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Abstract——Transient receptor potential (TRP) chan-
nels are a large family of ion channel proteins, surpassed
in number in mammals only by voltage-gated potassium
channels. TRP channels are activated and regulated
through strikingly diverse mechanisms, making them suit-
able candidates for cellular sensors. They respond to envi-
ronmental stimuli such as temperature, pH, osmolarity,
pheromones, taste, and plant compounds, and intracellu-

lar stimuli such as Ca2� and phosphatidylinositol signal
transduction pathways. However, it is still largely un-
known how TRP channels are activated in vivo. Despite
the uncertainties, emerging evidence using TRP channel
knockout mice indicates that these channels have broad
function in physiology. Here we review the recent
progress on the physiology, pharmacology and pathophys-
iological function of mammalian TRP channels.

I. Introduction

Unlike most ion channels, TRP1 channel family mem-
bers are identified by their sequence homology rather than
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by ligand function or ion selectivity. To date, �30 mam-
malian TRP channels have been identified and are
grouped into six subfamilies on the basis of amino acid
sequence homology: TRPC (“canonical”), TRPM (“melasta-
tin”), TRPV (“vanilloid”), TRPA (“ankyrin”), TRPML (“mu-
colipin”), and TRPP (or PKD) (“polycystin”) (Clapham et
al., 2005).

A. Common Features

TRP channels conduct cations and, when activated, de-
polarize cells. If, as a result, TRP channel-mediated intra-
cellular Ca2� induces increases above basal levels (�100
nM), they initiate a plethora of cellular responses. They are
commonly found in epithelial cells but can be found in all
cell types. Most TRP channels are weakly voltage-sensitive
and nonselective, with PCa/PNa � 10, with the exception of
the monovalent-selective TRPM3�1, TRPM4, and TRPM5
(PCa/PNa � 0.05) and the Ca2�-selective TRPM3�2,
TRPV5, and TRPV6 (PCa/PNa � 100). Based on extensive
work on other members of the voltage-ligand-gated super-
family of ion channels (Yu et al., 2005) and TRP channel
primary sequences, they are assumed to have six trans-
membrane (TM) spanning domains (S1–S6) with a pore
domain between the fifth (S5) and sixth (S6) segments and
both C and N termini located intracellularly. The cytoplas-
mic end of the S6 helices seem to form the lower gate,
which opens and closes to regulate cation entry into the
channel. The S1–S4 domain may gate the pore in response
to ligand binding, but the paucity of positively charged
arginines in S4 helices indicates weak voltage sensitivity of
TRP channels. All elements outside the S5–S6 region pro-
vide means of either subunit association or act as linkers to
elements that control gating. Other structural features of
TRP channels include 1) a 25-amino acid TRP domain
containing a TRP box (EWKFAR) just C-terminal to S6 in
TRPC (also in TRPV and TRPM, but less conserved); 2)
ankyrin repeats in the N-terminal cytoplasmic domain of
TRPC, TRPV, and TRPA; and 3) proline-rich regions in the
region just C-terminal to S6 in TRPC, TRPM, and in some
TRPVs (Clapham, 2003; Ramsey et al., 2006).

Although some TRP channels clearly function as
chemosensors for exogenous ligands, relatively few
endogenous ligands are known for TRP channel acti-
vation. Therefore, one of the central unanswered ques-
tions in the field is how TRP channels are normally
activated in vivo. Many TRP channels are potentiated
by phospholipase C activation. Large classes of G pro-
tein-coupled receptors (Gq/11; linked to PLC�) and ty-
rosine kinase receptors (linked to PLC�) potentiate
most TRP channels. However, the mechanism of this

potentiation is not well understood (Trebak et al.,
2007). Elements of the phosphatidylinositol signaling
pathway are closely linked to the plasma membrane
and also seem to regulate many TRP channels. In
particular, PIP2, a common regulator of ion channels,
potentiates most TRP channel activity (Voets and Ni-
lius, 2007). In addition, intracellular Ca2� increases
the activity of some mammalian TRP channels and
modulates practically all TRP channels. Regulation by
phosphorylation, PIP2, and Ca2� are common to ion
channels and are not specific features of the TRP class
of channels.

A common problem in the TRP field is the lack of
specific pharmacological tools, leading to the depen-
dence on highly nonspecific blockers, such as ruthe-
nium red (which binds most Ca2� binding sites in
proteins), 2-APB, flufenamate, niflumic acid, and 1-(�-
[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl)-
1H-imidazole (SKF96365). More useful tools include
capsaicin, a fairly specific agonist of TRPV1, and 2-(1,
3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-
yl)-N-(4-isopropylphenyl)acetamide (HC-030031), a
relatively specific antagonist of TRPA1 (Caterina et
al., 1997; McNamara et al., 2007). La3� is useful in
recognizing TRPC4 or TRPC5 because it potentiates
these channels and blocks most other TRP and Ca2�-
permeant channels (Strübing et al., 2001). TRP chan-
nel antagonists with higher selectivities and potencies
are being developed in the pharmaceutical industry
but most are currently unavailable for academic re-
search. The dearth of useful pharmacological tools
forces reliance on small interfering RNA and genetic
strategies, but these methods do not replace the use-
fulness of blockers and antagonists. There is currently
significant disagreement on the assembly, localiza-
tion, and function of TRP channels. This confusion has
been created by nonspecific antibodies, lack of precise
pharmacological tools, and over-reliance on indirect
Ca2� measurements rather than direct measurement
of currents.

Indeed, emerging evidence using knockout mice has
revealed the very diverse functions of TRP channels
(Moran et al., 2004; Desai and Clapham, 2005; Ven-
katachalam and Montell, 2007). Human genetics has
further uncovered potential TRP channel functions.
For example, 13 channelopathies have been proposed
to stem from mutations in TRP genes: focal segmental
glomerulosclerosis 2 (OMIM 603965), caused by
TRPC6 mutations; Charcot-Marie-Tooth disease type
2C (OMIM 606071) and scapuloperoneal spinal mus-
cular atrophy (OMIM 181405), caused by TRPV4 mu-
tations; congenital stationary night blindness (OMIM
301500), caused by TRPM1 mutations; progressive fa-
milial heart block type 1 (OMIM 113990), caused by
TRPM4 mutations; autosomal-recessive hypomag-
nesemia with secondary hypocalcemia (OMIM
602014), caused by TRPM6 mutations; amyotrophic

phospholipase C; SKF96365, 1-(�-[3-(4-methoxyphenyl)propoxy]-
4-methoxyphenethyl)-1H-imidazole; TM, transmembrane; TRP,
transient receptor potential; TRPA, transient receptor potential
ankyrin; TRPC, transient receptor potential canonical; TRPM,
transient receptor potential Melastatin; TRPML, transient recep-
tor potential mucolipin; TRPP, transient receptor potential poly-
cystin; TRPV, transient receptor potential vanilloid.
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lateral sclerosis-Parkinsonism/dementia complex
(OMIM 105500), caused by TRPM2 or TRPM7 muta-
tions; brachyolmia type 3 (OMIM 113500); mucolipi-
dosis IV (OMIM 252650), caused by TRPML1 muta-
tions; Kozlowski type of spondylometaphyseal
dysplasia (OMIM 184252); metatropic dysplasia
(OMIM 156530); congenital distal spinomuscular at-
rophy (OMIM 600175); autosomal dominant polycystic
kidney disease (OMIM 173910), caused by TRPP1 or
TRPP2 mutations; and familial episodic pain syn-
drome, caused by a TRPA1 mutation. The function of
TRP channels in vivo is the current focus in the field.
Here we summarize recent progress on the physiology,
pharmacology, and pathophysiological function of
mammalian TRP channels.

For detailed tables of TRP genes, accession num-
bers, splice variants, domains, biophysical properties,
and pharmacology, see http://www.iuphar-db.org/
DATABASE/FamilyIntroductionForward?familyId�
78 and http://clapham.tch.harvard.edu. There are
many excellent comprehensive reviews on TRP chan-
nel domain structure, channelopathies, pharmacol-
ogy, and neuronal TRPs (Venkatachalam and Montell,
2007; Talavera et al., 2008; Latorre et al., 2009; Nilius
and Owsianik, 2010).

II. The Transient Receptor Potential
(Canonical) Family

Seven mammalian TRPC proteins (TRPC1–7; Fig. 1)
have been identified, but TRPC2 is a pseudogene in
humans. These channels can be divided into three sub-
groups by sequence homology: C1/C4/C5, C3/C6/C7, and

C2. All mammalian TRPC proteins seem to be potenti-
ated by stimulation of G-protein-coupled receptors and
receptor tyrosine kinases.

A. Transient Receptor Potential C1/C4/C5 Subgroup

TRPC1 was the first member of the mammalian
TRPCs purported to form an ion channel (Zitt et al.,
1996). However, whether TRPC1 can form functional
homomeric channels by itself remains debatable. Al-
though homomeric TRPC1 was proposed to be a store-
operated channel or stretch-activated channel (Zitt et
al., 1996; Maroto et al., 2005), heterologous overexpres-
sion of TRPC1 has produced no measurable currents
distinguishable from background leak (Lintschinger et
al., 2000; Strübing et al., 2001). It is possible that
TRPC1 homomeric channels are functional, but the ac-
tivating stimulus has not yet been found. Alternatively,
TRPC1 may function as a homomer in the endoplasmic
reticulum and reach the plasma membrane only when
coassembled with other TRP subunits. A more detailed
examination of previously proposed homomeric TRPC1
channels is required before TRPC1 can be assumed to
form a plasma membrane channel by itself.

TRPC1 forms heteromeric channels with C4 or C5,
which have properties distinct from those of homomul-
timers (Lintschinger et al., 2000; Strübing et al.,
2001). The existence of TRPC1 and C4 or C5 hetero-
meric channels is supported by the following evidence:
1) TRPC1 coexpressed with TRPC4 or TRPC5 form
current-voltage relationships distinct from TRPC4 or
TRPC5 expressed alone; 2) single-channel currents
from TRPC1 coexpressed with TRPC4 or TRPC5 have

FIG. 1. TRPC (canonical) family. A, molecular domains of TRPC channels and their current-voltage relationships. The TRP box is a conserved
region in TRPC, TRPV, and TRPM families; its function is unclear, but it may bind PIP2. CIRB refers to a calmodulin/IP3R-binding (CIRB) domain.
The EF hand is a helix-loop-helix structural domain found in a large family of calcium-binding proteins. PDZ (postsynaptic density 95/disc-large/zona
occludens) is a common protein interaction motif that holds together signaling complexes. In this and the following figures, steady state current-
voltage curves are shown. B, results of genetic deletion experiments. The TrpC7(�/�) phenotype has not been reported. TrpC2 is a pseudogene in
humans.
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clearly distinct conductances from TRPC4 or TRPC5
homomeric currents; 3) TRPC1 coimmunoprecipitates
with TRPC4 or TRPC5 when purified from brain, and;
4) in hippocampal neurons, TRPC1/C4 or TRPC1/C5
heteromeric channels seem to localize to the cell bod-
ies of neurons, whereas TRPC4 or TRPC5 can reside
in both the cell body and the periphery (dendrites,
axons) (Strübing et al., 2001, 2003). Therefore, given
the wide expression of TRPC1 and its ability to coas-
semble with other TRPC subunits, TRPC1 might be a
component of different heteromeric TRP complexes.

TRPC4 and TRPC5 are close homologs, sharing 64%
identity. Both TRPC4 and TRPC5 contain a C-
terminal PDZ-binding motif (VTTRL). PDZ domain
scaffolding proteins, such as Na�/H� exchanger regu-
lator factor, as well as signaling molecules such as
PLC�1, have been reported to coimmunoprecipitate
with TRPC4 and TRPC5 (Tang et al., 2000). TRPC4
and TRPC5 channels also share many functional char-
acteristics, are both potentiated by GPCRs that couple
to G�q/11, and have similar current-voltage relation-
ships (Okada et al., 1998; Schaefer et al., 2000). Al-
though activation of these channels seems to require
PLC enzymatic activity, their direct agonists are still
unknown (Hofmann et al., 1999; Schaefer et al., 2000).

Homomeric TRPC4 or TRPC5 subunits underlie cur-
rents with a unique doubly rectifying current-voltage
relationship with single-channel conductance of 28 and
38 pS, respectively. In addition, TRPC4 and TRPC5
channels are unique among TRP channels in that they
are potentiated by micromolar concentrations of the
trivalent cations La3� or Gd3� (Schaefer et al., 2000;
Strübing et al., 2001). TRPC5 is dramatically potenti-
ated by intracellular Ca2�, which does not seem to in-
volve calmodulin (CaM). Intracellular Ca2� also poten-
tiates TRPC4 channel activity to a lesser degree (Blair et
al., 2009). CaM itself was reported to accelerate TRPC5
agonist-activated current via a CaM-binding site located
at the C terminus of TRPC5 but not the CaM/IP3R-
binding (CIRB) domain (Ordaz et al., 2005). Other mod-
ulations include potentiation of TRPC5 channels by ex-
tracellular thioredoxin (Xu et al., 2008) and nitric oxide
(Yoshida et al., 2006), inhibition of TRPC4 channels by
PIP2 (Otsuguro et al., 2008), inhibition of outward
TRPC5 current by intracellular Mg2� (Obukhov and
Nowycky, 2008), and desensitization of TRPC5 channels
by PKC-mediated phosphorylation (Ordaz et al., 2005).

In heterologous expression systems, homomeric TRPC5
channels can be rapidly delivered to the plasma membrane
after stimulation of growth factor receptors via Rac,
phosphatidylinositol 3 kinase, and phosphatidylinositol
5 kinase (Bezzerides et al., 2004). In young hippocampal
neurons, TRPC5 channel subunits seem to interact with
growth cone-enriched protein stathmin 2, are packaged
into vesicles, and then carried to newly formed growth
cones, where TRPC5 expression modulates neurite ex-
tension and growth cone morphology (Greka et al.,

2003). A recent study showed that the downstream sig-
naling for TRPC5 in neurite growth and axon formation
may involve CaM kinase kinase and CaM kinase I �
(Davare et al., 2009).

TRPC1, TRPC4, and TRPC5 are expressed in the
brain, predominantly in the hippocampus, cortex, olfac-
tory bulb, and amygdala as well as heart, lung, liver,
spleen, and testis (Venkatachalam and Montell, 2007;
Riccio et al., 2009). TRPC1 was reported to mediate
store-operated current (Zitt et al., 1996), stretch-acti-
vated current (Maroto et al., 2005), or the metabotropic
glutamate receptor 1 (mGluR1)-evoked slow EPSC (Kim
et al., 2003). One group reported that TRPC1(�/�) mice
have increased body size, and the store-operated current
was not affected in vascular smooth muscle cells from
the knockout mice (Dietrich et al., 2007), whereas an-
other group reported that TRPC1(�/�) mice exhibit im-
paired salivary gland fluid secretion while the store-
operated current was reduced (Liu et al., 2007). A recent
study found that TRPC1(�/�) mice displayed normal
mGluR1-mediated synaptic transmission, with no obvi-
ous impairment of slow EPSCs or store-operated current
(Hartmann et al., 2008). These conclusions depend on
one TRPC1(�/�) mouse, and further studies should be
carried out to verify that the mice indeed lack TRPC1
protein. This issue is complicated by the lack of adequate
TRPC1 antibodies.

TRPC4(�/�) mice are viable, fertile, and exhibit no gross
abnormalities (Freichel et al., 2001). At the cellular level,
TRPC4 plays an important role in Ca2� signaling in endo-
thelial cells, and TRPC4(�/�) mice have defects in acetylcho-
line-induced vasoregulation and lung microvascular perme-
ability (Freichel et al., 2001; Tiruppathi et al., 2002). Another
study using TRPC4(�/�) mice concluded that TRPC4 medi-
ates the increase of 5-hydroxytryptamine 2 receptor-coupled
GABA release in thalamic interneurons (Munsch et al.,
2003). TRPC5(�/�) mice exhibit no obvious developmental or
anatomical defects. However, upon behavioral testing,
TRPC5(�/�) mice exhibit a reduced anxiety-like (innate fear)
phenotype (Riccio et al., 2009). The cellular mechanism un-
derlying this phenotype stems from reduced responses medi-
ated by group 1 mGluR and cholecystokinin 2 receptors in
neurons of the amygdala, a brain region that integrates sen-
sory input with behaviors related to fear and other emotions
(Riccio et al., 2009). It is noteworthy that mice lacking stath-
min, a protein interacting with TRPC5, have a similar phe-
notype (Shumyatsky et al., 2005).

B. Transient Receptor Potential C3/C6/C7 Subgroup

TRPC3, TRPC6, and TRPC7 amino acid sequences are
roughly 75% identical. When expressed in heterologous
systems, these proteins are potentiated by Gq/11-coupled
receptors or by direct application of diacylglycerol (DAG)
analogs (Hofmann et al., 1999; Okada et al., 1999).
TRPC3/C6/C7 channels generate nonselective, doubly
rectifying cation currents with a single-channel conduc-
tance of 65, 35, and 25 pS, respectively. They have
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relatively low selectivity for Ca2� over Na� and are
sensitive to intracellular Ca2�. TRPC3 may assemble
with TRPC1 in some cells (Lintschinger et al., 2000;
Strübing et al., 2003).

Several signaling molecules modulate TRPC3, TRPC6,
and TRPC7 channel activities. DAG analogs potentiate
TRPC3/C6/C7 channel activity but not via DAG’s stim-
ulation of PKC (Trebak et al., 2003). By phosphorylating
Ser-712 in TRPC3, PKC itself negatively regulates
TRPC3 function (Venkatachalam et al., 2003; Trebak et
al., 2005). PKG directly phosphorylates TRPC3 and in-
hibits the channel activity (Kwan et al., 2004). The non-
receptor tyrosine kinases Src and Fyn positively regu-
late TRPC3 and TRPC6, respectively (Hisatsune et al.,
2004; Vazquez et al., 2004). Intracellular Ca2� stimu-
lates TRPC6 but inhibits TRPC7 activity (Shi et al.,
2004). TRPC3 reportedly interacts with syntaxin 3,
which may be involved in channel trafficking or inser-
tion (Singh et al., 2004). Translocation of TRPC3 may
also be regulated by its interaction with the scaffolding
protein Homer1 (Kim et al., 2006). TRPC3 was further
found to associate via its N terminus with PLC�1 to form
a bimolecular PH domain, which binds PIP2 as well as
sphingosine-1-phosphate (van Rossum et al., 2005).
Thus, TRPC3/C6/C7 channels may serve as versatile
downstream effectors for a wide range of hormone and
neurotransmitter receptors.

TRPC3 is present in brain, with the highest expres-
sion in cerebellum, cortex, and hippocampus. In hip-
pocampal neurons and pontine neurons, TRPC3 is
reportedly activated through a pathway that is initi-
ated by binding of brain-derived neurotrophic factor to
TrkB, engagement of a PLC�, and activation of the
inositol trisphosphate receptor (Li et al., 1999; Amaral
and Pozzo-Miller, 2007), whereas in striatal cholin-
ergic neurons or cerebellar Purkinje neurons,
mGluR1s activate TRPC3 (Berg et al., 2007; Hart-
mann et al., 2008). TRPC3 is also reportedly involved
in brain-derived neurotrophic factor-induced axon
guidance or neuronal survival in cerebellar granule
cells (Li et al., 2005; Jia et al., 2007). Brain develop-
ment in TRPC3(�/�) mice appears grossly normal.
However, TRPC3(�/�) mice (but not TRPC1-TRPC4
double-knockout mice) lack mGluR1-mediated inward
currents or slow synaptic potentials (Hartmann et al.,
2008), suggesting that TRPC3 is responsible for the
mGluR-evoked slow EPSCs in mouse cerebellar Pur-
kinje cells. More importantly, a defect in walking be-
havior was found in TRPC3(�/�) mice, indicating a
critical function for TRPC3 in motor coordination
(Hartmann et al., 2008). Subsequently, “moonwalker”
mice, which have motor and coordination defects with
a characteristic backward walk, were shown to have a
gain-of-function mutation (T635A) in TRPC3 (Becker
et al., 2009). Gain of function resulting in constitutive
activation of TRPC3 channels overloads cells with
Ca2�. It is interesting that TRPC3 loss of function and

gain of function have similar phenotypes (Trebak,
2010). Transgenic mice with cardiac-specific overex-
pression of TRPC3 display a cardiomyopathic pheno-
type with increased hypertrophy after pressure over-
load (Nakayama et al., 2006).

TRPC6 channels are abundant in smooth and cardiac
muscle cells and thus are candidates for the receptor-
activated nonselective cation channels long known to
exist in these cells. TRPC6 is an essential part of the
�1-adrenoreceptor-activated cation channel in rabbit
portal vein myocytes (Inoue et al., 2001). As reported for
numerous Ca2� channels with constitutive activity, car-
diac-specific overexpression of TRPC6 in transgenic
mice results in cardiomyopathy (Kuwahara et al., 2006).
Thus, it is important to find conditions in which TRPC6
is overexpressed or contains gain-of-function mutations.
Indeed, gain-of-function mutations in TRPC6 are asso-
ciated with the kidney disorder focal segmental glomer-
ulosclerosis, characterized by proteinuria, nephrotic
syndrome, and progressive loss of renal function in hu-
mans (Reiser et al., 2005; Winn et al., 2005). It would
seem that this gain of function results in loss of normal
podocyte function.

TRPC6(�/�) mice exhibit agonist-induced contractil-
ity of cerebral arteries, perhaps as a result of compen-
satory up-regulation of TRPC3 and TRPC7 (Dietrich et
al., 2005). TRPC6 is reported to affect dendritic growth,
synaptic formation, and neuronal survival (Li et al.,
2005; Jia et al., 2007; Zhou et al., 2008); however, brain
development appears normal in TRPC6(�/�) mice.
Transgenic mice overexpressing TRPC6 in the forebrain
show enhanced spatial learning and memory (Zhou et
al., 2008).

TRPC7 is widely expressed. In brain, TRPC7 may
couple to the activation of group 1 mGluR in cholinergic
neurons of the striatum (Berg et al., 2007). In heart,
angiotensin II may activate TRPC7 to produce Ca2�

overload, induce myocardial apoptosis, and contribute to
heart failure (Satoh et al., 2007).

C. Transient Receptor Potential C2 Subgroup

TrpC2 is a pseudogene in humans, but its rodent
ortholog encodes a functional TRPC2 channel important
to pheromone sensing. In heterologous expression, TRPC2
forms homomeric channels permeant to cations and is
potentiated by PLC-mediated signaling cascades (Van-
nier et al., 1999; Hofmann et al., 2000). In mouse,
TRPC2 is predominantly expressed in the vomeronasal
organ, a specialized region of the vertebrate brain in-
volved in pheromone sensing (Liman et al., 1999; Van-
nier et al., 1999). In vomeronasal sensory neurons, DAG
can directly activate TRPC2 (Lucas et al., 2003). As-
sumed homomeric TRPC2 current-voltage relationships
are linear with a single channel conductance of 42 pS
(Lucas et al., 2003).

The selective expression of TRPC2 in the vomeronasal
organ hints at its potential role in pheromone signaling
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and sexual responses. Indeed, TRPC2(�/�) mice display
radically altered response to pheromone cues and abnor-
mal mating behavior (Leypold et al., 2002; Stowers et
al., 2002). TRPC2(�/�) male mice fail to display male-
male aggression, and they initiate sexual and court-
ship behaviors toward both male and female mice.
TRPC2(�/�) female mice show a reduction in female-
specific behavior but display unique characteristics of
male sexual and courtship behaviors (Stowers et al.,
2002; Kimchi et al., 2007). TRPC2 protein was detected
in spermatogenic cells based on antibody staining (Wis-
senbach et al., 1998; Jungnickel et al., 2001), but
TRPC2(�/�) mouse fertility is normal.

III. The Transient Receptor Potential
(Vanilloid) Family

The TRPV (vanilloid) subfamily (Fig. 2) is named after
vanilloid receptor 1 (Caterina et al., 1997). Six mamma-
lian TRPV proteins (TRPV1–6) have been identified.
They are commonly divided into two subgroups based on
sequence homology, functional similarities, and Ca2�

selectivity: TRPV1–V4 and TRPV5/V6. The channel
structure of the TRPV family contains intracellular N-
terminal ankyrin repeats, prevalent protein interaction
motifs that have been suggested to promote channel
tetramerization (Erler et al., 2004) and regulate channel
activity (Al-Ansary et al., 2010; Phelps et al., 2010). The
pharmacology of the TRPV family has been detailed in a
recent review (Vriens et al., 2009).

A. Transient Receptor Potential V1–V4 Subgroup

TRPV1–V4 subgroup members are weakly Ca2�-selec-
tive cation channels modulated by various intracellular
signals, including Ca2�, CaM, and phosphoinositides
(Zhu, 2005; Rohacs and Nilius, 2007). As for several
members of the TRP superfamily and certain other ion
channels (e.g., Hv1 and K2P), channels in this subgroup

exhibit high temperature sensitivities (Q10 � 10), sug-
gesting roles for TRPVs in thermal sensing by periph-
eral sensory neurons and other tissues. However, these
channels are modulated by many different types of
chemical and physical stimuli, indicating more complex
roles in cellular sensing besides thermal sensing.

TRPV1 forms a voltage-gated outwardly rectifying
weakly Ca2�-selective cation channel activated by nox-
ious heat (�43°C) and low pH (Caterina et al., 1997;
Tominaga et al., 1998; Jordt et al., 2000). As its name
suggests, TRPV1 can also be activated by vanilloid com-
pounds, such as capsaicin and capsinate found in hot
(chili) and nonpungent (bell) peppers, respectively (Ca-
terina et al., 1997; Iida et al., 2003), as well as by a
myriad of endogenous compounds, such as anandamide
(N-arachidonoylethanolamine) (Zygmunt et al., 1999),
N-arachidonoyldopamine (Huang et al., 2002), N-oleoyl-
dopamine (Chu et al., 2003), and arachidonic acid me-
tabolites (12- and 15-hydroperoxyeicosatetraenoic acid,
5- and 15-hydroxyeicosatetraenoic acid) (Hwang et al.,
2000). However, because of their lipophilicity, many of
these second messengers may have broad effects on most
ion channels. Many accumulate in plasma membranes
but are also rapidly altered, making it difficult to test
their activities under physiological conditions. A recent
study found a peptide toxin, DkTx, from the Earth Tiger
tarantula (Ornithoctonus huwena) that selectively and
irreversibly activates TRPV1 (Bohlen et al., 2010). The
toxin has a unique tandem repeat structure that binds to
trap TRPV1 in the open state by interacting with resi-
dues in pore-forming region of the channel.

The activity of TRPV1 is modulated by a variety of
intracellular molecules, including CaM, ATP, PIP2,
and Ca2�-dependent phosphorylation and dephos-
phorylation. CaM interacts with both the C and N
termini of the channel and cross-links them to desen-
sitization (Numazaki et al., 2003; Rosenbaum et al.,

FIG. 2. TRPV (vanilloid) family. A, molecular domains of TRPV channels and their current-voltage relationships. The ankyrin repeat is an
�33-residue motif consisting of two � helices separated by loops. This region in TRPV1 binds ATP. B, results of genetic deletion experiments.
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2004; Lishko et al., 2007). Intracellular ATP competes
with CaM for binding at overlapping sites in the
TRPV1 ankyrin repeat domain, thereby opposing the
actions of CaM and enhancing TRPV1 currents, and
prevents desensitization (Lishko et al., 2007). Al-
though the effect of PIP2 on TRPV1 modulation has
been controversial, there is growing support that PIP2
sensitizes TRPV1. PIP2 binds the TRPV1 C terminus
and competes with CaM for binding (Kwon et al.,
2007). PIP2-mediated enhancement of TRPV1 current
was also reported to require PIP2 binding to PIRT
(phosphoinositide-interacting regulator of TRP), a pu-
tative auxiliary subunit of the channel (Kim et al.,
2008a). TRPV1 activity is also regulated through the
dynamic balance of Ca2�-dependent phosphorylation
and dephosphorylation. Activation of the protein
phosphatase calcineurin dephosphorylates the chan-
nel and enables channel desensitization (Docherty et
al., 1996), whereas activation of protein kinase C
(Premkumar and Ahern, 2000) and protein kinase A
(De Petrocellis et al., 2001) seems to increase channel
activity.

TRPV1 is highly expressed in myelinated (A�) and
unmyelinated (C) nociceptive fibers of dorsal root, tri-
geminal, and nodose ganglion neurons (Helliwell et al.,
1998; Caterina et al., 2000). Although there is a paucity
of functional evidence for TRPV1 in the central nervous
system, TRPV1 may be present in the brain (Steenland
et al., 2006) and was proposed to play a role in synaptic
plasticity, such as long-term depression (Gibson et al.,
2008; Maione et al., 2009). TRPV1 is reportedly ex-
pressed in other tissues; like most of the TRP field,
however, functional evidence lags behind error-prone
antibody-determined localization data. Because TRPV1
is activated by heat and expressed in thermosensitive
tissues, there is much interest in whether TRPV1 is
important for thermosensation. Indeed, TRPV1(�/�)
mice display reduced thermal hyperalgesia after inflam-
mation and injury; however, whether TRPV1(�/�) mice
have decreased responses to acute noxious heat is still
debated (Caterina et al., 2000; Davis et al., 2000;
Bölcskei et al., 2005). Many of the pro-inflammatory
agents produced during injury reduce TRPV1 thresholds
to noxious stimuli to as low as 30°C, so that normally
nonpainful thermal stimuli are capable of activating
TRPV1 (Sugiura et al., 2002). As such, TRPV1(�/�)
mice show reduced thermal hyperalgesia in response to
inflammatory mediators such as bradykinin or NGF
(Caterina et al., 2000; Davis et al., 2000; Chuang et al.,
2001). Drugs developed to antagonize TRPV1 by the
pharmaceutical industry reduce sensitivity to heat stim-
uli in humans and initially raise body temperature
(Gavva et al., 2008). This may be due to the tonic acti-
vation of visceral TRPV1 by nonthermal factors, which
suppresses autonomic cold-defense effectors and body
temperature; blockade of the activation by TRPV1 an-
tagonists disinhibits thermoeffectors and causes hyper-

thermia (Romanovsky et al., 2009). In addition to impor-
tant roles in thermosensation and thermoregulation,
TRPV1 has been reported to be important for normal
bladder function (Birder et al., 2002), gastrointestinal
motility (Rong et al., 2004), behavioral responses to eth-
anol (Blednov and Harris, 2009; Ellingson et al., 2009),
airway inflammation and disease (Geppetti et al., 2006),
and detection of salt (Lyall et al., 2004).

TRPV2 is 50% identical to TRPV1 and forms a
weakly Ca2�-selective cation channel. It is activated
by temperatures �52°C when expressed in Xenopus
laevis oocytes (Caterina et al., 1999; Kanzaki et al.,
1999). There are, however, species-dependent differ-
ences in this activation, and human TRPV2 is appar-
ently not activated by heat (Neeper et al., 2007).
TRPV2 is reported to be present in a wide variety of
tissues, including brain, pancreas, spleen, lung, stom-
ach, intestine, bladder, prostate, and blood cells (Ca-
terina et al., 1999; Kowase et al., 2002), with the usual
caveat that antibody specificity has not been tested in
knockout mice. It has been proposed that TRPV2 may
serve as an endosomal calcium release channel that
controls endosome fusion and/or exocytosis (Saito et
al., 2007). Indeed, many studies suggest that activa-
tion of TRPV2 causes translocation of the channel to
the plasma membrane (Kanzaki et al., 1999; Iwata et
al., 2003; Nagasawa et al., 2007; Hisanaga et al.,
2009), and TRPV2 inhibitor transilast (N-(3,4-
dimethoxycinnamoyl) anthranilic acid) prevents this
redistribution (Hisanaga et al., 2009). It is noteworthy
that aberrant localization of TRPV2 is detected in
rodent models of muscular dystrophy, and expression of
dominant-negative TRPV2 reduced muscle damage (Iwata
et al., 2009). TRPV2 has been shown to be expressed in
macrophages and has a critical role in macrophage particle
binding and phagocytosis. TRPV2(�/�) mice have been
consistently shown to be more vulnerable when challenged
with pathogens such as Listeria monocytogenes, mainly
because of the greater organ bacterial load (Link et al.,
2010).

TRPV3 also forms a voltage-sensitive weakly Ca2�-
selective cation channel that is activated by warm tem-
peratures (33–39°C) (Peier et al., 2002b; Smith et al.,
2002; Xu et al., 2002) and a variety of botanical com-
pounds including camphor, eugenol, thymol, and carva-
crol (Moqrich et al., 2005; Xu et al., 2006). TRPV3 cur-
rents are unusual in two respects; they sensitize (grow
larger) with repeated activation, and their temperature-
dependent potentiation exhibits a marked hysteresis. In
rodent skin keratinocytes, TRPV3 is proposed to sense
warmth (Peier et al., 2002b; Chung et al., 2004);
TRPV3(�/�) mice display altered behavioral responses
to heat, including altered temperature preferences in
thermotaxis assays (Moqrich et al., 2005). Unexpectedly,
a recent study found that TRPV3 is required for epider-
mal growth factor receptor signaling in keratinocytes,
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and TRPV3(�/�) mice exhibit wavy hair coat and curly
whiskers (Cheng et al., 2010a).

Many pro-inflammatory agents such as bradykinin,
histamine, ATP, and prostaglandin E2 sensitize TRPV3
function (Xu et al., 2006; Huang et al., 2008; Mandadi et
al., 2009). ATP interacts with the channel’s N-terminal
ankyrin repeats to regulate this sensitization (Phelps et
al., 2010). Elevated TRPV3 activity can dramatically
influence skin integrity; rodents with constitutively ac-
tive TRPV3 channels have an increased susceptibility to
dermatitis and skin lesions (Asakawa et al., 2006; Imura
et al., 2007).

TRPV4 is activated by warm temperatures in the range
of 27–34°C; consequently, at physiological temperatures,
the channel should demonstrate significant constitutive
activity (Liedtke et al., 2000; Güler et al., 2002; Watanabe
et al., 2002). Activation of TRPV4 by heat may not be
direct; in inside-out patches, TRPV4 cannot be activated by
heat, yet it can still be activated by 4�-phorbol 12,13-
didecanoate, a non–PKC-activating phorbol ester (Wa-
tanabe et al., 2002). TRPV4 is sensitive to osmotic and
mechanical stimuli, such as cell swelling or fluid flow, and
sensitivity of TRPV4 to these stimuli may depend on phos-
pholipase A2 activation and the subsequent production of
the arachidonic acid metabolite epoxyeicosatrienoic acid
(EET) (Liedtke et al., 2000; Strotmann et al., 2000; Wa-
tanabe et al., 2003; Vriens et al., 2004, 2005; Fernandes et
al., 2008). TRPV4 can also be activated by botanical and
synthetic compounds such as 4�-phorbol-12,13-dihexano-
ate (Klausen et al., 2009), bisandrographolide (Smith et al.,
2006), and (N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sul-
fonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]car-
bonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide
(GSK1016790A) (Thorneloe et al., 2008). Like TRPV1,
TRPV4 is modulated by CaM and ATP, C-terminal CaM
binding potentiating the current (Strotmann et al., 2003)
and Ca2�- dependent CaM binding to the N terminus
desensitizing the current (Rosenbaum et al., 2004; Lishko
et al., 2007). A variety of kinases also seem to modulate its
activity (Gao et al., 2003; Chen et al., 2008a; Fan et al.,
2009; Wegierski et al., 2009).

TRPV4 is widely distributed and was proposed to
sense temperature in the hypothalamus, skin and pri-
mary sensory neurons (Liedtke et al., 2000; Güler et al.,
2002; Peier et al., 2002b). However, three groups re-
ported TRPV4(�/�) mice had normal behavioral re-
sponses to thermal stimulation in the hot plate and
radiant paw heating assays, except under inflammatory
conditions (Liedtke and Friedman, 2003; Suzuki et al.,
2003; Todaka et al., 2004). A more recent study revealed
that TRPV4(�/�) mice exhibited a strong preference for
34°C, whereas wild-type mice failed to discriminate be-
tween floor temperatures of 30°C and 34°C (Lee et al.,
2005a). Such differences in findings may be due to strain
differences.

The sensitivity of TRPV4 to osmotic stimuli may be
important for cellular and systemic osmoregulation.

TRPV4 was detected in putative osmoreceptive neu-
rosensory cells around the ventricle (Liedtke et al.,
2000), and TRPV4(�/�) mice display diminished
drinking, elevated systemic osmotic pressure, and re-
duced synthesis of antidiuretic hormone in response to
systemic hypertonicity induced by salt ingestion
(Liedtke and Friedman, 2003). However, another
study described an increase in antidiuretic hormone
secretion in response to hypertonicity induced by wa-
ter deprivation in TRPV4(�/�) mice (Mizuno et al.,
2003). TRPV4 was also detected in cholangiocytes or
the ciliated epithelial cells lining the bile duct, where
it may play a key role in osmotic regulation of bile
composition (Gradilone et al., 2007).

In support of a mechanosensing function for TRPV4,
TRPV4(�/�) mice have a reduced behavioral response
to persistent tail pressure as well as a reduced sensory
neuronal discharge to pin prick on glabrous skin (Suzuki
et al., 2003). TRPV4 may also contribute to the develop-
ment of mechanical hyperalgesia after inflammation
and injury (Alessandri-Haber et al., 2006). TRPV4 is
expressed in urothelium and may play a role in urothe-
lium-mediated transduction of intravesical mechanical
pressure. In support of this hypothesis, TRPV4(�/�)
mice display impaired bladder function (Birder et al.,
2007; Gevaert et al., 2007). TRPV4 is expressed in inner
and outer hair cells of the cochlea, but TRPV4(�/�) mice
show no difference in the response to acoustic startle
compared with wild-type mice (Liedtke and Friedman,
2003), indicating that the channel may not be the mech-
anotransduction channel in hair cells. In lung endothe-
lial cells, TRPV4 may respond to unequal pressure
across the alveolar septal barrier to regulate the perme-
ability of these cells (Alvarez et al., 2006; Hamanaka et
al., 2007). TRPV4(�/�) mice displayed significantly less
lung edema in response to high peak inflation pressure
ventilation compared with wild-type mice (Whitlock,
1995).

TRPV4 seems to regulate vascular tone (Earley et al.,
2009; Zhang et al., 2009) and bone deposition and re-
modeling (Masuyama et al., 2008; Mizoguchi et al.,
2008). It is noteworthy that mutations in TRPV4 have
been identified in patients with three dominantly inher-
ited skeletal phenotypes: autosomal-dominant brachyol-
mia, spondylometaphyseal dysplasia Kozlowski type,
and metatropic dysplasia (Rock et al., 2008; Krakow et
al., 2009). TRPV4 mutations have also been linked to
patients with congenital distal spinomuscular atrophy,
Charcot-Marie-Tooth disease type 2C, and scapulopero-
neal spinal muscular atrophy (Auer-Grumbach et al.,
2010; Deng et al., 2010; Landouré et al., 2010).

B. Transient Receptor Potential V5/V6 Subgroup

TRPV5 and TRPV6 are highly homologous proteins,
sharing 74% identity (Clapham, 2003). Like other TRPV
family members, they form Ca2�-permeable inwardly
rectifying cation channels; unlike other TRPV family
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members, however, they are highly Ca2� selective (PCa/
PNa � 100) and are not heat-sensitive (Vennekens et al.,
2000; Yue et al., 2001). Rather, they tend to be active at
low Ca2� concentrations and physiological membrane
potentials. Both TRPV5 and TRPV6 inactivate to pre-
vent Ca2� overload, although with different kinetics
(Suzuki et al., 2000; Hoenderop et al., 2001; Nilius et al.,
2002). TRPV5 has a 100-fold higher affinity for the non-
specific blocker ruthenium red (IC50, 121 nM) than does
TRPV6 (IC50, 9 �M) (Hoenderop et al., 2001; Voets et al.,
2001).

The activity of TRPV5 and TRPV6 at the plasma
membrane is regulated by a variety of second messen-
gers, including Ca2�, CaM, Mg2�, ATP, PIP2, and pro-
tein kinases. Ca2� acts as a negative feedback regulator
of channel activity and contributes to channel inactiva-
tion (Vennekens et al., 2000; Hoenderop et al., 2001;
Nilius et al., 2001; Yue et al., 2001). CaM interacts with
TRPV5 and TRPV6 in a Ca2�-dependent manner (Lam-
bers et al., 2004) and was proposed to mediate the slow
component of Ca2�-dependent inactivation (Niemeyer et
al., 2001). Intracellular Mg2� causes a fast voltage-de-
pendent block as well as a slower inhibition of TRPV5
and TRPV6 current (Nilius et al., 2000; Voets et al.,
2003; Lee et al., 2005b). ATP binding sites have been
identified within the ankyrin repeat domain, and the C
terminus of TRPV6 and intracellular ATP stabilizes
TRPV5 and TRPV6 currents (Hoenderop et al., 2001;
Al-Ansary et al., 2010). PIP2 binding to the TRP box
potentiates TRPV5 and TRPV6, and its depletion in the
membrane via Ca2�-dependent activation of PLC con-
tributes to channel inactivation (Rohács et al., 2005;
Thyagarajan et al., 2008; Thyagarajan et al., 2009). A
variety of other regulatory molecules may modulate its
activity or membrane expression. Ca2� binding proteins
80K-H/PRKCSH/hepatocystin and Calbindin-D28K tether
to TRPV5 and prevent negative feedback of Ca2� on the
channels (Gkika et al., 2004; Lambers et al., 2006). B-
box and SPRY-domain containing protein interacts with
TRPV5 and decreases channel activity (van de Graaf et
al., 2006), whereas RGS2 (Schoeber et al., 2006) and
Nipsnap1 (Schoeber et al., 2008) bind to TRPV6 and
inhibit the channel’s activity.

TRPV5 is expressed in a number of tissues. In the kid-
ney, TRPV5 is predominantly expressed in the distal con-
voluted and connecting tubule where it is important for
transcellular transport and active reabsorption of Ca2� in
the kidney (Hoenderop et al., 1999). Indeed, ablation of the
TRPV5 results in impaired Ca2� resorption in the distal
convoluted and connecting tubule; TRPV5(�/�) mice ex-
crete approximately six times more Ca2� in their urine and
display compensatory increases in vitamin D levels and
intestinal hyperabsorption of Ca2�. In addition, they dis-
play polyuria with significantly more acidic urine than
that of wild-type mice (Hoenderop et al., 2003).
TRPV5(�/�) mice also display bone abnormalities, includ-
ing reduced trabecular and cortical bone thickness (Hoen-

derop et al., 2003) and increased osteoclast number and
size (van der Eerden et al., 2005). Yet TRPV5(�/�) mice
had low serum deoxypyridinoline levels, indicating de-
creased rate of bone breakdown and, unlike other mouse
models with decreased osteoclast function, showed de-
creased bone thickness without osteopetrosis (van der
Eerden et al., 2005).

TRPV6 is more widely distributed than TRPV5
(Peng et al., 2000; Hoenderop et al., 2001; Hirnet et
al., 2003). In the intestine, TRPV6 localizes to the
brush border membrane of enterocytes, where it is
proposed to mediate transcellular Ca2� entry (Peng et
al., 1999; Zhuang et al., 2002). Indeed, TRPV6(�/�)
mice that were fed a low Ca2� diet exhibited decreased
Ca2� absorption and serum Ca2� levels compared
with wild-type mice; however, a disruption of closely
adjacent EphB6 gene in the TRPV6(�/�) mice may
complicate the interpretation of this phenotype (Bi-
anco et al., 2007; Benn et al., 2008). In the kidney,
TRPV6 is expressed in the convoluted tubules, con-
necting tubules, and cortical and medullary collecting
ducts of the nephron, where it helps resorb Ca2� (Ni-
jenhuis et al., 2003). In the placental trophoblast,
TRPV6 contributes to the transfer of Ca2� from
mother to fetus (Moreau et al., 2002; Suzuki et al.,
2008) and may contribute to the reduced litter size of
TRPV6(�/�) mice (Bianco et al., 2007).

IV. The Transient Receptor Potential
(Melastatin) Family

The mammalian TRPM subfamily has eight mem-
bers (Fig. 3) and is divided into three main groups
based on similarities in amino acid sequence: TRPM1/
M3, TRPM4/M5, and TRPM6/M7; TRPM2 and TRPM8
exhibit low sequence homology and therefore do not
seem to warrant grouping. TRPM proteins have a TRP
domain C-terminal to the transmembrane segments
but lack ankyrin repeats in the N terminus. The N-
terminal part of TRPM proteins is considerably longer
than the corresponding regions in TRPC and TRPV
members. The N terminus contains a large TRPM
homology region (around 700 amino acids), which
bears no homology to other known molecules. The
biological significance of this region is still unknown.
The C terminus can be divided into two regions, a
coiled-coil domain and a second variable region.
TRPM2, TRPM6, and TRPM7 are unique among
known ion channels in that they encode enzymatically
active protein domains in their C termini.

A. Transient Receptor Potential M1/M3 Subgroup

TRPM1, the founding member of the TRPM subfam-
ily, was discovered in a melanoma screen as a tran-
script that had decreased expression in highly meta-
static, compared with less metastatic melanoma cells
(Duncan et al., 1998). A recent analysis of mRNA
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showed that at least five human ion-channel–forming
isoforms of TRPM1 could be detected in melanocytes,
melanoma, brain, and retina (Oancea et al., 2009). In
melanoma cells, TRPM1 is prevalent in highly dy-
namic intracellular vesicular structures. Total inter-
nal reflection fluorescent imaging of HEK cells ex-
pressing the GFP-TRPM1 splice variants suggests
that the GFP-tagged isoforms did not reach the
plasma membrane (Oancea et al., 2009). When ex-
pressed in SK-Mel22a melanoma cells, TRPM1 chan-
nels show a nonselective, outwardly rectifying cur-
rent, which suggests that TRPM1 function as plasma
membrane channels might depend on melanocyte-
specific trafficking. Intriguingly, TRPM1 expression
correlates with melanin content in neonatal human
epidermal melanocytes, but how TRPM1 might regu-
late melanin is not known (Oancea et al., 2009).

Several independent studies have found that TRPM1
has a critical role in synaptic function in ON bipolar cells
in the retina. Mutations in TRPM1 may contribute to
congenital stationary night blindness (CSNB), a nonpro-
gressive dark-adapted visual deficit (Morgans et al.,
2009; Shen et al., 2009; Koike et al., 2010). TRPM1 is
activated by the mGluR6 signaling cascade and thus is
required for the depolarizing light response in ON bipo-
lar cells. Consistent with the phenotype found in CSNB-
affected humans, TRPM1(�/�) mice lack the b-wave
normally recorded in electroretinograms. (Morgans et
al., 2009; Shen et al., 2009; Koike et al., 2010). Addi-
tional support for TRPM1 in retinal function stems from
human genetic studies by three independent groups,
which showed that mutations in TRPM1 are associated
with CSNB (Audo et al., 2009; Li et al., 2009; van Gen-
deren et al., 2009).

TRPM3 is most closely related to TRPM1. TRPM3
forms a constitutively active, Ca2�-permeable, nonse-
lective cation channel with a reported near linear
current-voltage relationship in heterologous expres-
sion systems (Grimm et al., 2003). TRPM3 is alterna-
tively spliced; TRPM3�1 and TRPM3�2, which differ
only in the presumed pore region, show significant
differences in their channel properties (Oberwinkler
et al., 2005): TRPM3�1 channels are poorly permeable
to divalent cations, whereas TRPM3�2 channels con-
duct Ca2� and Mg2�. In addition, extracellular Na�

inhibits TRPM3�2 but not TRPM3�1 channels. Both
variants exhibit constitutively active, outwardly rec-
tifying currents that are blocked by intracellular
Mg2�, similar to TRPM6 and TRPM7 channels. An-
other short variant, TRPM31325 (shorter carboxyl ter-
minus), mediates a spontaneous, nonselective cation
current with PCa/PNa � 1.6 and detectable Mg2� per-
meability. The single-channel conductance of
TRPM31325 is �80 and 65 pS in the presence of extra-
cellular Na� and Ca2�, respectively. Their activities
could be suppressed by 100 �M Gd3� and La3� and
increased by hypotonicity or D-erythro-sphingosine, a
metabolite of cellular sphingolipids (Grimm et al.,
2003, 2005).

TRPM3 is most prominent in kidney, brain, and
pituitary. However, the function of TRPM3 is poorly
characterized, probably because of the existence of
multiple variants with different properties. A TRPM3(�/�)
mouse has not been reported to date. A recent report
suggests that the steroid hormone pregnenolone sul-
fate can act as endogenous ligand for TRPM3 (Wagner
et al., 2008). TRPM3 protein is expressed in pancre-
atic � cells, and pregnenolone could augment glucose-

FIG. 3. TRPM (melastatin) family. A, molecular domains of TRPM channels and their current-voltage relationships. NUDIX is a phosphohydrolase
family homologous region in TRPM2 that binds ADP ribose. TRM6 and TRPM7 possess a C-terminal serine/threonine kinase that is similar in
structure to protein kinase A. B, results of genetic deletion experiments.
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induced insulin secretion from pancreatic islets by
activating TRPM3 (Wagner et al., 2008). High-
resolution oligonucleotide arrays were used to suggest
that TrpM3 is a candidate gene for the Kabuki syn-
drome, a congenital mental retardation syndrome
(Kuniba et al., 2009).

B. Transient Receptor Potential M2

TRPM2 contains a C-terminal nudix hydrolase do-
main that is highly homologous to the ADP pyrophos-
phatase NUDT9. This domain binds ADP ribose (EC50,
�100 �M) in a cleft in the NUDT9 domain of TRPM2
(Perraud et al., 2005) and hydrolyzes it (Perraud et al.,
2001; Sano et al., 2001). ADP ribose arises from break-
down of �-NAD, CD38, or other enzymes acting on cyclic
ADP ribose and hydrolysis of ADP polymers by poly-
ADP ribose glycohydrolase. TRPM2 is also activated by
oxidative or nitrosative stress (e.g., H2O2) (Hara et al.,
2002), perhaps mediated by mitochondrial ADP-ribose
(Perraud et al., 2005). High levels of intracellular Ca2�

have been proposed to activate TRPM2 (�10 �M) (Kraft
and Harteneck, 2005; Du et al., 2009).

TRPM2 is a nonselective cation channel with a near-
linear current-voltage relationship and has a single-
channel conductance of �62 pS. TRPM2 current was
insensitive to 100 �M La3� but was inhibited by non-
specific channel blockers such as flufenamic acid or the
antifungal agents clotrimazole or econazole (Hill et al.,
2004). It is noteworthy that TRPM2 may function as a
lysosomal Ca2�-release channel activated by intracellu-
lar ADP-ribose in addition to its role as a plasma mem-
brane channel (Lange et al., 2009).

TRPM2 is highly expressed in cells of monocytic
lineage. Because TRPM2 is regulated by signaling
pathways responsive to oxidative stress and tumor
necrosis factor-�, it has been assumed to be a sensor
for intracellular oxidation (Hara et al., 2002; Kaneko
et al., 2006). TRPM2 is proposed to function in mono-
cyte chemotaxis, which is known to be regulated by
ADP-ribose (Massullo et al., 2006). Functional TRPM2
has been reported in neurons, where it may be in-
volved in H2O2-induced neuronal death (Kaneko et al.,
2006; Olah et al., 2009), and in pancreatic � cells,
where it may regulate insulin secretion (Togashi et
al., 2006). Studies using TRPM2(�/�) mice suggest
that the channel controls reactive oxygen species-
induced chemokine production in monocytes and neu-
trophil infiltration in a mouse model of inflammation
(Yamamoto et al., 2008). Human genetics studies in-
dicate the potential involvement of TRPM2 in bipolar
disorders (McQuillin et al., 2006). In addition, an in-
activating proline-to-leucine substitution at position
1018 in TRPM2 is found in two related neurodegen-
erative disorders, amyotrophic lateral sclerosis and
Parkinsonism/dementia complex, that have a high in-

cidence on the Pacific Islands of Guam and Rota (Her-
mosura et al., 2008).

C. Transient Receptor Potential M4/M5 Subgroup

TRPM4 and TRPM5 are the only monovalent-selec-
tive ion channels of the TRP family (Launay et al., 2002;
Hofmann et al., 2003; Liu and Liman, 2003; Prawitt et
al., 2003). TRPM4 and TRPM5 have �40% sequence
identity and exhibit similar channel properties. TRPM4
is expressed as two splice variants, TRPM4a (nonfunc-
tional channel) and TRPM4b (functional channel) (Xu et
al., 2001; Launay et al., 2002; Nilius et al., 2003). Both
TRPM4b and TRPM5 channels have a single-channel
conductance of �25 pS, their whole-cell currents are
strongly outwardly rectified (Launay et al., 2002), and
they are blocked by intracellular flufenamic acid and
spermine (Ullrich et al., 2005). A short stretch of six
acidic amino acids in the pore loop determines their
monovalent selectivity (Nilius et al., 2003). Both are
activated by relatively high Ca2� levels in the cytosol
(�500 and 80 �M for TRPM4 and TRPM5, respectively)
(Hofmann et al., 2003; Liu and Liman, 2003; Ullrich et
al., 2005), and PIP2 reverses their Ca2�-dependent de-
sensitization (Zhang et al., 2005; Nilius et al., 2006).
Both TRPM4 and TRPM5 have been proposed to be
preferentially sensitive to temperature in the range of
15 to 35°C (Talavera et al., 2005). TRPM4, but not
TRPM5, is inhibited by intracellular ATP, whereas
TRPM5 is inhibited by intracellular acidic pH (Nilius et
al., 2004; Liu et al., 2005). TRPM5 activates and inacti-
vates more rapidly than TRPM4. TRPM4 is also modu-
lated by protein kinase C (PKC) phosphorylation, which
enhances its sensitivity to intracellular Ca2� (Nilius et
al., 2005).

TRPM4 and TRPM5 probably underlie the often ob-
served Ca2�-activated monovalent-selective cation cur-
rent, and thus have attracted interest for their possible
involvement in membrane potential oscillations (Lau-
nay et al., 2002; Prawitt et al., 2003). TRPM4 is ubiqui-
tous, with highest expression in kidney and brain.
Knockdown of TRPM4 decreases cerebral artery myo-
genic constrictions and thus may contribute to cerebral
blood flow regulation (Reading and Brayden, 2007).
Gain-of-function mutation of TRPM4 (E7K) causes im-
paired endocytosis and may be associated with human
progressive familial heart block type 1 (Kruse et al.,
2009). TRPM4(�/�) mice exhibit increased IgE-depen-
dent mast cell activation and anaphylactic responses
(Vennekens et al., 2007). Moreover, chemokine-depen-
dent dendritic cell migration is considerably impaired in
TRPM4(�/�) mice (Barbet et al., 2008). In a spinal cord
injury model, TRPM4(�/�) mice were relatively pro-
tected compared with wild-type mice, and their neuro-
logical function improved more readily after injury (Ger-
zanich et al., 2009).

TRPM5 is expressed in taste receptor cells (Pérez et al.,
2002), and sweet, umami, and bitter taste reception were
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reportedly abolished in TRPM5(�/�) mice, whereas sour
or salty taste sensation was preserved (Zhang et al., 2003).
The G protein PLC�2-coupled receptors T1R and T2R may
activate TRPM5 to produce these sensations (Zhang et al.,
2003). Another group found markedly impaired but not
complete absence of responses to bitter, sweet, and umami
compounds (Damak et al., 2006). TRPM5 is expressed in
pancreatic �-cells, where it may affect insulin release
through PLC-dependent pathways (Gilon and Henquin,
2001). Indeed, recent studies from independent groups
found defective glucose-induced insulin release in
TRPM5(�/�) mice (Brixel et al., 2010; Colsoul et al., 2010).
TRPM5 immunoreactivity was also seen in other chemo-
sensory organs—the main olfactory epithelium and the
vomeronasal organ, hinting at its potential functions in
chemosensation (Kaske et al., 2007). Using TRPM5-GFP
transgenic and TRPM5(�/�) mice, a recent study showed
that TRPM5 is expressed in solitary enteroendocrine che-
mosensory cells in mouse duodenum and may be essential
for the release of the endogenous opioids �-endorphin and
Met-enkephalin and the release of uroguanylin from these
cells (Kokrashvili et al., 2009b). It is noteworthy that some
enteroendocrine cells express signaling elements involved
in taste transduction (the gut’s luminal glucose sensor),
initiating the incretin response to elicit the release of glu-
cagon-like peptide 1 (Kokrashvili et al., 2009a). Therefore,
TRPM5’s presence in these gut “taste cells” as well as in
pancreatic �-cells will be interesting to explore in diabetes
and obesity.

D. Transient Receptor Potential M6/M7 Subgroup

TRPM6 and TRPM7 are unique among ion channels
because they possess both ion channel and protein ki-
nase activities. TRPM6 and TRPM7 serine/threonine
kinase domains are located at the extreme C terminus,
and the catalytic core of the kinase domain is similar to
that of other eukaryotic protein kinases and to enzymes
with “ATP-grasp” domains. High-resolution structure of
the M7 kinase alone demonstrates marked similarities
to protein kinase A (Yamaguchi et al., 2001). The kinase
domain does not seem to affect channel activity in any
direct manner. Both proteins also share similar biophys-
ical properties; these channels allow Mg2� and Ca2�

into the cell (albeit at very low conductances) and allow
primarily monovalent K� out of the cell. They are
strongly outwardly rectifying under physiological condi-
tions. In the absence of divalent cations, their current-
voltage relations are practically linear, indicating that
divalent ions bind the pore to regulate conductance. At
positive voltages, TRPM6 and TRPM7 have single-chan-
nel conductances of 84 and 105 pS, respectively. Both
channels are inhibited by intracellular Mg2� (0.3–1.0
mM) (Nadler et al., 2001; Voets et al., 2004b), but the
inward current is strongly potentiated by extracellular
acidic pH selectively (Jiang et al., 2005). However, ho-
momeric TRPM6 and TRPM7 channels can be distin-
guished pharmacologically. For example, micromolar

levels of 2-APB increase TRPM6 but inhibit TRPM7
channel activities, whereas millimolar concentrations of
2-APB potentiate TRPM7 channel activities (Li et al.,
2006).

TRPM6 is primarily expressed in kidney and intes-
tine, where it has been suggested to be responsible for
epithelial Mg2� reabsorption, based largely on the iden-
tification of TRPM6 mutants in a hereditary disease
called hypomagnesemia with secondary hypocalcemia
(Schlingmann et al., 2002; Walder et al., 2002). The
symptom of the disease could be alleviated significantly
by dietary supplements of high-dose Mg2� (Schling-
mann and Gudermann, 2005). TRPM6(�/�) mice were
generated, but many of them died by embryonic day
12.5. These mice had neural tube defects with exen-
cephaly and spina bifida occulta. Feeding dams a high-
Mg2� diet improved offspring survival. These results
indicate a critical role for TRPM6 in neural tube closure
in development (Walder et al., 2009).

TRPM7 is a large protein (1863 amino acids), identified
in a yeast two-hybrid screen as a protein interacting with
PLC�1 (Runnels et al., 2001). In contrast to other GPCR-
activated TRP channels, TRPM7 current increases slowly
under whole-cell recording conditions and is inactivated by
PIP2 hydrolysis by PLC� or PLC� (Runnels et al., 2002).
TRPM7 autophosphorylates (Matsushita et al., 2005)
and can phosphorylate proteins such as annexin 2
(Dorovkov and Ryazanov, 2004) and myosin IIA heavy
chain (Clark et al., 2006), but its native substrates
have not been identified.

Native activation of the TRPM7 channel is, as for most
TRP channels, an unsolved mystery. Upon break-in during
whole-cell recording, TRPM7 currents continually increase
over time until they are quite large. This increase does not
occur under perforated-patch conditions, in which intracel-
lular perfusion is restricted to ions, suggesting that an
intracellular inhibitor (in addition to Mg2�) normally lim-
its current (L. J. Wu, B. Navarro, and D. E. Clapham,
unpublished observations). TRPM7 expressed in a vascu-
lar smooth muscle cell line is subtly increased by shear
stress apparently via insertion of additional TRPM7 into
the plasma membrane (Oancea et al., 2006), but TRPM7 is
not in any traditional sense a mechanosensitive channel.
In addition to Mg2� and Ca2�, TRPM7 is permeable to
Zn2�, Co2�, and Mn2�, providing a potential ion channel
mechanism for cellular entry of trace metal ions (Monteilh-
Zoller et al., 2003).

TRPM7 is ubiquitously expressed but the expression
level is low in most tissues. Suppression of TRPM7 ex-
pression reduced Ca2�-dependent anoxic death in neu-
ronal culture, as well as in mice with stroke (Aarts et al.,
2003; Sun et al., 2009). TRPM7 was proposed, based on
knockout of TRPM7, in DT-40 chicken B-lymphocyte cell
lines, to be important for Mg2� homeostasis (Schmitz et
al., 2003). Genetic deletion of TrpM7 is lethal before
embryonic day 7.5, suggesting that TRPM7 is essential
for embryonic development (Jin et al., 2008). Tissue-
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specific deletion of TRPM7 in the T-cell lineage results
in a developmental block of thymocytes at the double-
negative stage. Careful quantitation of intracellular
Mg2� changes in response to rapid changes in external
Mg2� levels did not alter global intracellular Mg2�. In
addition, total Mg2� levels in cells did not differ between
T cells in wild-type and conditional TRPM7(�/�) mice
(Jin et al., 2008). Thus, TRPM7 does not have an impor-
tant function in Mg2� homeostasis in T cells, although
localized changes in intracellular Mg2� may be relevant
to its function. These findings also raise questions re-
garding the mechanism of hypomagnesemia (in hypo-
magnesemia with secondary hypocalcemia) that can be
resolved by mutation of TRPM6 in animal models. A
report that mutations in TRPM7 (threonine-to-isoleu-
cine substitution at position 1482) in amyotrophic lat-
eral sclerosis–Parkinsonism/dementia complex (Hermo-
sura et al., 2005) has been challenged by a recent
linkage study (Hara et al., 2010).

It is noteworthy that TRPM7 is localized to a distinct
set of vesicles in some cells. TRPM7 resides in the mem-
brane of synaptic vesicles of sympathetic neurons, forms
molecular complexes with the synaptic vesicle proteins
synapsin I and synaptotagmin I, and directly interacts
with synaptic vesicular snapin. In sympathetic neurons,
changes in TRPM7 levels and channel activity alter
acetylcholine release. Thus, vesicular TRPM7 channel
activity is critical to neurotransmitter release in sympa-
thetic neurons (Krapivinsky et al., 2006). How would
vesicle-localized TRPM7 mediate fusion? First, remem-
ber that ion channels being trafficked to the plasma
membrane are assembled with the outer vestibule of the
pore facing the inside of the vesicle. The cytoplasmic
domains remain cytoplasmic before and after fusion.
When TRPM7 is vesicular, its “outer” surface faces high
potentiating (Li et al., 2007) pH. Vesicular membranes
typically lack PIP2 in contrast to the PIP2-rich plasma
membrane, and TRPM7 should be closed under this
condition. When the vesicle approaches the membrane,
its cytoplasmic domains are exposed to the high PIP2
levels of the plasma membrane, and the channel should
open in its high divalent conductance state (low intra-
vesicular pH). In this model, TRPM7 acts as a coinci-
dence detector, opening only when vesicular pH is low,
and PIP2 in the plasma membrane binds cytoplasmic
domains of TRPM7. TRPM7 opening at this point would
allow ion exchange between the vesicular and cytoplas-
mic spaces (Montell, 2006; Brauchi et al., 2008).

E. Transient Receptor Potential M8

Like TRPM1, TRPM8 was originally identified in a
screen of cancer-related genes (Tsavaler et al., 2001).
TRPM8 is permeant to Ca2� (PCa/PNa �1–3) and has a
single-channel conductance of �80 pS. Its sensory role
was recognized when it was isolated by expression clon-
ing of a menthol receptor from trigeminal neurons (Mc-
Kemy et al., 2002) and by bioinformatics approaches

using TRP channel sequence homology (Peier et al.,
2002a). It can be activated by cold (8–28°C) and en-
hanced by cooling compounds such as menthol and icilin
(McKemy et al., 2002; Peier et al., 2002a). Temperature
modulates the voltage dependence of the channel, men-
thol and icilin mimicking this effect (Voets et al., 2004a).
However, menthol and icilin may activate the TRPM8
through distinct mechanisms. For example, menthol ac-
tivation is unaffected by intracellular pH and is inhib-
ited by intracellular Ca2�, whereas icilin activation is
inhibited by low pH and by the absence of intracellular
Ca2� (Andersson et al., 2004; Chuang et al., 2004). Mu-
tational analyses indicate that residues in the S1 and S2
transmembrane segments are required for TRPM8 acti-
vation by menthol and icilin (Chuang et al., 2004; Ban-
dell et al., 2006), whereas S4 and the S4–S5 linker of
TRPM8 may mediate voltage sensing and some aspect of
menthol binding (Voets et al., 2007).

TRPM8 is widely expressed, but its most clear-cut
function is as a cold sensor in TrkA� small-diameter
primary sensory neurons. Indeed, three independent
studies showed that TRPM8(�/�) mice have remark-
able deficiencies to a range of cold responses (Bautista et
al., 2007; Colburn et al., 2007; Dhaka et al., 2007). This
suggests that TRPM8 is the predominant detector of
cold temperatures in vivo, which has implication for
somatosensation, nociception, and the development of
analgesia. TRPM8 is also identified in other tissues; for
example, the prostate epithelium (Tsavaler et al., 2001),
where it may act as an androgen-responsive channel
(Zhang and Barritt, 2004), and in arterial vascular
smooth muscle, where it may regulate vascular tone
(Johnson et al., 2009). High concentrations of menthol
were used to argue that TRPM8 is also expressed in
human sperm to regulate the acrosome reaction (De
Blas et al., 2009), but TRPM8(�/�) fertility is normal
(Bautista et al., 2007; Colburn et al., 2007; Dhaka et al.,
2007).

V. The Transient Receptor Potential
(Ankyrin) Family

TRPA1 (Fig. 4) is the only member of the mammalian
family, but it seems to have arisen from larger families
in insects that critically depend on chemosensation. The
“A” in TRPA1 stands for ankyrin, because the protein
contains at least 14 ankyrin repeats in its N terminus.
These repeats are hypothesized to interact with cy-
toskeletal components (Howard and Bechstedt, 2004;
Sotomayor et al., 2005) or to modulate ligand binding
(Lishko et al., 2007). TRPA1 also contains an N-terminal
Ca2� binding EF hand domain. TRPA1 is selectively
expressed in a subpopulation of neurons in the dorsal
root, trigeminal, and nodose ganglia (Story et al., 2003;
Diogenes et al., 2007; Brierley et al., 2009), as well as in
hair and skin cells (Corey et al., 2004; Atoyan et al.,
2009; Kwan et al., 2009). There it primarily acts as a
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chemosensor and, in some cases, may amplify Ca2�-
entry through other channels (Jordt et al., 2004; Bau-
tista et al., 2005; Zurborg et al., 2007). A recent study
found that a gain-of-function mutation (N855S) in the
S4 transmembrane segment of TRPA1 causes familial
episodic pain syndrome, providing the first example of a
human pain-associated TRP channelopathy (Kremeyer
et al., 2010).

TRPA1 is activated by a variety of chemicals, in-
cluding cinnamaldehyde (in cinnamon) (Bandell et al.,
2004), allicin, and diallyl disulfide (in garlic) (Bautista
et al., 2005; Macpherson et al., 2005), isothiocyanates
(in mustard oil, wasabi, and horseradish) (Bandell et
al., 2004; Jordt et al., 2004), methyl salicylate (in
winter green oil) (Bandell et al., 2004), acrolein (in
smoke) (Bautista et al., 2006), and �9-tetrahydrocan-
nabinol (in marijuana) (Jordt et al., 2004). In addition,
the well known TRPM8 agonist menthol has a bimodal
effect: it activates TRPA1 at low concentrations and
inhibits it at high concentrations (Macpherson et al.,
2006; Karashima et al., 2007). More recently, the en-
dogenous compounds 4-hydroxynonenal and 15-deoxy-
�12,14-prostaglandin J2, which can be released in re-
sponse to tissue injury, inflammation, and oxidative
stress were reported to be activators of TRPA1
(Macpherson et al., 2007b; Trevisani et al., 2007; Tay-
lor-Clark et al., 2008). Many of the TRPA1 agonists
are thiol-reactive electrophiles that activate TRPA1
through covalent interactions with cysteine residues
in the channel N terminus, although other modifica-
tions are likely (Hinman et al., 2006; Macpherson et
al., 2007a). Schmidt et al. (2009) recently reported
that TRPA1 activation by mustard oil may be the
result of increased protein kinase A/PLC-mediated
trafficking to the membrane (Schmidt et al., 2009).

TRPA1 activity is potentiated and subsequently inac-
tivated by extracellular Ca2�. This modulation is in-
direct and attributed to Ca2�entry through TRPA1;
the intracellular Ca2�-binding EF-hand motif is ap-
parently not required (Wang et al., 2008).

In addition to chemical activation, it has been pro-
posed that TRPA1 is directly activated by noxious cold
(�17°C); however, the thermosensitivity of TRPA1 is
debated. Numerous groups have reported that heterolo-
gously expressed TRPA1 is activated by noxious cold
(Story et al., 2003; Bandell et al., 2004; Sawada et al.,
2007; Karashima et al., 2009); however, other groups
found no direct cold activation (Jordt et al., 2004; Nagata
et al., 2005; Zurborg et al., 2007). Initial reports after the
generation of two independent TRPA1(�/�) mice only
contributed to the controversy. Whereas one study re-
ported mild and sex-dependent alterations in the behav-
ioral response to prolonged exposure to noxious cold in
TRPA1(�/�) mice (Kwan et al., 2006), the second study
found no sign of altered cold sensitivity in these mice
(Bautista et al., 2006). A recent study identified a spe-
cific subset of cold-sensitive trigeminal ganglion neurons
that is absent in TRPA1(�/�) mice and suggested that
although TRPA1 is not required for sensing acute cold
stimuli, it is required for behavioral responses to pro-
longed noxious cold (Karashima et al., 2009). The
marked Ca2� regulation of this channel under different
conditions, strain differences, or the degree to which
mice were back-crossed onto a common background, may
underlie some of these discrepancies. It is noteworthy
that TRPA1 orthologs from pit-bearing snakes are dem-
onstrated to be the most heat-sensitive vertebrate ion
channels and may play a role in detecting infrared ra-
diation (Gracheva et al., 2010).

FIG. 4. TRPA1 (ankyrin repeat), TRPML (mucolipin) and TRPP [polycystic kidney disease 2 (PKD2), also called polycystin 2 (PC2)] channels.
A, “distal” TRP molecular domains and their current-voltage relationships. The ER retention signal is a small domain that presumably maintains the
channel in the endoplasmic reticulum. Note that the current-voltage relationship for TRPA1 shows decay at positive potentials in most whole-cell
recordings and is linear with electrophilic agonist. B, major phenotypes in “distal” TRP channel knockout mice. Note: the PKD1 refers to the 11-TM
domain-containing protein of the polycystin 1 family. TRPP (PKD2, polycystin 2, PC2) refers to the 6-TM family of proteins.
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Detection of TRPA1 in hair cells in the ear (Corey et al.,
2004; Nagata et al., 2005) led to the proposal that it forms
the auditory mechanotransduction channel (Corey et al.,
2004). However, heterologously expressed TRPA1 chan-
nels have not been shown to be mechanosensitive, and hair
cells do not respond to mustard oil or other TRPA1 ago-
nists (Corey, 2006). In addition, TRPA1(�/�) mice exhibit
no overt vestibular defects, and their auditory responses
are completely normal (Bautista et al., 2006; Kwan et al.,
2006). In summary, there is no convincing evidence that
TRPA1 itself is a mechanosensor in any cell type.

VI. The Transient Receptor Potential
(Mucolipin) Family

The mucolipin TRP (TRPML; Fig. 4) proteins are pri-
marily intracellular and are likely to be important for
compartment trafficking and/or function (Bargal and
Bach, 1997; Chen et al., 1998; Kim et al., 2009; Cheng et
al., 2010b).

The founding member of the TRPML family, TRPML1,
was first identified in linkage studies as the gene mutated in
humans in Mucolipidosis type IV (MLIV), a progressive neu-
rodegenerative disease of young children (Bargal et al., 2000;
Bassi et al., 2000; Sun et al., 2000). MLIV is characterized
clinically by severe motor deficits, mental retardation, retinal
degeneration, iron-deficiency anemia, and elevated gastrin
levels as a result of achlorhydria (Slaugenhaupt, 2002). At
the cellular level, various materials [such as sphingolipids
(mostly gangliosides), phospholipids, and acid mucopolysac-
charides] accumulate in the lysosomes of patients with MLIV
and appear as membrane-bound granular inclusions or la-
mellar concentric bodies. In contrast with other lysosomal
storage diseases, the accumulation of heterogeneous storage
material in MLIV lysosomes does not result from a block in
catabolic pathways—lysosomal hydrolases are functional
and correctly transported to the lysosomes; rather, it proba-
bly results from an ill-defined sorting, transport, or functional
defect along the late endocytic pathway (Bargal and Bach,
1988; Chen et al., 1998).

Congruent with the ubiquitous lysosomal phenotype
of MLIV patients, TRPML1 is expressed in cells of every
tissue and localizes primarily to the lysosomal and late
endosomal compartments (Manzoni et al., 2004; Kise-
lyov et al., 2005). TRPML1 contains two di-leucine mo-
tifs, one on its C terminus and one on its N terminus,
that are likely to restrict its localization. In addition,
TRPML1 has a large intraluminal loop between its first
and second transmembrane domains that contains a
putative serine-lipase site, a proline-rich domain, and a
proteolytic cleavage site (Slaugenhaupt, 2002). This loop
may interact with chaperone-mediated autophagy-re-
lated proteins, heat shock cognate protein of 70 kDa, and
the 40-kDa heat shock protein (Venugopal et al., 2009).
Currents recorded from late endosomes and lysosomes
suggest that TRPML1 forms an inwardly rectifying, pro-
ton-impermeable, cation-selective channel with perme-

ability to both Ca2� and Fe2�. This permeability is po-
tentiated by low luminal pH (Xu et al., 2007; Dong et al.,
2008, 2009).

The inward rectification of TRPML1 indicates that
when present in lysosomes, TRPML1 would primarily
move cations out of the lysosomal lumen, depending on
the translysosomal voltage and concentration gradients.
This suggests that TRPML1 could function as a Ca2� or
Fe2� release channel (Dong et al., 2008). Supporting this
view, release of iron from late endosomes and lysosomes
into the cytosol is essential for cellular iron metabolism
and TRPML1(�/�) cells show altered iron homeostasis
(Dong et al., 2008). Exocytosis from lysosomes are Ca2�-
regulated, and one of the major sources of Ca2� for this
process is the lysosome itself (Peters and Mayer, 1998).
Constitutively active TRPML1 mutants exhibit signifi-
cant expression at the plasma membrane, whereas wild-
type TRPML1 and non–gain-of-function mutants local-
ize exclusively to the late endosomes and lysosomes
(Dong et al., 2009). Consistent with a role for TRPML1
in Ca2�-dependent lysosomal exocytosis, surface stain-
ing of lysosomal-associated membrane protein type 1, a
lysosomal marker, is dramatically increased in cells ex-
pressing constitutive active TRPML1 (Dong et al., 2009).
In chaperone-mediated autophagy, proteins are directly
transported through the lysosomal membrane, recog-
nized by heat shock cognate protein of 70 kDa, and
bound to the lysosomal membrane through interaction
with LAMP-2A (Chiang et al., 1989; Cuervo and Dice,
1996). It is noteworthy that overexpression of the mam-
malian homolog of HSC70 in a fly model of MLIV res-
cued the motor deficits associated with TRPML1 defi-
ciency (Venkatachalam et al., 2008). TRPML1(�/�)
mice have been generated, and they largely recapitu-
lated the phenotypes displayed in humans with MLIV,
showing motor deficits, central nervous system inclu-
sions, retinal degeneration, elevated plasma gastrin,
and decreased life span (Venugopal et al., 2007).

Like TRPML1, TRPML2 is an inwardly rectifying
Ca2�- and Fe2�-permeable cation-selective channel po-
tentiated by low pH (Dong et al., 2008; Samie et al.,
2009). TRPML2 is expressed in cells of all tissues, where
it localizes primarily to intracellular compartments (Xu
et al., 2007; Samie et al., 2009; Zeevi et al., 2009). Knock-
down of endogenous TRPML2 expression in HEK293
cells leads to lysosomal storage and mitochondrial ab-
normalities (Zeevi et al., 2009). Functional studies sug-
gest that TRPML2 may regulate the trafficking between
recycling endosomes and the cell surface through an
Arf6 clathrin-independent pathway (Karacsonyi et al.,
2007). Generation of TRPML2(�/�) mice may help to
elucidate the role of TRPML2 in vivo.

TRPML3 is an inwardly rectifying cation-selective
channel that is regulated by extracellular/luminal pH
(Grimm et al., 2007; Xu et al., 2007; Kim et al., 2008b).
TRPML3 was discovered by positional cloning as the
channel mutated in varitint-waddler mice, which are
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characterized by a variegated/dilute coat color owing to
pigmentation defects, hearing loss, circling behavior
caused by vestibular defects, hyperactivity, and embry-
onic lethality (Cable and Steel, 1998; Di Palma et al.,
2002; Xu et al., 2007). The varitint-waddler phenotype is
caused by the gain-of-function mutation (A419P) in the
S6 of TRPML3 (Grimm et al., 2007; Kim et al., 2007; Xu
et al., 2007). This mutation is a helix-breaking proline
substitution that creates a constitutively active channel
and eliminates regulation of the channel by extracyto-
solic cations (Grimm et al., 2007; Kim et al., 2007).
Constitutive activation of the channel leads to increased
Ca2� influx and cell death (Xu et al., 2007); the loss of
melanocytes in the cochlea and vestibulum probably
underlies the deafness and the circling behavior of
varitint-waddler mice (Cable and Steel, 1998; Xu et al.,
2007). However, other than constitutive activation of the
helix-break mutants, wild-type TRPML3 activation is
not well understood. TRPML3 can be activated by pre-
incubation in low-Na� medium (Kim et al., 2008b). A
recent report using a high-throughput chemical screen
has identified a plethora of TRPML3 activators that will
hopefully serve as useful tools (Grimm et al., 2010).

Mirroring its functional deficits, TRPML3 expression
has been reported in the hair cells of the cochlea and the
vestibulum, as well as in the melanocytes in skin hair
follicles (Di Palma et al., 2002; van Aken et al., 2008). At
the cellular level, TRPML3 can be detected in intracellular
vesicular compartments and in the plasma membrane.
Knockdown of TRPML3 expression or expression of a dom-
inant-negative version of the channel stimulated endocy-
tosis of transferrin and EGF/EGFR, whereas overexpres-
sion of TRPML3 inhibited these same processes (Kim et
al., 2009). Knockdown of endogenous TRPML3 causes ly-
sosomal storage and mitochondrial abnormalities (Zeevi et
al., 2009).

VII. The Transient Receptor Potential
(Polycystin)/Polycystic Kidney Disease 2 Family

TRPP refers to the polycystic kidney disease 2 (PKD2;
Fig. 4) subset of the polycystins. Polycystins include
putative 11-TM (PKD1, also called the PC1 family) and
6-TM subfamilies (PKD2, also called the PC2 family).
The TRPP family nomenclature is confused by the pre-
vious inclusion of the 11-TM subfamily. Because there is
little support for the 11TM group forming functional
channels, we will only discuss the 6TM (PKD2, PC2)
family. To avoid confusion, we use the PKD2 nomencla-
ture but provide previous names associated with each.

Increasing evidence suggests that PKD1 subgroup mem-
bers associate with PKD2 members to form heterocom-
plexes (Qian et al., 1997; Tsiokas et al., 1997) and that they
share a notable number of physiological functions
(Hanaoka et al., 2000; McGrath et al., 2003; LopezJimenez
et al., 2006; Vogel et al., 2010). The PKD2 subgroup con-
sists of three members, PKD2, PKD2L1, and PKD2L2, all

of which have 6 TM-spanning domains and intracellular N
and C termini. Based on their homology to other TRP
family members, they are expected to assemble in a tet-
rameric structure to form Ca2� permeable nonselective
cation channels.

PKD2 (TRPP1, also called PC2, and TRPP2 in older
nomenclature) was originally identified in linkage stud-
ies for autosomal dominant polycystic kidney disease
(ADPKD) (Peters et al., 1993; Mochizuki et al., 1996).
ADPKD is characterized by the progressive development
of multiple fluid-filled cysts in the kidney, pancreas, and
liver and an increased prevalence of cardiovascular ab-
normalities such as hypertension, mitral valve prolapse,
and intracranial aneurysm (Gabow, 1993; Torra et al.,
2000). Approximately 15% of clinical cases of ADPKD
present with mutations in the PKD2 gene loci (Peters et
al., 1993). The cystic phenotype and extrarenal abnor-
malities are largely recapitulated in PKD2(�/�) mice,
and the mice die in utero between embryonic day 13.5
and parturition (Wu et al., 2000).

PKD2 is reported to form a Ca2�-permeable nonselec-
tive cation channel that can be activated by downstream of
G protein-coupled receptor and/or receptor-tyrosine kinase
at the cell surface (Ma et al., 2005; Bai et al., 2008b) and is
regulated by phosphoinositides (Ma et al., 2005), Ca2�

(Vassilev et al., 2001; Koulen et al., 2002), and pH (Gonza-
lez-Perrett et al., 2002). Controversy surrounds PKD2 cur-
rents, because in most cell-based systems, PKD2 does not
traffic to the plasma membrane and is retained in endo-
plasmic reticulum (Hanaoka et al., 2000; Vassilev et al.,
2001; Koulen et al., 2002). There is good agreement, how-
ever, that PKD2 associates with PKD1 through its C-
terminal coiled-coil domain (Bai et al., 2008a; Celić et al.,
2008; Yu et al., 2009). The functional importance of the
coiled-coil domain is underscored by the many naturally
occurring ADPKD pathogenic truncations, including
R742X, R807X, E837X, and R872X, in PKD2 (Sharif-
Naeini et al., 2009), which eliminate the coiled-coil domain
or the downstream open region and abolish the assembly of
the PKD1-PKD2 complex.

PKD2 is widely expressed in both fetal and adult
tissues. A pool of PKD2 has been proposed to localize to
cilia through a motif in its N terminus (Geng et al.,
2006). In the primary cilia of renal epithelial cells and
vascular endothelial cells, PKD2, in conjunction with
PKD1, may be required for transduction of extracellular
shear stress induced by blood or urine flow into intra-
cellular Ca2� signals (Nauli et al., 2008; AbouAlaiwi et
al., 2009). Thus, it was proposed that PKD2, perhaps in
association with PKD1 and/or TRPV4, is a mechanosen-
sitive channel. There is, however, very little direct sup-
port for this idea, and a recent study suggests that PKD2
is not itself a mechanosensitive channel but instead
regulates mechanosensory channels (Sharif-Naeini et
al., 2009), perhaps through the numerous reported in-
teractions with the actin filament associated proteins.
PKD2 is also expressed in nodal cilia, where it is re-
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quired for the development of left-right asymmetry of
the thoracic and visceral organs (McGrath et al., 2003).

PKD2 is present in the endoplasmic reticulum. The C
terminus of PKD2 may bind PACS and PRKCSH/
80K-H, which retain proteins in the endoplasmic retic-
ulum (Köttgen et al., 2005) and protect it from homocys-
teine-induced endoplasmic reticulum protein–mediated
degradation (Gao et al., 2010), respectively. In the endo-
plasmic reticulum, it has been proposed that PKD2
forms a Ca2� release channel and modulates release of
intracellular Ca2� (Koulen et al., 2002; Geng et al.,
2008). To reconcile disparate findings, an appealing
model is one in which PKD1 on the plasma membrane
interacts with PKD2 in the endoplasmic reticulum.

PKD2L1 (TRPP2, also called TRPP3 in older nomen-
clature) is reported to form an inwardly rectifying Ca2�-
permeable nonselective cation channel with a large sin-
gle channel conductance modulated by pH (Huang et al.,
2006; Ishimaru et al., 2006; Shimizu et al., 2009). Con-
crete evidence that these currents are mediated by the
PKD2L1 alone is lacking. The expression pattern of
PKD2L1 is also debated. At both the mRNA and protein
levels, PKD2L1 has been reported in multiple tissues,
including the kidney, retina, liver, pancreas, heart,
spleen, and brain (Nomura et al., 1998; Basora et al.,
2002). More recently, the expression pattern of PKD2L1
seems to be restricted to testis, taste tissue, and in a
specific subset of neurons surrounding the central canal
of spinal cord (Huang et al., 2006; Ishimaru et al., 2006).
In taste tissue, PKD2L1 colocalizes with PKD1L3 in a
subpopulation of taste receptor cells, where they may
function as sour (H�) receptors (LopezJimenez et al.,
2006). In support of this idea, mice lacking PKD2L1-
expressing cells, as a result of diphtheria toxin-mediated
ablation, exhibit no gustatory nerve response to acidic
stimuli in the chorda tympani nerves (Huang et al.,
2006). However, in vivo behavior analyses revealed that
PKD2L1(�/�) mice retain normal sensation to sour as
well as sweet, bitter, and salty tastes (L. Guo and J.
Zhou, unpublished observations). After PKD2L1 expres-
sion in a subset of pH-sensitive neurons surrounding the
central canal of the spinal cord, it has also been proposed
to serve as a chemosensor sensing the internal state of
spinal fluid (Huang et al., 2006).

PKD2L2 (TRPP3, also called TRPP5 in older litera-
ture) is the least well understood member of the TRP
family. Although PKD2L2 is expected to form a Ca2�-
permeable nonselective cation channel (Guo et al.,
2000), only limited support for this hypothesis exists.
Overexpression of PKD2L2 in Madin-Darby canine kid-
ney cells resulted in elevated levels of intracellular Ca2�

(Chen et al., 2008b), and outside-out patches from
PKD2L2-transfected HEK293 cells revealed a channel
with a single 25-pS conductance state that could not be
measured in control cells (Sutton et al., 2006). Northern
blot analysis indicates that PKD2L2 is expressed in
mouse heart and testis, whereas reverse transcription-

polymerase chain reaction analysis showed that in hu-
mans, PKD2L2 is expressed in brain, kidney, and testis
(Guo et al., 2000). Immunohistochemical staining de-
tects PKD2L2 in the plasma membrane of spermato-
cytes and round spermatids (Chen et al., 2008b), sug-
gesting its potential role in spermatogenesis.

VIII. Summary

In this review, we have attempted to capture the cur-
rent state of understanding of the function of the large
class of mammalian TRP channels. The TRP literature
has become so large that many works in the area could
not be credited adequately. The TRP channels currently
seem to have arisen in eukaryotes to fulfill cellular sens-
ing in response to diverse environmental stimuli by re-
ducing transmembrane (both intracellular and plasma
membrane) voltages and often permeating divalent cat-
ions. The most common features are their weak voltage
sensitivities, potentiation by phospholipase C-linked re-
ceptors, and modulation by positively charged intracel-
lular divalent ions and the negatively charged molecules
Ca2�/CaM and PIP2. One unusual features of this class
of channels are their (often) dual functional relevance in
both intracellular compartments and on the plasma
membrane in response to extracellular stimuli, perhaps
serving to deliver themselves to the plasma membrane
by providing Ca2� to intracellular synaptotagmins re-
quired for fusion. Another unusual feature is that sev-
eral are permeant to Mg2� and other divalent ions that
are much too large (because of their large dehydration
energies) to permeate other ion channels. The most sig-
nificant development in the field is that knockout mice
are now available for practically all TRP channels,
which will enable more exacting determination of func-
tion and proper characterization of antibodies used in
localization studies.
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Guinamard R, Kinet JP, and Launay P (2008) The calcium-activated nonselective
cation channel TRPM4 is essential for the migration but not the maturation of
dendritic cells. Nat Immunol 9:1148–1156.

Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M, Frumkin A, Raas-
Rothschild A, Glusman G, Lancet D, and Bach G (2000) Identification of the gene
causing mucolipidosis type IV. Nat Genet 26:118–123.

Bargal R and Bach G (1988) Phospholipids accumulation in mucolipidosis IV cul-
tured fibroblasts. J Inherit Metab Dis 11:144–150.

Bargal R and Bach G (1997) Mucolipidosis type IV: abnormal transport of lipids to
lysosomes. J Inherit Metab Dis 20:625–632.

Basora N, Nomura H, Berger UV, Stayner C, Guo L, Shen X, and Zhou J (2002)
Tissue and cellular localization of a novel polycystic kidney disease-like gene
product, polycystin-L. J Am Soc Nephrol 13:293–301.

Bassi MT, Manzoni M, Monti E, Pizzo MT, Ballabio A, and Borsani G (2000) Cloning
of the gene encoding a novel integral membrane protein, mucolipidin-and identi-
fication of the two major founder mutations causing mucolipidosis type IV. Am J
Hum Genet 67:1110–1120.

Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN,
Basbaum AI, and Julius D (2006) TRPA1 mediates the inflammatory actions of
environmental irritants and proalgesic agents. Cell 124:1269–1282.

Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Högestätt ED, Julius
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Corey DP, García-Añoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano

A, Cheung EL, Derfler BH, Duggan A, et al. (2004) TRPA1 is a candidate for the
mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–
730.

Cuervo AM and Dice JF (1996) A receptor for the selective uptake and degradation
of proteins by lysosomes. Science 273:501–503.

Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Pérez CA, Shigemura N, Yoshida R,
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