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Abstract
New neurons are continuously produced in most, if not all, mammals. This Neurogenesis occurs only
in discrete regions of the adult brain: the subventricular zone (SVZ) and the subgranular zone
(SGZ). In these areas, there are neural stem cells (NSCs), multipotent and selfrenewing, which are
regulated by a number of molecules and signaling pathways that control their cell fate choices,
survival and proliferation rates. It was believed that growth and morphogenic factors were the unique
mediators that controlled NSCs in vivo. Recently, chemokines and cytokines have been identified
as important regulators of NSCs functions. Some of the most studied immunological effectors are
leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), interferon-gamma (IFN-γ),
insulin-like growth factor-1 (IGF-1), tumor necrosis factor alpha (TNF-α), and the chemokines
MCP-1 and SDF-1. These substances exert a considerable regulation on proliferation, cell-fate
choices, migration and survival of NSCs. Hence, the immune system is emerging as an important
regulator of neurogenic niches in the adult brain, but further studies are necessary to fully establish
the biological meaning of these neural effects.
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Introduction
Tissue-specific stem cells divide to regenerate different cell types for the purpose of tissue
maintenance in the adult. For a long time, the brain was considered an exception. Although,
proliferating cells were discovered in the mature brain, it was believed that cell proliferation
in the brain was limited to glial cells (the supportive cells found around neurons). In the 1960s,
this view began to change when new putative microneurons were first described [1]. In the
1980’s neurogenesis and recruitment of new neurons into functional circuits were demonstrated
to occur in the telencephalon of adult birds [2,3]. After that crucial finding, adult neurogenesis
was demonstrated in several species such as, mouse, rat, rabbit, cow and primate [4–7]. To
date, it is accepted that new neurons are formed and recruited into specific brain circuits
probably in all adult vertebrate species, including humans [8].

In the adult brain, active neurogenesis occurs only in discrete regions of the central nervous
system (CNS): the subventricular zone (SVZ) and the subgranular zone (SGZ). The source of
new neurons in the adult brain is neural stem cells (NSCs). The NSCs, which are multipotent
and selfrenewing, are regulated by a number of molecules and signaling pathways. Some of
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the most studied modulators are epidermal growth factor (EGF), basic fibroblast growth factor
(bFGF or FGF-2), platelet derived growth factor (PDGF), Notch, Sonic hedgehog, gp130 and
others. Recently, it has been demonstrated that immune system plays a key role in regulating
NSCs population through production of chemokines and cytokines. In this review, we describe
the main neural niches (the subventricular zone and the subgranular zone), the molecules
involved in NSCs regulation and the evidence indicating that several immune mediators control
proliferation and cell fate of neural primary progenitors. Since adult NSCs may function as a
source of neural precursors for brain repair, elucidating the molecular mechanisms that control
their survival, proliferation and fate is a crucial step to design effective procedures to
manipulate them.

Subventricular zone (SVZ)
NSCs have been isolated from the SVZ Fig. (1), the lining of the lateral ventricles, and the
SGZ of the dentate gyrus Fig. (2), within the hippocampus. The largest of these germinal
regions, the SVZ, contains a population of cells that has structural and molecular characteristics
of astrocytes, which function as NSCs. Astrocytic NSCs, also called Type-B1 cells, divide to
give rise to actively proliferating transit amplifying progenitors (Type-C cells). Type-C cells,
in turn, generate neuroblasts (Type-A cells) that migrate anteriorly through the rostral
migratory stream (RMS) into the olfactory bulb to become interneurons Fig. (1) [9–12].
Interestingly, Type-B and Type-C cells also generate some oligodendrocytes that migrate and
myelinate the neighboring corpus callosum and fimbria fornix [13,14]. The role of the SVZ-
derived interneurons remains unclear but they seem to regulate the olfaction process [15].

Subgranular zone (SGZ)
The SGZ of the dentate gyrus in the hippocampus is a proliferative region that contains neuronal
progenitors that give rise to granular neurons Fig. (2). The primary progenitors in this region
are radial astrocytes (Type-B cells) that asymmetrically divide to give rise to Type-D cells
[16]. These intermediate progenitors have at least 4 stages of maturation in (D1, D2, D2h and
D3) to finally differentiate into granular neurons Fig. (2) [16,17]. These cells display
multipotential characteristic in vitro, but so far, it has not been demonstrated their
multipotential properties in vivo. Therefore, some authors called these SGZ precursors as
neuronal progenitors instead of NSCs. The function of these newly generated neurons appears
to play a fundamental role in memory process, learning and depression.

Control of cell fate and proliferation of NSCs
There is a number of trophic and morphogenic factors that regulate in vivo proliferation of
adult NSCs in the neurogenic niches. Table 1 summarizes some of the most studied trophic
factors. Members of the fibroblast and epidermal growth factor families are mitogens that
expand in vitro and in vivo the adult neural progenitors. Some of these well-studied mediators
are: epidermal growth factor (EGF) [14,18], basic fibroblast growth factor (bFGF or
FGF-2) [19], platelet-derived growth factor (PDGF-α) [20], tumor-derived transforming
growth factor (TGF-α) [21], brain-derived neurotrophic factor (BDNF) [22], sonic hedgehog
(Shh) [23,24] and others.

Immunological mediators
During the last decade, increasing evidence indicates that immune system targets neurogenic
niches and exerts a considerable effect on proliferation, survival, differentiation and migration
of NSCs. Cytokines are immunomodulating polypeptide regulators involved extensively in
cellular communication [25]. These substances are present virtually in all nucleated cells, but
predominantly in macrophages, endothelium and epithelial cells [26]. The neuropoietic
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cytokine family includes interleukin-6 (IL-6), interleukin-18 (IL-18), tumor necrosis factor
alpha (TNF-α), ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF),
interferon gamma (IFN-γ) and others [25,27]. Chemokines are small cytokines or proteins,
which are categorized into four groups: CXC (or α-chemokines), which promote the migration
of neutrophils and lymphocytes; CC chemokines (or β-chemokines), which induce the
migration of monocytes, natural killers (NK cells) and dendritic cells; C chemokines (or γ-
chemokines) that attract T cell precursors to the thymus; and CX3C chemokines (or δ-
chemokines), which serve as chemoattractants and adhesion molecules [26]. Cytokines and
chemokines have been shown to alter NSCs self-renewal, progenitor cell division and
differentiation that is probably mediated by the Janus kinase-signal transducer and JAK/STAT,
an activator of the transcription pathway [25,27].

Immunological regulation of NSCs
The brain is an immune-privileged organ because the selective permeability of the blood-brain
barrier (BBB) only allows certain molecules and cells to enter and leave the cerebral
parenchyma. Therefore, under normal physiological conditions, only macrophages, T cells and
dendritic cells can go into the nervous system [26,28,29]. After damage, an inflammatory
process is initiated by the activation of astrocytes and microglia. This event is followed by
parenchymal infiltration of macrophages and lymphocytes. These activated and recruited cells
release a number of anti- and pro-inflammatory substances, neurotransmitters, chemokines and
reactive oxygen species. Then, more inflammatory factors are released, creating a positive
feedback loop that results in neural damage and causes both detrimental and positive
consequences to neurogenesis [25,29,30]. In particular, cytokines/chemokines seem to
significantly modify the functions of adult NSCs. Table 2 summarize some of these
immunological effectors, but many of them have not been fully characterized.

Acute or chronic exposure to LIF or CNTF differentially affects development and growth of
NSCs derived from the adult SVZ [27]. Acute LIF or CNTF exposure stimulates the
amplification and self-renewal of NSCs [31–33]. In contrasts, chronic exposure to LIF or CNTF
alters the formation of NSC progenies and promotes NSC self-renewal [27]. Intracellular
phosphorylation of STAT3 is essential for the effects of LIF in maintaining NSC phenotype
[34]. However, leptin, which activates STAT3 after binding to the leptin receptor, inhibits
differentiation of multipotent cells [27,35].

NSCs do not express a functional IL-6R, thus they do not properly respond to IL-6. However,
the stimulation of NSCs with the active fusion protein of IL-6 and sIL-6R, also named as Hyper-
IL-6 (H-IL-6), induces NSCs to differentiate into glutamate-responsive neurons and
oligodendrocytes [36]. The inflammatory cytokine IFN- γ is pro-neurogenic. IFN- γ promotes
neural differentiation and neurite outgrowth of murine adult NSCs [37,38] and the human
neuroblastoma cells [39]. Neuronal differentiation induced by IFN-γ appears to be mediated
by the c-Jun N-terminal kinase (JNK) pathways [40]. JNK pathway is also required for neural
differentiation of embryonal carcinoma cells, embryonic stem cells and PC12 cells [41–44].
However, IFN-γ has shown a dual effect on neurogenesis, because not only stimulates neuronal
differentiation [38,39] and NPC migration, but also inhibits NSCs proliferation and reduces
NSCs survival [45]. The manipulation of NSCs with immune mediators may useful to repair
brain injuries, as shown by Yang et al. who engineered NSCs to express IL-10, which enhanced
their ability to induce immune suppression, remyelination, and neuronal repair [46].

Under pathological conditions, activated microglia produces insulin-like growth factor-1
(IGF-1), which activates the extracellular signal-regulated kinase (ERK)/mitogen-activated
protein kinase (MAPK) pathway, increasing neurogenesis in the SGZ [47]. Microglia activated
by IL-4 induces a bias towards oligodendrogenesis whereas the IFN-γ-activated microglia
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induces a bias towards neurogenesis [48]. In contrast, decreased neurogenesis has been
observed by effect of the pro-inflammatory cytokine TNF-α [29]. TNF-α increases the
expression of MCP-1, a chemokine that induces NSCs migration mediated through the MCP-1
receptor CCR2 [49,50]. MCP-1 appears to protect neurons against NMDA-mediated
excitotoxicity [51]. SDF-1 chemokyne also induces migration of NPCs and increases survival
of NSCS [49,52,53], but contrasting reports demonstrated that SDF-1 promotes quiescence
[54] or proliferation of neural progenitors [55]. In contrast, the CCL2 chemokine does not
affect neural progenitor cell proliferation and cell survival, but promotes neuronal
differentiation of SVZ progenitors [56]. Some of these intricate relationships are depicted in
Fig. (3).

Hematopoietic growth factors have also been involved in the regulation of adult NSCs, Fig.
(3). Granulocyte-macrophage colony stimulating factor (GM-CSF) stimulates neuronal
differentiation of adult NSCs [57]. Granulocyte-colony stimulating factor (G-CSF) stimulates
neuronal differentiation of NSCs in vitro [58] and enhances neurogenesis and functional
recovery. Erythropoietin (EPO) drives neuronal differentiation of NSCs in vitro [59,60].
Interestingly, EPO-receptor deficient mice display reduced neurogenesis [59,60].

In summary, immune system is an important regulator of proliferation, migration and survival
of NSCs. Yet, as findings in this field are relatively recent, there exist a number of cytokines
and chemokines to be investigated. Moreover, signaling pathways involved in all these
processes are to be elucidated.
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Fig. 1. The adult subventricular zone
Schematic drawing that shows the cellular organization of the adult SVZ, RMS and the
olfactory bulb. New neurons born in the SVZ migrate to the olfactory bulb via the RMS. Once
SVZ neuroblasts reach the olfactory bulb differentiate into granular and periglomerular
GABAergic interneurons. B1: Type-B1 cell; C: Type-C cell; A: Type-A cell; V: Ventricle;
CC: Corpus callosum; RMS: Rostral migratory stream; SVZ: Subventricular zone
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Fig. 2. The subgranular zone
Schematic drawing that shows the cellular organization of the adult subgranular zone. Radial
astrocytes (Type-B cells) give rise to intermediate neuronal progenitors (also known as Type-
D cells) that, in turn, differentiate into granular neurons in the dentate gyrus. Mature granular
cells synapse to neuronal projections from CA3 and entorhinal cortex. Type-D cells have 4
stages: D1, D2 (radial progenitors), D2h (horizontal progenitors) and D3.
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Fig. 3. Effects of cell effectors on NSCs
After a brain injury, immune cells such as lymphocytes, leucocytes and microglia can induce
a number of effects on adult NSCs by releasing a number of cytokines/chemokines in the
neurogenic niches.
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Table 1

Effects of trophic and morphogenic factors on adult NSCs.

Factor Proliferation Predominant cell fate Reference

EGF ++++ Astrocytes and oligodendrocytes [1]

PDGF-α +++ Astrocytes and oligodendrocytes [2]

bFGF +++ Neurons [1,3]

TGF-α +++ Immature SVZ progenitors [4,5]

TGF-β ++ Astrocytes and neurons [6,7]

Noggin ++ Neurons [8]

GM-CSF ++ Neurons [9]

G-CSF ++ Neurons [10]

EPO ++ Neurons [11,12]

Shh ++ Neurons [13,14]

VEGF + Neurons [15]

BMP + Astroglia [16]

BDNF + None (in the SVZ).
Neurons (in the SGZ)

[3,17]

Cell proliferation: Limited or none (+), mild (++), moderate (+++), and high (++++).
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Table 2

Effects of chemokines and cytokines on adult NSCs.

Chemokine / Cytokine Effect on neural precursor cells Reference

IFN- γ Reduction of proliferation and survival of NSCs. Promotion of differentiation and neurite outgrowth. [37,38,45]

IGF-1 Increasing of neurogenesis in dentate gyrus [47]

IL-4 Increasing of oligodendrocyte precursors [48]

TNF- α Decreasing of neurogenesis [29]

Leptin Inhibition of differentiation of neural progenitors [27,35]

IL-6 Differentiation into glutamatergic neurons and oligodendrocytes [36]

MCP-1 Chemotactic factor of neural precursor [49,50]

SDF-1 Chemotactic factor that also promotes survival and proliferation of adult NSCs [49,52,53,55]

CCL2 Neuronal differentiation of SVZ neural progenitors [56]

LIF and CNTF Neurogenesis promotions and stem cell self-renewal [27,31,32,69]

Curr Immunol Rev. Author manuscript; available in PMC 2010 October 27.


