner
leaflet of the cell membrane. Acyl transferases covalently link AA to the C2 (also referred to
as the sn-2) carbon of the glycerol backbone of phospholipids, whereas a saturated or mono-
saturated fatty acid normally occupies the sn-1 position [135]. 80% of PIP2 has AA in the
sn-2 position [136] (Fig. 1A). Phospholipase A2 (PLA2) cleaves fatty acids from the sn-2
position of phospholipids, with lysophospholipid arising as the other by-product. Group IVa
PLA2, a cytoplasmic, Ca2+-sensitive PLA2, also called cPLA2, exhibits selectivity specifically
for AA in the sn-2 position of phospholipids [137]. cPLA2 associates with membranes by
binding to PIP2 via a C2 domain with an effective increase in enzyme activity [137].
Phosphorylation by ERK1/2 acutely activates cPLA2 following GqPCR stimulation. These
same receptors are associated with phosphatidylinositol metabolism, suggesting that cPLA2
in vivo may exhibit some preference for cleaving AA from PIP2. However careful studies with
purified or recombinant cPLA2 have not been performed to fully understand its substrate
specificity. PLA2 will also cleave AA from phosphatidic acid. When antibodies were dialyzed
into SCG neurons as functional antagonists of slow pathway modulation, cPLA2 antibodies
but not non-immunized IgG or iPLA2 or sPLA2 antibodies minimized inhibition by Oxo-M
raising the intriguing possibility that in neurons, cPLA2 may act to liberate AA from PIP2 to
inhibit VGCC activity.

The finding that cPLA2 may participate in M1R inhibition of L- and N-current challenged a
model, illustrated in Figure 4, where dissociation of PIP2 from VGCCs and subsequent
breakdown by PLC is not only necessary but also sufficient for observing inhibition [2,104,
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106]. The Hille lab originally proposed this “PIP2” model for M-current modulation by M1Rs.
In this model, PIP2 molecules cycle between binding and dissociating from the KCNQ proteins
that give rise to M-current. PIP2 association increases channel availability to open. Following
stimulation of M1Rs, activated PLC cleaves the inositol head group from unbound PIP2
[138–141]. Consequently less PIP2 is present to rebind to channels resulting in decreased M-
current. Whether PLA2 participates in M-current modulation was examined by
pharmacologically antagonizing PLA2 but no adverse effect was found [127,142,143].
Additionally small molecules and various kinases were tested but were also found to play no
role in current inhibition [125,126] supporting the idea that PIP2 breakdown by PLC is
sufficient for its modulation by M1Rs. Because L-, M- and N-current inhibition by the slow
pathway in both primary neurons and recombinant systems requires M1Rs, Gq and PLC [49,
104,106,126,127,138,140–142,144], the Hille lab and others proposed that the same signal
transduction pathway similarly modulates all three currents.

Consistent with the PIP2 model, Gamper et al. [106] reported no effect of OPC following a 2
min incubation period on N-current inhibition by Oxo-M, when recording from perforated
patches of SCG neurons. These findings contrasted whole-cell studies where a 2 minute
preincubation with the same OPC concentration resulted in a loss of inhibition by Oxo-M
[49]. Gamper et al. [106] suggested that the differences observed with OPC, most likely reflect
variations in experimental design rather than in the biology of the system. Similarly, Bannister
et al. [145] found that the PLA2 antagonist quinacrine had no effect on slow pathway inhibition
of recombinant L-current (CaV1.2); however this compound poorly antagonizes cPLA2
[146]. Lastly, Lechner et al. [147] found that inhibition of presynaptic currents by bradykinin
was blocked when PIP2 breakdown was antagonized, yet remained normal when PLA2 was
antagonized with DEDA. In each study, no control experiments were presented that
documented selective cPLA2 antagonism, nevertheless these studies raised questions
surrounding cPLA2’s role in the slow pathway of VGCC currents.

In a fourth study the PIP2 analog, diC8-PIP2 was dialyzed into SCG neurons to effectively
expose the VGCCS to unlimited amounts of PIP2 agonist. Under these conditions, minimal
Ca2+ current inhibition by Oxo-M occurred, suggesting that if enough endogenous PIP2 or
exogenously applied diC8-PIP2 remains available to bind to VGCCs, no inhibition will occur
[106]. DiC8-PIP2 lacks the normal fatty acid chains associated with PIP2, e.g., AA and stearic
acid in the sn-1 and sn-2 positions respectively. Thus diC8-PIP2 might also act as a substrate
competitor of cPLA2, antagonizing AA release from PIP2 and as a consequence, minimal
current inhibition would occur. While this experiment highlighted the importance of PIP2 in
VGCC gating, it did not rule out a requirement for PLA2 during slow pathway stimulation,
leaving cPLA2’s role uncertain.

Subsequent biochemical, imaging, and genetic approaches pointed to a prominent role for
cPLA2 activity during L- and N-current inhibition by the slow pathway. First, cPLA2 protein
was acutely phosphorylated in SCG neurons following exposure to muscarinic agonist, but
blocked in the presence of the MT-7 toxin, a M1R antagonist, demonstrating its acute activation
by M1Rs [127]. Second, including BSA either in the pipette or bath solution to limit AA levels,
antagonized L- and N-current inhibition [49,127]. Moreover, when the BSA-containing bath
solution was analyzed for fatty acid content by GC-MS, free AA levels were found to increase
approximately 2-fold following ganglion exposure to Oxo-M documenting muscarinic
stimulation of AA release from SCG. Most notably, L- and N-current inhibition by Oxo-M,
was lost in cPLA2

−/− SCG neurons [127,128]. No significant difference in control current
amplitude or magnitude of current inhibition by AA was observed between cPLA2

+/+ versus
cPLA2

−/− neurons, indicating normal VGCC activity in cPLA2
−/− neurons. In contrast to

VGCCs, no change in M-current inhibition occurred in cPLA2
−/− SCG neurons, demonstrating
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that breakdown of PIP2 by PLC still must occur under these experimental conditions despite
loss of L- and N-current inhibition.

Taken together the data indicate that L- and N-current inhibition occurs by a signal transduction
cascade diverging from that mediating M-current inhibition [49,127,128,132,133]. This
conclusion is supported by recent work using palmitoylated charged peptides to sequester
PIP2. Dialyzing low peptide concentrations into neurons disrupted M-current but not N-current
modulation by M1Rs [148]. Free fatty acids, most likely AA, liberated from the sn-2 position
during phospholipid metabolism mediate current inhibition. AA itself, rather than a metabolite,
serves as the effector since antagonizing cyclo-oxygenases, lipoxygenases or P-450
epoxygenases individually or all together had no effect on AA or Oxo-M’s ability to inhibit
current [23,39,49,133].

7.2 PLC, cPLA2, and DAG lipase participate in M1R modulation of Ca2+ currents
Recent findings help advance our understanding in how PIP2 and AA regulate VGCC activity.
In addition to PIP2 breakdown by PLC and AA release by acutely activated cPLA2, a third
lipase called diacylglycerol (DAG) lipase appears to antagonize inhibition of native and
recombinant L- and N-current (Fig. 5D) following M1R stimulation [149]. DAG lipase α and
β cleave fatty acids (normally stearic acid) preferentially from the sn-1 position of PIP2 or from
DAG [150,151]. This conclusion of DAG lipase involvement in the slow pathway is based on
findings that pharmacologically antagonizing DAG lipases with the selective compound
RHC-80267 minimizes L- and N-current inhibition. In contrast RHC-80267 has no effect on
M-current inhibition by the slow pathway, N-current inhibition by direct G-protein binding to
CaV2.2, or L-and N-current inhibition by exogenous AA [134], indicating its actions selectively
target slow pathway modulation of L- and N-currents [108,149].

That three lipases are required for VGCC inhibition may seem implausible and excessively
complicated. However, the need for all three lipases suggests a linear signal transduction
cascade that generates a signaling molecule, such as AA, may not be responsible for Ca2+

current inhibition [127]. Similarly, the PIP2 model where removal of the phosphoinositol head
group by PLC is necessary and sufficient for observing Ca2+ current inhibition [104,106] also
cannot explain why cPLA2

−/− neurons exhibit little L- and N-current inhibition, while M-
current inhibition proceeds normally, indicating that PLC is active [127,134]. Thus both models
fail in explaining all the results; however a remarkably simple “PIP2-AA” model shown in
Figure 5B successfully combines the essence of each model to explain slow pathway
modulation of Ca2+ currents.

Moreover, the PIP2-AA model successfully incorporates virtually all previously published
findings from a number of research groups into an unexpectedly simple scheme. Oxo-M binds
to M1Rs which couple to Gq to activate PLC. Activated PLC directly cleaves the inositol head
group in the sn-3 from PIP2 molecules associated with channels Additionally PLC stimulates
phosphorylation of cPLA2. Activated cPLA2 and DAG lipase liberate the two fatty acid tails
of PIP2 in situ by acting specifically at the sn-2 and sn-1 positions respectively of the glycerol
backbone. Consequently, the released IP3 and glycerol will enter the cytoplasm while the two
freed fatty acids remain bound to channels. Alternatively the phosphoinositide headgroup could
remain bound to the channel. Disassembling PIP2 may uncouple a hydrophobic region of the
channel that binds the fatty acid tails from the predicted charged pocket that interacts with the
phosphoinositol head group. This separation may impede coordinated conformational changes
that closed channels undergo as they reconfigure into an open conformation, thus changing the
availability of channels to open. The bound free fatty acid tails antagonize binding of a PIP2
to the site. Thus it is the loss of the glycerol backbone uncoupling the fatty acid tails from the
head group that causes a decrease in channel opening, stabilizing a closed conformation. Three
findings hint that a similar mechanism may occur for some K+ channels: 1) the antagonistic
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actions of PIP2 and AA on certain K+ channels [78,152]; 2) overlapping binding sites for
PIP2 and AA at the proximal end of the C-terminus of Kir3 channels [78]; and 3) the importance
of the head group and fatty acid tails for coupling voltage sensing to opening [153,154].

Another way to think of the consequences of PIP2 breakdown may be that somehow voltage
sensing uncouples from channel opening. Though sheer speculation, this idea brings to mind,
intriguing crystal data from the MacKinnon lab of phospholipid placement in the inner regions
of a voltage-dependent K+ channel where just one phospholipid crystallized with each subunit
[154]. The lipid tails sandwich between the voltage sensor and the inner pore with the head
group pointing towards the cytoplasm. One could image that the phospholipid acts like Velcro
between the two regions perhaps slipping as S6 flexes during opening only to re-attach as S6
straightens on closing. Whether VGCCs have a phospholipid in a similar region remains to be
determined though a similar placement of PIP2 in a VGCC would be an ideal site to explain
PIP2 and AA’s actions at the “S” site. Few clues exist that hint as to whether the PIP2 “R” site
(which we hypothesizes confers enhancement by AA) is also located at the inner pore. It is
possible that 4 phospholipids wedge between each voltage sensor and inner pore helix. Whether
one or more of these wedged PIP2s may confer reluctant gating kinetics is an attractive
possibility. Unlike the crystallized K+ channels, VGCCs do not have four-fold symmetry, so
that homologous PIP2 interaction sites may influence channel opening differently.
Alternatively recent findings with K+ channel structures reveal the importance of S1 for
exerting the force on the outer pore region by the voltage sensor paddle [155]. Whether lipid
packing in the crevices around S1 and the pore is important for channel opening no doubt will
be an important question to answer.

Oxo-M also enhances N-current in SCG neurons similar to AA by increasing the voltage-
sensitivity and kinetics of activation. Moreover muscarinic enhancement of N-current also
involves PLA2 activity [49]. In recombinant studies M1Rs stimulation, as with exogenously
applied AA, resulted in sustained enhancement of N-current only when CaV2.2 was expressed
with the palmitoylated β2a [102]. We imagine that by forming multiple binding sites with
cytoplasmic domains of CaV2.2, the CaVβ2a protein effectively “docks” its two palmitic acids
at a site extremely close to CaV2.2 promoting their interaction with the channel. This constraint
creates a high local concentration of palmitic acid that promotes competition with AA and
possibly PIP2 for the “S” site acting there as a phospholipid mimic. No change in channel
availability is observed with muscarinic stimulation, only the “R” site undergoes modulation.
Thus the PIP2-AA model successfully incorporates the actions of three lipid moities: PIP2, AA
and palmitoylated β2a. No doubt, lipid regulation of VGCCs does not occur exactly this way.
This thinking however, creates a starting point for testing this molecular image of lipids
competing for sites on VGCCs that effect channel opening. Critical to developing this model
will be further experiments that examine whether mutating certain channel residues change the
response to AA and to palmitoylation.

7.3 Control of PIP2 interaction with VGCCs by three lipases provides a highly regulated
mechanism for modulation

The PIP2-AA model is appealing in that it provides more regulatory control of lipid interaction
with channels compared to a “naked” channel with no bound lipid (Fig. 4). The local breakdown
of PIP2 should give rise to variety of byproducts that each alters VGCC gating in unique ways.
Moreover, this new model resolves previous conceptual conflicts in mechanism and provides
a framework for raising new predictions and pursuing a new direction of questioning around
how lipids regulate VGCCs in normal and pathological situations. First, this model predicts
that the lipid tails of PIP2 and free AA interact with CaVα1 though whether PIP2 or free AA
act by directly interacting with the channel remains uncertain. The PIP2-AA model is
compatible with the idea that loss of PIP2 from channels occurs following M1R stimulation
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[104,106]. If we assume that PIP2 directly interacts with the channel, then the simplest model
would predict that cPLA2 liberates AA on location and exogenously applied AA may dislodge
PIP2 by competing with its fatty acid tails for binding sites. Metabolizing PIP2 still bound to
channels can account for why inhibiting either PLA2 or DAG lipase will antagonize channel
modulation. However whether these enzymes are able to access PIP2 molecules while bound
to the channel needs to be tested more directly.

Though increases in free AA in the bath solution are detected following muscarinic stimulation
[127], this new model predicts that free AA generated locally confers inhibition. In support of
this idea, AA inhibits recombinant T-current, exhibiting similar inhibition as L- and N-currents
[20,21]. Since T-current arises from channels with no accessory subunits, AA’s actions are
predicted to occur on the pore-forming subunit. Whether the Hill coefficient of ~2 for AA
binding to T-channels [21] suggests that AA acts at two sites on the channel or that the two
tails of PIP2 act together at one site remains to be tested. This question of whether two tails
participate in current inhibition raise an additional question of whether two AAs mediate
inhibition or whether inhibition occurs from AA and the fatty acid, most likely stearic acid,
from the sn-1 position; or just AA from the sn-2 position. The actions of stearic acid have not
yet been tested on L- or N-current though other saturated fatty acids can enhance N-current
(Barrett et al., 2001). Once liberated, AA may diffuse a short distance to its site of action.
Whether other GqPCRs require both cPLA2 and DAG lipase to observe VGCC modulation has
not been examined. Notably M3Rs couple to Gq to activate an endogenous AA-dependent
noncapacitative Ca2+ current in HEK cells that also requires cPLA2 [156]. However, other
GqPCRs require both PLA2 and DAGL activity and AA release to regulate a variety of cellular
processes [156–163], documenting widespread association between DAGL and cPLA2. These
questions and many others arise from contemplating the predictions of this simple new model;
the answers of which may be as surprising as what the field has discovered so far on how lipids
regulate VGCC activity.
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Figure 1.
PIP2 is formed of a glycerol backbone with a phosphoinositol head group and two fatty acid
tails. A. Stearic acid normally resides in the sn-1 position of PIP2, while AA is found in the
sn-2 position. The three carbons of the glycerol backbone are numbered in red. The inositol
headgroup of PIP2 attaches to the sn-3 carbon via a phosphoester linkage. The carbons of the
inositol head group are numbered in black. Additional phosphate groups are located at carbons
4 and 5 of the inositol ring. B. Other fatty acids that can modulate VGCC activity. Carbon
numbering starts from the carboxy end of fatty acids (shown in blue for linolenic acid) while
defining the location of the first double-bond is determined from the amino terminus (shown
in red).
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Figure 2.
Schematics of AA’s effects on holding potential-dependent inactivation of Ca2+ channels.
A. Topological orientation of a VGCC pore-forming subunit. The subunit is formed by four
repeating domains (I–IV) each made up of six transmembrane segments (S1–S6) with each S4
containing at least four charged residues (+) that participate in voltage-sensing. Arrow indicates
location of a high affinity binding site, called the alpha interaction domain (AID), for the β-
subunit. Colored symbols approximate the location of critical residues that alter lipid regulation
of identified voltage-gated ion channels. Yellow highlights identify regions critical for
dihydropyridine (DHP) binding. B. In SCG neurons, AA (5 μM) increases the amount of
inactivation as the holding potential becomes more positive. No shift in the voltage-sensitivity
of inactivation is observed. C. For certain L- and T-channels, AA increases the voltage-
sensitivity of inactivation, causing a leftward shift in the inactivation curve.
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Figure 3.
Schematic illustrating AA’s inhibitory actions on N-channel gating in SCG neurons. A. AA
shifts the pattern of N-channel gating elicited with 750 ms test pulses. Eight idealized sweeps
in the absence (CON) and presence of AA illustrate how AA shifts the pattern of unitary N-
channel gating. Two minutes after puffing on micromolar concentrations of AA (red), the
frequency of noninactivating sweeps decreases compared to control (CON), whereas of the
numbers of null sweeps increase and are found clustered together. Additionally, in some
sweeps, first latency increases (*) and some end with a long truncated closing (T). B.
Noninactivating unitary N-channel activity is lost following AA. C. Idealized whole-cell
current traces before (CON), and 2 min after puffing on AA. D. The whole-cell current inhibited
by AA shows no fast inactivation consistent with a loss of unitary channel activity that is
noninactivating (after Roberts-Crowley & Rittenhouse, 2008).
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Figure 4.
The PIP2 model of VGCC inhibition by GqPCRs. Top; PIP2 exists in a steady-state relationship
with VGCCs, where it binds and unbinds with particular rate constants for each VGCC. When
PLC is activated, it will metabolize PIP2 that has dissociated from VGCCs.

Roberts-Crowley et al. Page 26

Cell Calcium. Author manuscript; available in PMC 2010 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
PIP2–AA model of VGCC inhibition by GqPCRs. A. Model comparing CaV1.3 channels with
palmitoylated β2a to inhibited channels with β3. B. PIP2–AA model proposes that M1R
coupling to Gq activates PLC to remove the inositol head group from PIP2 associated with the
channel. Both DAG lipase (DAGL) and cPLA2 must cleave the two fatty acid tails from the
remaining glycerol backbone in order to observe current inhibition. Once freed from the
glycerol backbone the two fatty acids confer inhibition. C. VGCC current modulation by 10
μM Oxo-M of a cortical neuron in the absence (left) or presence of the PLA2 antagonist OPC
(right). D. VGCC current modulation of a SCG neuron in the absence (left) or presence of the
DAG lipase antagonist RHC 80267 (right).
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