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Abstract——The mammalian ionotropic glutamate re-
ceptor family encodes 18 gene products that coassemble to
form ligand-gated ion channels containing an agonist rec-
ognition site, a transmembrane ion permeation pathway,
and gating elements that couple agonist-induced confor-
mational changes to the opening or closing of the perme-
ation pore. Glutamate receptors mediate fast excitatory
synaptic transmission in the central nervous system and
are localized on neuronal and non-neuronal cells. These
receptors regulate a broad spectrum of processes in the
brain, spinal cord, retina, and peripheral nervous system.
Glutamate receptors are postulated to play important
roles in numerous neurological diseases and have at-
tracted intense scrutiny. The description of glutamate re-

ceptor structure, including its transmembrane elements,
reveals a complex assembly of multiple semiautonomous
extracellular domains linked to a pore-forming element
with striking resemblance to an inverted potassium chan-
nel. In this review we discuss International Union of Basic
and Clinical Pharmacology glutamate receptor nomencla-
ture, structure, assembly, accessory subunits, interacting
proteins, gene expression and translation, post-transla-
tional modifications, agonist and antagonist pharmacol-
ogy, allosteric modulation, mechanisms of gating and per-
meation, roles in normal physiological function, as well as
the potential therapeutic use of pharmacological agents
acting at glutamate receptors.
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I. Introduction and Nomenclature

The past decade has revealed both breathtaking ad-
vances in our understanding of structure and function
and a growing sophistication at virtually all levels of
experimental design. The structure of a membrane-
spanning tetrameric glutamate receptor has been de-
scribed, revealing unprecedented features of channel
structure together with long-awaited details on the
pore-forming elements and the channel gate, subunit
arrangement, and the nature of linkers connecting
multiple semiautonomous domains that comprise the
extracellular portion of the receptor. These compelling
data have set the stage for a predictably explosive
increase in work on all aspects of function and hold
the promise of catalyzing timely breakthroughs in
therapeutic strategies.

Assembling this review was an exciting yet daunting
task. A staggering volume of literature has been pub-
lished over the last 11 years, the period this review most
seeks to summarize. We have focused primarily on the
pharmacology of glutamate receptors, the structural ba-
sis of receptor function as it relates to neuronal function
and neurological disease, and the regulation of receptor
function by phosphorylation. We only touch upon the
anatomical distribution of glutamate receptors, their
role in behavior and cognition, their role in nervous
system development, and the means by which the myr-
iad of proteins that bind to glutamate receptors regulate
receptor trafficking. We focus on mammalian receptors,
with an emphasis on their relation to potential therapies
now under development. In selecting the necessarily
limited number of references used to illustrate ad-
vances, we have sought to recognize principle, prece-
dent, perspective, and (importantly) to acknowledge the
full spectrum of talented individuals and productive lab-
oratories engaged in this field. We regret that space does
not allow a complete listing of relevant work related to
each point made; many fine articles simply could not be
cited.

After the first report appeared in December 1989 of
the cloning of a glutamate receptor subunit (Hollmann
et al., 1989), the early 1990s witnessed a flurry of
activity, resulting in reports of more than a dozen
glutamate receptor clones in various species within
the subsequent 6 months. As might be expected, the
nomenclature was uncoordinated, with species-or lab-
oratory-specific names for the same transcript being
promoted in the literature. This situation has resolved
slowly. An excellent history of glutamate receptor
cloning and nomenclature has appeared (Lodge, 2009).
Glutamate receptor nomenclature has recently undergone
a needed and systematic revision, the International Union
of Basic and Clinical Pharmacology name replacing the
common names (Collingridge et al., 2009) (see http:/www.
iuphar-db.org/LGICNomenclature.jsp). Table 1 summa-

rizes the nomenclature used throughout this review for
both genes and gene products.

II. Structure
A. Subunit Organization and Quaternary Structure

Ionotropic glutamate receptors are integral mem-
brane proteins composed of four large subunits (>900
residues) that form a central ion channel pore. Sequence
similarity among all known glutamate receptor sub-
units, including the AMPA,! kainate, NMDA, and & re-

lAbbreviations: 5,7-DCKA, 5,7-dichlorokynurenic acid; AMPA,
a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; AP1, activator
protein-1; ATD, amino-terminal domain; ATPA, 2-amino-3-(5-tert-bu-
tyl-3-hydroxyisoxazol-4-yl)propionic acid; ATPO, (R,S)-2-amino-3-[5-
tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl] propionic acid; BDNF,
brain-derived neurotrophic factor; bp, base pair(s); CA1, cornu ammonis
1; CamKII, Ca?*/calmodulin-dependent protein kinase II; CASK, calcium/
calmodulin-dependent serine protein kinase; ChIP, chromatin im-
munoprecipitation; CI-1041, besonprodil; CNIH, protein cornichon ho-
molog; CNQX, 6-cyano-2,3-dihydroxy-7-nitroquinoxaline; CNS, central
nervous system; CNS 5161, N-(2-chloro-5-(methylmercapto)phenyl)-N'-
methylguanidine monohydrochloride; con A, concanavalin A; COUP-
TF, chicken ovalbumin upstream promoter transcription factor; COX,
cytochrome oxidase; CP-101,606, traxoprodil mesylate; CP-465,022,
(S)-3-(2-Chlorophenyl)-2-[2-(6-diethylaminomethyl-pyridin-2-yl)-vinyl]-6-
fluoro-3H-quinazolin-4-one; CPEB, cytoplasmic polyadenylation ele-
ment binding protein; CRE, cAMP response element; CREST, calcium-
responsive transactivator; CTD, carboxyl-terminal domain; CX516,
ampalex; CX546, 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine; CX614,
2H,3H,6a H-pyrrolidino(2”,1"-3',2")1,3-oxazino(6’,5'-5,4)benzo(e)1,4-di-
oxan-10-one; DAAO, D-amino acid oxidase; DNQX, 6,7-dinitroquinoxa-
line-2,3-dione; EPSP, excitatory postsynaptic potential; ER, endoplas-
mic reticulum; ERK, extracellular signal-regulated kinases; GRIP,
glutamate receptor interacting protein; GV150526, gavestinel; GYKI
53773, talampanel; GYKI-52466, benzenamine; GYKI-53655, 1-(4-amino-
phenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine; HDAC, his-
tone deacetylase; hERG, human ether-a-go-go-related gene; HEK, human
embryonic kidney; HIBO, homoibotenic acid; IDRA-21, 7-chloro-3-
methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine-S,S-dioxide; IEM-1460,
1-trimethylammonio-5-(1-adamantane-methylammoniopentane dibro-
mide); kb, kilobase(s); LBD, ligand-binding domain; LTD, long-term
depression; LTP, long-term potentiation; LY293558, tezampanel;
LY300164, talampanel; 1.Y339434, (2S,4R,6E)-2-amino-4-carboxy-7-(2-
naphthyDhept-6-enoic acid; 1.Y382884, (3S,4aR,6S,8aR)-6-((4-carboxy-
phenyl)methyl)-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic
acid; LY392098, N-(2-(4-(thiophen-3-yl)phenyl)propyl)propane-2-
sulfonamide; 1.Y404187, N-[2-(4'-cyanobiphenyl-4-yl)propyl]propane-2-
sulfonamide; LY450108, (R)-2-(4-(3,5-difluorobenzoylamino)phenyl)-1-
(2-propanesulfonamido)-propane; L.Y451395, N-((2-(4'-(2-(methylsulfo-
nyl)amino)ethyl)(1,1'-biphenyl)-4-yl)propyl)-2-propanesulfonamide;
LY466195, 6-((2-carboxy-4,4-difluoro-1-pyrrolidinyl)methyl)decahydro-3-
isoquinolinecarboxylic acid; 1.Y503430, (R)-4'-(1-fluoro-1-methyl-2-(pro-
pane-2-sulfonylamino)-ethyl)-biphenyl-4-carboxylic acid methylamide;
MD, molecular dynamics; mEPSC, miniature excitatory postsynaptic
current; MK-0657, (3S,4R)-4-methylbenzyl 3-fluoro-4-((pyrimidin-2-
ylamino)methyl)piperidine-1-carboxylate; MK-801, dizocilpine maleate;
MSVIII-19, 8,9-dideoxyneodysiherbaine; NBQX, 2,3-dihydroxy-6-nitro-
7-sulfamoylbenzo(f)quinoxaline; NF«B, nuclear factor kB; NMDA, N-
methyl-D-aspartate; NRF-1, nuclear respiratory factor 1; NRSE, neuron
restrictive silencer element; NRSF, neuron restrictive silencing factor;
NS1209, 8-methyl-5-(4-(N,N-dimethylsulfamoyl)phenyl)-6,7,8,9,-
tetrahydro-1H-pyrrolo(3,2-h)-isoquinoline-2,3-dione-3-0-(4-hydroxybu-
tyric acid-2-yl)oxime; NS-3763, 4,6-bis(benzoylamino)-1,3-benzenedi-
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TABLE 1
Glutamate receptor subunits

Nonhuman genes are represented by lowercase HUGO symbols (e.g., Grial).

TUPHAR Name HUGO Symbol Common Names

Human Chromosome Amino Acids in Longest Splice Variant

GluAl GRIA1 GluR1, GluRA

GluA2 GRIA2 GluR2. GluRB

GluA3 GRIA3 GluR3, GIuRC

GluA4 GRIA4 GluR4, GluRD

GluK1 GRIK1 GluR5

GluK2 GRIK2 GluR6

GluK3 GRIK3 GluR7

GluK4 GRIK4 KA1l

GluK5 GRIK5 KA2

GluN1 GRIN1 NMDARI1, NR1, GluRé1
GluN2A GRIN2A NMDAR2A, NR2A, GluRel
GluN2B GRIN2B NMDAR2B, NR2B, GluRe2
GluN2C GRIN2C NMDAR2C, NR2C, GluRe3
GluN2D GRIN2D NMDAR2D, NR2D, GluRe4
GIluN3A GRIN3A NR3A

GluN3B GRIN3B NR3B

GluD1 GRID1 81, GluR delta-1

GluD2 GRID2 82, GluR delta-2

5q31.1 906
4q32-933 901
Xq25-q26 894
11922 902
21q22.11 918
6q16.3-g21 908
1p34-p33 919
11g22.3 956
19q13.2 981
9q34.3 938
16p13.2 1464
12p12 1484
17925 1236
19q13.1-qter 1336
9q31.1 1115
19p13.3 1043
10q22 1009
4q22 1007

ceptors, suggests they share a similar architecture
(Table 2). Glutamate receptor subunits are modular
structures that contain four discrete semiautonomous
domains: the extracellular amino-terminal domain
(ATD), the extracellular ligand-binding domain (LBD),
the transmembrane domain (TMD), and an intracellular
carboxyl-terminal domain (CTD) (Fig. 1A). Apart from
the CTD and the M4 segment, each of the individual
domains exhibits low sequence homology to bacterial
proteins with known structures and, in some instances,
a related function (O’Hara et al., 1993; Wo and Oswald,
1995; Wood et al., 1995; Paas, 1998; Kuner et al., 2003).
Detailed crystallographic structures have been de-
scribed for a membrane-spanning tetrameric glutamate

carboxylic acid; NVP-AAMO077, (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-
(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl-phosphonic acid;
NGX424, tezampanel; Org 25935, N-methyl-N-(6-methoxy-1-
phenyl-1,2,3,4-tetrahydronaphthalen-2-ylmethyl)aminomethylcar-
boxylic acid; PDZ, postsynaptic density 95/disc-large/zona occludens;
PEPA, 4-(2-(phenylsulfonylamino)ethylthio)-2,6-difluoro-phenoxyac-
etamide; PF-03463275, 1-methyl-1H-imidazole-4-carboxylic acid (3-
chloro-4-fluoro-benzyl)-(3-methyl-3-aza-bicyclo[3.1.0]hex-6-ylm-
ethyl)-amide; PF-4778574, N-((3R,4S)-3-(4-(5-cyanothiophen-2-
yDphenyl)-tetrahydro-2H-pyran-4-yl)propane-2-sulfonamide; PhTX,
philanthotoxin; PKA, protein kinase A; PKC, protein kinase C; RE1, re-
striction element-1; REST, RE-1 silencing transcription factor; Ro 25-6981,
a-(4-hydroxyphenyl)-p-methyl-4-(phenylmethyl)-1-piperidine propanol; Ro
63-1908, 1-[2-(4-hydroxy-phenoxy)-ethyl]-4-(4-methyl-benzyl)-piperidin-4-
ol; S18986, (S)-2,3-dihydro-(3,4)cyclopentano-1,2,4-benzothiadiazine-1,1-
dioxide; SCH 900435, N-methyl-N-(6-methoxy-1-phenyl-1,2,34-tetrahy-
dronaphthalen-2-ylmethyl)aminomethylcarboxylic acid; SN50, Ala-Ala-
Val-Ala-Leu-Leu-Pro-Ala-Val-Leu-Leu-Ala-Leu-Leu-Ala-Pro-Val-Gln-Arg-
Lys-Arg-Gln-Lys-Leu-Met-Pro; Sp1, specific transcription factor 1;
SYM2081, (2S,4R)-4-methylglutamic acid; TARP, transmembrane
AMPA receptor regulatory proteins; TBI, traumatic brain injury;
Tbr-1, T-brain-1; TMD, transmembrane domain; TTX, tetrodo-
toxin; UBP141, (2R,3S)-1-(phenanthrenyl-3-carbonyl)piperazine-
2,3-dicarboxylic acid; UBP282, (aS)-a-amino-3-[(4-carboxyphenyl-
)methyl]-3,4-dihydro-2,4-dioxo-1(2H)-pyrimidinepropanoic  acid;
UBP310, (S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxythiophene-
3-ylmethyl)-5-methylpyrimidine-2,4-dione; UTR, untranslated region;
ZK200775, (1,2,3,4-tetrahydro-7-morpholinyl-2,3-dioxo-6-(trifluorometh-
ylquinoxalin-1-yl)methylphosphonate.

receptor (Sobolevsky et al., 2009) as well as the isolated
ATDs and LBDs in complex with various agonists, an-
tagonists, and modulators (discussed in section VI).
These data, along with functional and biochemical ex-
periments, have begun to define the relationship be-
tween receptor structure and function.

The first views of the quaternary glutamate receptor
structure were provided by single particle images of
recombinant and native AMPA receptors obtained by
electron microscopy (Safferling et al., 2001; Tichelaar et
al., 2004; Nakagawa et al., 2005, 2006; Midgett and
Madden, 2008). Although these images show the recep-
tors at lower resolution (~40-20 A), some structural
features could be extracted. For example, an internal
2-fold rotational symmetry was observed for some of
these receptor structures (Tichelaar et al., 2004; Midgett
and Madden, 2008), consistent with indications that glu-
tamate receptors assemble as a dimer of dimers. This
proposed 2-fold rotational symmetry for glutamate re-
ceptors is in contrast to the symmetry observed in struc-
tures of other ion channels, such as tetrameric K*-chan-
nels and the pentameric nicotinic acetylcholine receptor,
in which the quaternary subunit arrangement leads to
rotational symmetries that correlate with subunit-num-
ber (MacKinnon, 2003; Miyazawa et al., 2003; Sobo-
levsky et al., 2004; Wollmuth and Sobolevsky, 2004).

Crystallographic studies have provided the first de-
tailed structure of a membrane-spanning glutamate re-
ceptor (3.6 A) (Fig. 1B). This structure of an antagonist-
bound tetrameric rat GluA2 demonstrates that the
receptor has an overall 2-fold symmetry perpendicular
to the membrane plane; the extracellular ATDs and
LBDs are organized as dimers of dimers, and the ion
channel domain exhibits a 4-fold symmetry (Sobolevsky
et al., 2009). This subunit arrangement relates one ATD
dimer to another and one LBD dimer to the second, and
half of the pore-forming TMDs to the other half. The sym-
metry mismatch between the ATDs and LBDs arises be-
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TABLE 2
Sequence identity and conservation of residues in glutamate receptor subunits
Numbers are the percentage of residues in the regions that are identical in all subunits within the group. Numbers in parenthesis are the percentage of residues that are
identical in 50% of the subunits in the group (i.e., conserved). ATD includes the signal peptide, M1M2M3 includes pre-M1 and intracellular loops, LBD is S1 and S2. TMD
is M1IM2M3 and M4. In GluA2, the regions were defined as amino acids 1-397 (signal peptide and ATD), 398—414 (ATD-S1 linker), 415-527 (S1), 528534 (S1-M1 linker),
535-647 (M1M2M3), 648—652 (M3-S2 linker), 653-794 (S2), 795-809 (S2-M4 linker), 810—838 (M4) and 839-884 (CTD) using the structures of the isolated GluA2 LBD
(Armstrong and Gouaux, 2000) and the membrane-spanning tetrameric GluA2 (Sobolevsky et al., 2009) as guides.

Receptor Subunits ATD S1 S2 LBD M1M2M3 M4 TMD CTD All
GluAl4 35 (89) 74 (99) 84 (100) 80 (100) 84 (97) 93 (100) 87 (98) 9 (60) 54 (90)
GluK1-5 16 (67) 54 (89) 53 (94) 53 (92) 60 (96) 41 (97) 56 (96) 0.0 (13) 29 (70)
GluAl-4, GluK1-5 6 (36) 37(81) 33 (77) 34 (79) 45 (78) 28 (62) 42 (77) 0.0 (3) 17 (48)
GluN1, GluN2A-D, GluN3A-B 1(24) 19 (61) 18 (76) 19 (68) 16 (81) 10 (83) 14 (81) 0.0 (2.9) 5(29)
GluN2A-D 19 (76) 60 (94) 66 (99) 63 (96) 75 (99) 69 (100) 73 (99) 2 (47) 25 (70)
GluD1-2 60 (60) 67 (67) 57 (57) 62 (62) 51 (51) 62 (62) 54 (54) 34 (34) 54 (54)
All subunits 0.2 (15) 7(49) 6 (48) 6 (48) 10 (55) 10 (52) 10 (55) 0.0 (0.2) 2(19)

cause the receptor contains two conformationally distinct
subunits, which can be denoted A/C and B/D subunits (Fig.
1, C and D). Consequently, the A/C subunits will couple
differently to the ion channel gate than will the B/D sub-
units, which may have important implications for the func-
tion of the glutamate receptors.

In the tetrameric structure (Sobolevsky et al., 2009),
the ATD forms two distinct types of subunit-subunit
contacts. The most extensive contact is formed between
A/B and C/D subunits, and this contact is identical to
that observed between subunits in the structure of the
isolated GluA2 and GluK2 ATD dimer (Clayton et al.,
2009; Jin et al., 2009; Kumar et al., 2009). The other
contact is located on the 2-fold symmetry axis and is
formed between B and D subunits of the A/B and C/D
dimers (Fig. 1C). In addition, at the level of the LBD, two
distinct types of subunit-subunit contacts are formed.
The LBDs are arranged as A/D and B/C dimers with
contacts between the A and C subunits (Fig. 1C). The
domain swapping or subunit crossover causes a different
subunit arrangement at the levels of the ATD and the
LBD. As predicted by topology studies (Hollmann et al.,
1994; Bennett and Dingledine, 1995) and the homology
to the tetrameric K" -channels (Wo and Oswald, 1995;
Wood et al., 1995; Kuner et al., 2003), the glutamate
receptor TMD consists of three transmembrane helices
(M1, M3, and M4) and a membrane re-entrant loop (M2)
(Sobolevsky et al., 2009). In addition, the subunits have
a short helix (pre-M1) that is oriented parallel to the
membrane. M1, M2, and M3 form a structure that
closely resembles that of an inverted K*-channel pore,
and M4 primarily makes contacts with the TMD of an
adjacent subunit.

The observation that subunits with the same polypep-
tide sequence adopt two distinct conformations in the
tetrameric receptor complex is without precedent in an
ion channel (Sobolevsky et al., 2009). The subunit cross-
over between the ATD and LBD levels of the tetramer
(Fig. 1D) is primarily mediated by the ATD-S1 amino
acid linkers that connect the ATD with the LBD. The
ATD-S1 linkers of the A/C subunits adopt a compact
conformation, whereas the ATD-S1 linkers of the B/D
subunits have an extended conformation. This struc-
tural role of the ATD-S1 linker is intriguing, because

previous studies have implicated this segment in the
control of the open probability of NMDA receptors
(Gielen et al., 2009; Yuan et al., 2009a). The symmetry
mismatch between the LBD and the TMD levels also is
mediated primarily by the linkers connecting the two
domains (S1-M1, M3-S2, and S2-M4 linkers). Also
here, the linkers adopt two different conformations
corresponding to the A/C subunits and the B/D sub-
units. The involvement of the TMD-LBD linkers in the
function of glutamate receptors has been extensively
studied (Krupp et al., 1998; Villarroel et al., 1998;
Sobolevsky et al., 2002a,b; Watanabe et al., 2002;
Yelshansky et al., 2004; Balannik et al., 2005; Schmid
et al., 2007), and the tetrameric structure provides an
excellent opportunity to interpret these and other re-
sults in a structural context. Whereas tetrameric kai-
nate receptors appear to have the same extracellular
architecture as AMPA receptors (Das et al., 2010), it
remains to be shown how well the tetrameric AMPA
receptor structure corresponds to structures for NMDA
receptors.

B. Subunit Stoichiometry

The glutamate receptors assemble as tetrameric com-
plexes of subunits (Laube et al., 1998; Mano and Teich-
berg, 1998; Rosenmund et al., 1998; Greene, 2001; Mat-
suda et al., 2005; Nakagawa et al., 2005; Sobolevsky et
al., 2009), and functional receptors are formed exclu-
sively by assembly of subunits within the same func-
tional receptor class (Partin et al., 1993; Kuusinen et al.,
1999; Leuschner and Hoch, 1999; Ayalon and Stern-Bach,
2001; Ayalon et al., 2005). Glutamate receptors are
grouped into four distinct classes based on pharmacology
and structural homology, including the AMPA receptors
(GluA1-GluA4), the kainate receptors (GluK1-GluK5),
the NMDA receptors (GluN1, GluN2A-GluN2D, GIuN3A,
and GluN3B), and the & receptors (GluD1 and GluD2). The
AMPA receptor subunits GluAl to GluA4 can form both
homo- and heteromers. The kainate receptor subunits
GluK1 to GluK3 also form both homo- and heteromers, but
GluK4 and GluK5 form functional receptors only when
coexpressed with GluK1 to GluK3. The 8 receptors GluD1
and GluD2 are capable of forming homomeric receptors yet
seem incapable of forming heteromers with AMPA, kai-
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Fic. 1. Structure and domain organization of glutamate receptors. A, linear representation of the subunit polypeptide chain and schematic
illustration of the subunit topology. Glutamate receptor subunits have a modular structure composed of two large extracellular domains [the ATD
(green) and the LBD (blue)]; a TMD (orange) that forms part of the ion channel pore; and an intracellular CTD. The LBD is defined by two segments
of amino acids termed S1 and S2. The TMD contains three membrane-spanning helices (M1, M3, and M4) and a membrane re-entrant loop (M2). The
isolated S1 and S2 segments have been constructed by deleting the ATD along with the TMD and joining S1 and S2 with a hydrophilic linker (dotted
line). SP, signal peptide. B, crystal structure at 3.6 A of the membrane-spanning tetrameric GluA2 AMPA receptor (PDB code 3KG2). C, subunit
interfaces between the ATD, LBD, and TMD of the four subunits in the membrane-spanning tetrameric GluA2 AMPA receptor. The subunits are
viewed from top down the 2-fold axis of symmetry. The ATDs and LBDs have a 2-fold axis of symmetry, whereas the TMDs have 4-fold axis of
symmetry. D, the symmetry mismatch between the TMDs and the extracellular domains (ATDs and LBDs) as well as the subunit crossover (or domain
swapping) from the LBD to the ATD give rise to two distinct types of subunits in the homotetrameric GluA2 receptor with two distinct conformations.
The subunits are referred to as the A/C and B/D subunits. [Adapted from Sobolevsky AI, Rosconi MP, and Gouaux E (2009) X-ray structure, symmetry
and mechanism of an AMPA-subtype glutamate receptor. Nature 462:745-756. Copyright © 2009 Nature Publishing Group. Used with permission.]

nate, and NMDA receptor subunits, both in native cells
and in heterologous expression systems (Partin et al.,
1993, 1995; Mayat et al., 1995; Zuo et al., 1997; Kohda et
al., 2000; Ikeno et al., 2001; Naur et al., 2007). In addition,
GluD1 and GluD2 seem incapable of forming receptors
that can be activated by any known agonists (see section
V.A). Whether GluD1 and GluD2 can form heteromeric
receptors is unresolved.

Functional NMDA receptors require assembly of two
GluN1 subunits together with either two GluN2 sub-
units or a combination of GluN2 and GluN3 subunits
(Monyer et al., 1992; Schorge and Colquhoun, 2003;
Ulbrich and Isacoff, 2007, 2008). NMDA receptors fur-
ther require simultaneous binding of both glutamate
and glycine for activation (Johnson and Ascher, 1987;

Kleckner and Dingledine, 1988; Lerma et al., 1990). The
GluN1 and GluN3 subunits provide the glycine binding
sites (Furukawa and Gouaux, 2003; Furukawa et al.,
2005; Yao et al., 2008), and the GluN2 subunits form the
glutamate binding sites (Furukawa et al., 2005). The
GlulN1 subunit expressed alone in Xenopus laevis oo-
cytes responded weakly to coapplication of glutamate
and glycine (Moriyoshi et al., 1991; Nakanishi et al.,
1992; Yamazaki et al., 1992). These responses have
been proposed to arise because X. laevis oocytes ex-
press low levels of endogenous NMDA receptor sub-
units (XenGluN1 and XenGluN2) that under some
circumstances functionally assemble with GluN1
(Green et al., 2002; Schmidt et al., 2006, 2009;
Schmidt and Hollmann, 2008, 2009), which can com-
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plicate studies on NMDA receptors using the X. laevis
expression system. No responses are observed from
GluN1 expressed alone in mammalian cells.

GluN1 also can combine with two different GluN2 sub-
units to form triheteromeric receptors. Numerous studies
support the formation of GluN1/GluN2A/GluN2B, GluN1/
GluN2A/GluN2C, GluN1/GluN2B/GluN2D, GluN1/GluN2A/
GlulN2D receptors in different brain regions and in specific
neuronal subpopulations (Chazot et al., 1994; Sheng et
al., 1994; Chazot and Stephenson, 1997; Luo et al., 1997;
Sundstrom et al., 1997; Dunah et al., 1998a; Cathala et
al., 2000; Green and Gibb, 2001; Pifia-Crespo and Gibb,
2002; Brickley et al., 2003; Dunah and Standaert, 2003;
Fu et al., 2005; Jones and Gibb, 2005; Lu et al., 2006;
Brothwell et al., 2008). Few studies have addressed the
functional implications of the presence of two different
GluN2 subunits in the NMDA receptor complex (Brime-
combe et al., 1997; Cheffings and Colquhoun, 2000; Hat-
ton and Paoletti, 2005).

The GIluN3 subunits bind glycine and do not form
functional receptors alone (Chatterton et al., 2002; Yao
and Mayer, 2006). When coexpressed with GluN1 in X.
laevis oocytes, GluN1/GluN3 receptors can form recep-
tors that are activated by glycine alone (Chatterton et
al., 2002), but these excitatory glycine receptors have
not yet been observed in GluN3-expressing neurons
(Matsuda et al., 2003). At present, surface expression of
glycine-activated GluN1/GluN3A or GluN1/GluN3B re-
ceptors in HEK293 cells is unresolved, but GluN1/
GIluN3A/GluN3B shows some functional expression
(Smothers and Woodward, 2007). When GluN3 is coex-
pressed with GluN1 and GIluN2 in X. laevis oocytes,
NMDA- and glutamate-activated current amplitudes
are reduced compared with current from GluN1/GluN2,
suggesting that either triheteromeric GluN1/GluN2/
GlulN3 receptors form that have a lower conductance, or
GluN3 expression reduces trafficking or assembly of
GluN1/GluN2 (Das et al., 1998; Perez-Otano et al., 2001;
Ulbrich and Isacoff, 2007, 2008). Triheteromeric GluN1/
GluN2/GluN3 receptors presumably form in cortical
neurons based on the observation of single-channel cur-
rents with properties that could not be attributed to
either GluN1/GluN2 or GluN1/GluN3 receptors (Sasaki
et al., 2002). The subunit stoichiometry and surface ex-
pression of GluN3-containing NMDA receptors and the
physiological relevance of triheteromeric GluN1/GluN2/
GlulN3 receptors are not fully resolved.

C. Receptor Assembly and Trafficking

AMPA receptors assemble as dimers of dimers with
ATD interactions presumably mediating the initial
dimer formation. Subsequent tetramerization (i.e., as-
sembly of two subunit dimers) occurs through interac-
tions of the LBDs and the TMDs (Ayalon and Stern-
Bach, 2001; Mansour et al., 2001; Ayalon et al., 2005).
Receptor assembly occurs in the endoplasmic reticulum
(ER), where quality control mechanisms ensure correct
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subunit folding and assembly. Data suggests that con-
formational changes associated with the normal func-
tion of glutamate receptors, such as ligand binding, ac-
tivation, and desensitization, take place in the ER
lumen, and these conformational changes may influence
trafficking (Greger et al., 2002; Fleck et al., 2003; Grun-
wald and Kaplan, 2003; Mah et al., 2005; Valluru et al.,
2005; Greger et al., 2006; Priel et al., 2006; Penn et al.,
2008). Consequently, glutamate receptors may require li-
gands or “chemical chaperones” for efficient folding and
export from the ER. This is evident when the conforma-
tional changes associated with the normal function are
modified by mutagenesis. Nondesensitizing GluA2(1.483Y)
mutants exit from the ER inefficiently, whereas GluA2
(N754D), which has increased desensitization, exits effi-
ciently from the ER (Greger et al., 2006). Block of desen-
sitization has been shown to similarly influence kainate
receptor trafficking (Priel et al., 2006; Nayeem et al., 2009).
The mechanisms are unclear, but block of desensitization
could interfere with association and/or dissociation of chap-
erones and/or transport proteins, with potential candi-
dates being TARPs or CNIHs that are thought to be aux-
iliary subunits (see section II.H).

Data suggest that the ATD plays a crucial role in
receptor oligomerization and perhaps trafficking (Kuusi-
nen et al., 1999; Leuschner and Hoch, 1999; Ayalon and
Stern-Bach, 2001; Ayalon et al., 2005; Qiu et al., 2009).
The interaction between the ATDs is sufficient to allow
isolated ATDs to form stable dimers in solution (Clayton
et al., 2009; Jin et al., 2009; Kumar et al., 2009). A key
role of the AMPA receptor ATD may be to direct assem-
bly of the tetrameric receptor and to prevent kainate or
NMDA receptor subunits from entering the tetramer
(Kuusinen et al., 1999; Leuschner and Hoch, 1999; Aya-
lon et al., 2005), and some segments of the AMPA recep-
tor ATD have been implicated in subtype-specific assem-
bly (Leuschner and Hoch, 1999; Ayalon et al., 2005). In
addition, AMPA receptor subunit stoichiometry is con-
trolled by RNA editing, which precedes mRNA splicing
and protein synthesis at two sites that modulate func-
tion: the RG site within the GluA2 to GluA4 LBD, and
the QRN site at tip of the reentrant pore loop. Editing
switches the codon at the QRN site from Gln to Arg in a
majority of GluA2 RNA. These sites are located within
subunit interfaces and are thought to affect receptor
assembly by favoring heterodimerization over ho-
modimerization, which partly explains why GluA2-con-
taining AMPA receptors are mostly heteromers (Man-
sour et al., 2001; Greger et al., 2002, 2003, 2006). In
addition, GluA2 subunits edited at the QRN site have
increased dwell time in the ER compared with other
AMPA receptor subunits, thereby increasing their avail-
ability for assembly with other subunits (Greger et al.,
2002).

Three models have been suggested for assembly of
NMDA receptors. The first model suggests that GluN1-
GluN1 and GluN2-GluN2 homodimers initially form
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and subsequently coassemble to form the tetrameric
receptor (Meddows et al., 2001; Schorge and Colquhoun,
2003; Papadakis et al., 2004; Qiu et al., 2005). The
second model proposes that a GluN1-GluN1 homodimer
forms a correctly folded stable complex to which two
GluN2 monomers are added sequentially to form the
NMDA receptor tetramer (Atlason et al., 2007). The
third model suggests initial GluN1-GluN2 heterodimer
formation and subsequent tetramerization (Schiiler et
al., 2008). At present, there are insufficient data to dis-
tinguish between the different models. However, the two
conformationally distinct subunits with two types of
subunit-subunit contacts observed in the GluA2 AMPA
receptor structure (Sobolevsky et al., 2009) might pro-
vide the structural framework needed to design experi-
ments to resolve this issue. Similar to AMPA receptors,
the ATD is thought to mediate initial dimer formation of
NMDA receptor subunits (Meddows et al., 2001; Pa-
padakis et al., 2004).

D. The Extracellular Ligand Binding Domain

The LBD is highly conserved within the different glu-
tamate classes (Table 2) and is formed by two extracel-
lular stretches of amino acids historically referred to as
S1 and S2 (Stern-Bach et al., 1994) (Fig. 1A). The struc-
tures of excised S1 and S2 amino acid sequences joined
by an artificial polypeptide linker to form the LBDs have
been described both with agonist and antagonist bound.
All LBD structures adopt a clamshell-like conformation,
where the polypeptide segment S1, located on the
amino-terminal side of membrane helix M1, forms most
of one half of the clamshell (D1), and the segment S2
between the M3 and M4 membrane helices forms most of
the opposite half of the clamshell (D2) (Fig. 1A). The

¢ D1 >

+ # # #
GluAl 461 DGKYGARIPD ... 489 AVAPLTITLVREE
GluA2 468 DGKYGARDAD ... 496 AIAPLTITLVREE
GLuA3 471 DGKYGARDPE ... 499 AVAPLTITLVREE
GluA4 469 DGKYGARDAD ... 497 AIAPLTITLVREE

GluK1l 501 DGKYGAQNDK ... 528 AVAPLTITYVREK
GluK2 485 DGKYGAQDDV ... 513 AVAPLAITYVREK
GluK3 488 DGKYGAQDDK ... 515 AVAPLTITHVREK
GluK4 470 DGVYGVPEAN ... 497 AVAGLTIT:IREK
GluK5 469 DGLYGAPEPN ... 496 AVAAFTITAEREK

508 AVGSLTINEERSE

509 AVGSLTINEERSE

519 LTINEERSE

533 LTINEERSE

513 IVAPLTINNERAQ

628 AVTIFIINTARSQ
F

GLluN2B 483 NGKHGKKING ...
GluN2C 493 NGKHGKRVRG ...

GLuN2A 482 NGKHGKKVNN ...
GLluN2D 507 NGKHGKKIDG ...

GluN1 481 DGKEGTQERV ...
GluN3A 602 DGKYGAWKNG ...

GluN3B 502 DGKYGALRDG ... 528 AVTSFSINSARSQ
GluD1 489 DGIYGHQLHN ... 516 TITPERES
GluD2 493 DHKYGIPQED vee 520 LTITPDREN

+ # # #
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agonist binding pocket is located within the cleft be-
tween these two lobes. Several lines of experimental
work have validated that the agonist-binding site in the
soluble LBDs used for crystallization faithfully resem-
bles the binding sites in intact receptors (Armstrong and
Gouaux, 2000; Furukawa and Gouaux, 2003; Du et al.,
2005; Gonzalez et al., 2008; Sobolevsky et al., 2009). In
addition, comparison of UV absorption spectra that
probe the molecular configuration of the AMPA receptor
antagonist CNQX bound to either the isolated GluA2
LBD or the full-length GluA2 suggests that the struc-
ture of the soluble LBD resembles that within the full-
length receptor (Deming et al., 2003).

The initial step in glutamate receptor activation is
binding of the agonist to the LBD. Glycine, D-serine,
aspartate, and glutamate analogs are agonists and uni-
formly contain moieties that correspond to the a-amino
and a-carboxyl groups. The regions of the binding pocket
that form atomic interactions with the a-carboxyl and
the a-amino groups are similar in all LBD structures
and are composed primarily of residues from D1 (Fig. 2;
see also section V.A). Crystallography studies together
with homology modeling of the AMPA receptor subunits
GluAl to GluA4 show that residues that directly inter-
act with a-carboxyl and a-amino groups of glutamate,
AMPA, and kainate are conserved (Armstrong et al.,
1998; Armstrong and Gouaux, 2000; Bjerrum et al.,
2003, Pentikiinen et al., 2003; Gill et al., 2008) (Fig. 2).
Greater variation is observed for the binding mode of the
v-positioned groups among AMPA receptor agonists,
with a variety of atomic contacts being made for differ-
ent agonists. Residues lining the agonist binding cavi-
ties of kainate receptor subunits are not fully conserved,
providing opportunities for the development of subunit-

4 A
R b2 ¥ signal
## +# peptide
664 PEAGSTKEFF ... 715 AVLEESTMNEY (18)
671 LDSGSTKEFF ... 722 AYLLESTMNEY (21)
676 LDSGSTKEFF ... 727 AFLLESTMNEY (22)
672 LDSGSTKEFF ... 723 AFLLESTMNEY (21)
700 VRDGSTMTFF ... 749 ALLMESTSIEY (30)
685 VEDGATMTFF ... 734 AFLMESTTIEF (31)
687 VKDGATMTFF ... 735 ALLMESTTIEY (31)
670 THGGSSMTFF ... 719 AFLLESTMNEY (20)
669 IHAGSTMTFF ... 718 AFLLESTMNEY (14)
685 VPNGSTERNI ... 727 AF NY  (29)
686 VPNGSTERNI ... 728 AF NY (26)
696 VPNGSTERNI ... 738 AF NY  (32)
710 VPNGSTEKNI ... 752 AF NY  (23)
684 VKQSSVDINF ... 728 AFEWDSAVEEE (18)
797 VRESSAEDYV ... 841 AFIMDKA (26)
697 VWESSAEAYI ... 741 AFIMDK (22)
682 VRDSBVYEWF ... 738 AFLWBVAWWNEY (15)
682 VLDSAVYQHV ... 738 AFVW EY (16)
## +#

Fic. 2. Alignments of agonist-binding residues of glutamate receptor subunits. Residue numbering is according to the total protein including the
signal peptide (initiating methionine is 1). For reference, the predicted size of the signal peptide (SP) is included in parenthesis at the end of the
alignment. Amino acid numbering in AMPA and kainate receptor subunits has historically been for the mature protein without the signal peptide,
whereas amino acid numbering of NMDA and GluD receptor subunits has started with the initiating methionine as 1. Fully conserved residues are
yellow, conserved residues are blue, and similar residues are green. # denotes residues capable of forming hydrogen bonds or electrostatic interactions
with the agonist; + denotes residues capable of forming van der Waals contacts with the agonist.
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selective agonists (Mayer, 2005) (Fig. 2; discussed in
section V). Residues that interact with agonists in the
NMDA receptor GluN2 subunits are fully conserved
(Anson et al., 1998; Laube et al., 2004; Chen et al., 2005;
Hansen et al., 2005a; Kinarsky et al., 2005; Erreger et
al., 2007). As expected from sequence alignments, the
agonist binding pockets of GluN1 and GluN3 are similar
to those of GluA2 and GIulN2A, but several key differ-
ences suggest how these subunits discriminate between
glutamate and glycine (discussed in section V). Gluta-
mate receptor activation involves a conformational
change of the LBD upon binding of the agonist. Direct
structural evidence for this idea arose from comparison
of GluA2 LBD structures with and without agonist
bound, as well as structures with bound competitive
antagonists (Armstrong and Gouaux, 2000). In the an-
tagonist-bound and the unbound apo structures, D1 and
D2 are separated and adopt a more open conformation
than in the agonist-bound structure, where D1 and D2
adopt a closed conformation (see also section VII.B for
more detail). This mechanism is likely to be conserved
in all glutamate receptor subunits, because all ago-
nist-bound LBDs examined so far adopt conformations
that are closed to different degrees relative to the apo
structure.

Agonist-induced cleft closure within the LBD dimer,
arranged with 2-fold symmetry in a back-to-back fash-
ion, is an early conformational event that triggers the
subsequent transition of the ion channel domain into an
open state (see section VII). The intersubunit D1-D1
contacts formed across the dimer interface create both
monovalent and divalent ion binding sites as well as

inactive, resting

glutamate

closed

active, non-desensitized

open
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sites for drug-like allosteric modulators (see section VI).
In brief, upon agonist binding, the D2 lobes move and
probably trigger rearrangement of the short segments
that link the ion channel-containing TMD to the LBD,
which drive rearrangement of M3 and subsequent chan-
nel opening (Erreger et al., 2004; Mayer, 2006, Hansen
et al., 2007) (Fig. 3 discussed in section VII). The move-
ment of D1 and D2 relative to each other results in
instability at the TMD and at the LBD dimer interface.
Stability can be restored by LBD reopening, which is the
first step in the process of agonist dissociation, and we
assume that it must be preceded by channel closure (or
a change in subconductance state). Alternatively, the
reduced stability of the interactions at the LBD dimer
interface upon agonist binding can lead to a rearrange-
ment of the dimer interface, allowing the receptor to
enter a desensitized state (Sun et al., 2002; Jin et al.,
2003., 2005; Horning and Mayer, 2004; Armstrong et al.,
2006; Weston et al., 2006b) (Fig. 3; see section VII).
Alternative splicing of the AMPA receptor subunits
generates two isoforms of the LBD termed flip and flop
(Sommer et al., 1990), which control desensitization and
deactivation as well as sensitivity to allosteric modula-
tors (Mosbacher et al., 1994; Partin et al., 1994, 1995).
The growing list of structures for LBDs from all subfam-
ilies in complex with different agonists provides a firm
basis for understanding agonist selectivity. For several
of these ligands, structural studies in combination with
site-directed mutagenesis and homology modeling have
provided the structural determinants within the binding
pocket that guide subunit selectivity (see section V).

inactive, desensitized

closed

Fic. 3. Conformational changes in the functioning AMPA receptor. Ribbon diagrams of the crystal structures of the GluA2 LBD dimer in
conformations that correspond to the resting state (apo form; PDB code 1FTO0), active state (glutamate-bound; PDB code 1FTJ) and desensitized state
(glutamate-bound; PDB code 2I3V). In these structures, the LBD exists in a bilobed clamshell-like arrangement with the agonist-binding pocket
located deep within the cleft between the two lobes referred to as D1 and D2. Binding of glutamate induces a transition of D2 that leads to separation
of the linker segments that replace the TMDs in the full-length subunits (represented here by cylinders). The NTD and CTD are omitted for clarity.
Distances between the linkers that face the TMD and distances between a glycine residue (Gly739) at the top of the dimer are taken from Armstrong
et al. (2006). Upon glutamate binding and domain closure, separation of the linkers can result in reorientation of the transmembrane helices and
opening of the ion channel. The active, nondesensitized receptor conformation is unstable, and stability can be restored either by reopening of the ABD
or by rearrangement at the dimer interface. Rearrangement at the dimer interface results in desensitization by repositioning the transmembrane

helices such that the ion channel is closed.


http://www.pdb.org/pdb/explore/explore.do?structureId=1FT0
http://www.pdb.org/pdb/explore/explore.do?structureId=1FTJ
http://www.pdb.org/pdb/explore/explore.do?structureId=2I3V
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E. The Extracellular Amino-Terminal Domain

Beginning at the extracellular ATD, all glutamate
receptors contain a short signal peptide (14-33 residues)
that targets the protein to the membrane and is removed
by proteolysis after membrane insertion. Subsequent to
the signal sequence, the first ~400 to 450 residues in all
glutamate receptor subunits (except bacterial GluRO,
which lacks the ATD) fold into a semiautonomous do-
main. Glutamate receptor ATDs have sequence homol-
ogy and are structurally similar to the LBD of the
metabotropic glutamate receptor mGluR1a and a group
of soluble bacterial periplasmatic amino acid binding
proteins, such as the leucine/isoleucine/valine binding
protein (O’'Hara et al., 1993; Paas et al., 1996; Paas,
1998; Masuko et al., 1999a; Paoletti et al., 2000; Clayton
et al., 2009; Jin et al., 2009; Karakas et al., 2009; Kumar
et al., 2009). However, the similarity is confounded by
numerous structural differences, such as the different
locations of disulfide bonds, as well as inserts and dele-
tions. Nonetheless, the similarity between the gluta-
mate receptor ATD and these proteins suggests that the
function of the ATD could be to bind endogenous ligands,
perhaps within a putative pocket located between the
lobes. Numerous mutant subunits have been created
that lack the entire ATD (Fayyazuddin et al., 2000;
Pasternack et al., 2002; Horning and Mayer, 2004; Mat-
suda et al., 2005; Rachline et al., 2005; Gielen et al.,
2009; Yuan et al., 2009a), and these truncated subunits
seem to assemble into receptors that are functionally
similar to wild-type receptors. The nonessential nature
of the ATD for the core function of the glutamate recep-
tors is consistent with a regulatory role for this domain.
Truncations of the ATD have been found to influence
open probability, deactivation, desensitization, and reg-
ulation of subunit-specific assembly (Kuusinen et al.,
1999; Leuschner and Hoch, 1999; Ayalon and Stern-
Bach, 2001; Meddows et al., 2001; Ayalon et al., 2005;
Gielen et al., 2009; Yuan et al., 2009a). The ATD also
harbors binding sites for divalent cations, such as Zn?*,
and subunit-selective negative allosteric modulators,
such as the phenylethanolamine ifenprodil (see sections
V and VI). In addition, the ATD may contain binding
sites for extracellular proteins, such as N-cadherin (Sa-
glietti et al., 2007) and neuronal pentraxins (NARP and
NP1) for AMPA receptors (O’Brien et al., 1999; Sia et al.,
2007) the ephrin receptor for NMDA receptors (Dalva et
al., 2000; Takasu et al., 2002); cerebellinl precursor
protein for GluD2 receptors (Matsuda et al., 2010; Ue-
mura et al., 2010; see also Uemura and Mishina, 2008;
Kakegawa et al., 2009).

The glutamate receptors are glycosylated during their
passage through the endoplasmic reticulum and Golgi.
The consensus sites for N-linked glycosylation primarily
are located in the ATD, but a few are located in the LBD
(Hollmann et al., 1994; Standley and Baudry, 2000). It is
not clear how many of these consensus sites are glyco-
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sylated, but cell-specific differences in glycosylation of
the glutamate receptor subunits might contribute to the
differences in ligand affinities, trafficking, and molecu-
lar weights observed between different native receptors
and those expressed in heterologous systems (Chazot et
al., 1995; Sydow et al., 1996; Everts et al., 1997; Stand-
ley et al., 1998; Standley and Baudry, 2000; Clayton et
al., 2009: Kumar et al., 2009). Although the effects of
glycosylation on glutamate receptor function have not
been studied in detail, glycosylation can affect desensi-
tization and maximal currents of AMPA and kainate
receptors (Hollmann et al., 1994; Everts et al., 1997). In
addition, the lectin concanavalin A (con A) inhibits de-
sensitization of kainate receptors in a manner that in-
volves association of con A with the N-linked oligosac-
charides (Partin et al., 1993; Everts et al., 1997, 1999)
(see section VI).

Like the glutamate receptor LBDs, the GluN2B ATD
is a clamshell-like structure, roughly composed of two
halves (R1 and R2) tethered together by loops (Karakas
et al., 2009). The N terminus is located at the top of R1,
and the linker to the LBD is located at the bottom of R2.
Overall, the GluN2B ATD structure resembles the li-
gand binding domain of the metabotropic glutamate re-
ceptor mGIluR1 (Kunishima et al., 2000), although the
position of R1 is 50° twisted relative to R2 in GIuN2B
ATD compared with mGluR1. The cleft between R1 and
R2 can be divided into three sites: 1) the hydrophilic
pocket at the outer end of the cleft, which contains polar
residues involved in Zn?" binding; 2) the hydrophobic
pocket deep inside the cleft, which contains residues
that seem to affect ifenprodil binding; and 3) the ion-
binding site that accommodates Na™ and Cl~ ions with
unknown physiological relevance. Binding of ifenprodil
to GluN2B and Zn?* to GluN2A or GluN2B has been
proposed to stabilize a closed-cleft conformation of the
ATD (see section VI; Karakas et al., 2009), although
structural data in support of the hypothesized intracleft
binding site is lacking. Nevertheless, the proposed cleft-
closure has been speculated to lead to separation of the
two R2 lobes in the ATD dimer (Gielen et al., 2008,
2009).

In contrast to NMDA receptors, no ions or small mol-
ecules are known to bind to the AMPA or kainate recep-
tor ATD. Crystal structures of the GluA2 and the GluK2
ATDs show that these AMPA and kainate receptor
ATDs adopt an overall structure similar to that of
the ATD from the NMDA receptor subunit GluN2B, but
the twist between R1 and R2 in GIuN2B ATD was less
pronounced in GluA2 and GluK2 ATDs (Clayton et al.,
2009; Jin et al., 2009; Kumar et al.,, 2009). Unlike
GluN2B, the isolated GluA2 and the GluK2 ATDs form
dimers in solution and in the crystal lattice. Likewise,
the ATDs of GluAl and GluA4 also form dimers in
solution (Kuusinen et al., 1999; Wells et al., 2001b; Jin
et al., 2009).
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Comparison of the R1 and R2 lobes of GluA2 and
GluK2 ATDs with the corresponding domains of
mGluR1 shows that the GluA2 and GluK2 ATDs adopt a
conformation that is intermediate between the canonical
open-cleft and closed-cleft states of mGluR1. In addition,
there are extensive interactions between the two ATD
subunits of the dimer for both GluA2 and GluK2 that
involve multiple R1-R1 and R2-R2 domain contacts
(Clayton et al., 2009; Jin et al., 2009; Kumar et al.,
2009). The extensive interactions between the R2 lobes
are mostly hydrophobic contacts situated in a large
patch that is buried after dimerization of the ATD. The
residues in this hydrophobic patch are conserved or con-
servatively substituted between AMPA and kainate re-
ceptors. In NMDA receptors, the sequence conservation
is lower at the R2-R2 interface, consistent with the idea
that binding of modulators to the NMDA receptor ATD
could stabilize ATD cleft closure and separation at the
R2-R2 interface (Gielen et al., 2008, 2009). A separation
at the R2-R2 interface in the non-NMDA receptor ATD
dimer would expose the large hydrophobic patch on the
R2 lobe to the solvent, which would be energetically
unfavorable. The “weak” R2-R2 interface in the NMDA
receptor could better allow closure of the R1-R2 clam-
shell and separation at the R2-R2 interface, thereby
triggering allosteric modulation of the ion channel. So-
lution of dimeric forms of the ATD will help clarify these
ideas.

F. The Transmembrane Domain

In all glutamate receptors, the LBD is connected to
the conserved TMD through three short linkers (Fig.
1A). The transmembrane helices M1, M3, and M4 from
each of the four subunits contribute to formation of the
core of the ion channel and have a small but significant
sequence homology with the inverted ion channel do-
main of K* channels (Wo and Oswald, 1995; Kuner et
al., 2003). This similarity is further highlighted by the
bacterial glutamate receptor, GluRO, which shares
strong functional and structural homology with the
mammalian glutamate receptors and is a potassium-
selective channel with inverted topology compared with
the mammalian glutamate receptors (Chen et al.,
1999a). The permeation properties of GluA2-containing
AMPA receptors and GluK1 and GluK2 kainate recep-
tors are modified post-transcriptionally by RNA editing
at the Gln codon that resides at the apex of the re-
entrant M2 loop (QRN site). The glutamine within the
QRN site is converted to arginine by adenosine deami-
nase (Sommer et al., 1991; Bass, 2002). For GluA2, the
overwhelming majority of RNA is edited. AMPA or kai-
nate receptors that contain the unedited form of GluA2
(Q) have high permeability to Ca®?* and are insensitive
to extracellular and intracellular polyamine channel
blockers, whereas AMPA receptors containing the edited
form of GluA2 (R) have low Ca®" permeability and are
insensitive to polyamine channel blockers (see section

415

VIII.C). It is noteworthy that the extended region of the
M2 loop in the new GluA2 structure that encompasses
the QRN site is disordered. It is unclear whether this
reflects crystallization conditions or a native conforma-
tion, which might have significant functional conse-
quences for ion permeation and block.

The structure of the antagonist-bound tetrameric rat
GluA2 shows that the four subunits arrange their TMDs
in a 4-fold axis of symmetry with the core of the ion
channel (M1-M3), strikingly similar to K* channels
(Sobolevsky et al., 2009) (Fig. 1C). The M2 loop lines the
inner cavity of the pore, whereas the M3 helices line the
outer cavity, with positions at the apex tightly opposed,
presumably forming the gate that occludes the flux of
ions in the closed state (see sections VII and VIII). The
M1 helix is positioned on the exterior of M2 and M3. It is
noteworthy that the M4 segment from one subunit is
associated with the ion channel core (M1-M3) of an ad-
jacent subunit. In addition, the linker region preceding
M1 (pre-M1) makes a short helix that is oriented paral-
lel to the plane of the membrane, making contacts with
carboxyl- and amino-terminal ends of transmembrane
helices M3 and M4, respectively. The pre-M1s from the
four subunits resemble a cuff around the external sur-
face of the ion channel pore that could be an important
determinant for channel gating (see section VII).

G. The Intracellular Carboxyl-Terminal Domain and
Protein Binding Partners

The CTD is the most diverse domain in terms of amino
acid sequence (Table 2), varying in sequence and in
length among the glutamate receptor subunits (Figs.
5-7). It shows no sequence homology to any known pro-
teins but encodes short docking motifs for intracellular
binding proteins. No structural details exist for this
domain except for part of the GluN1 CTD with bound
Ca?"/calmodulin (Ataman et al., 2007). The CTD is
thought to influence membrane targeting, stabilization,
post-translational modifications (see section IV), and
targeting for degradation. For some glutamate receptor
subunits (e.g., GluN1, GluN2A), deletion of this domain
does not abolish function but does alter regulation (Kéhr
and Seeburg, 1996; Ehlers et al., 1998; Krupp et al.,
1998; Vissel et al., 2001), because the CTDs contain
different phosphorylation sites (see section IV) and bind-
ing sites for intracellular proteins important for regula-
tion of membrane trafficking and receptor function. Sev-
eral ER retention signals reside in alternatively spliced
exons of GluN1, as well as in GluN2B (Horak and
Wenthold, 2009). It is noteworthy that there is also a
short span of sequence immediately C-terminal to M4 in
GluN2 that also participates in trafficking (Hawkins et
al., 2004).

Virtually all members of the glutamate receptor fam-
ily bind to a variety of intracellular proteins, which fall
into several classes. Tables 3 and 4 contain noncompre-
hensive lists that summarize some of the better known
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interactions between glutamate receptor C-terminal
and PDZ, cytoskeletal, scaffolding, adaptor, anchoring,
structural, signaling, and other proteins. In addition to
these interactions, several glutamate receptor subunits
bind directly to signaling proteins, including GluA1 and
cGMP-dependent protein kinase II (Serulle et al., 2007),
GluA4 and PKC (Correia et al., 2003), multiple NMDA
receptor subunits and Ca®*/calmodulin-dependent pro-
tein kinase (CamK) II (Gardoni et al., 1998; Strack and
Colbran, 1998; Leonard et al.,, 1999, 2002), as well as
tyrosine phosphatase and GluD2 (Hironaka et al., 2000).
These interactions allow local signaling to proceed, pro-
viding the possibility of spatial and temporal specificity
to receptor regulation. Additional localization of signal-
ing molecules can be mediated by adjacent proteins, and
the glutamate receptors are embedded into a rich com-
plex of signaling molecules that are localized by a myr-
iad of adaptor and scaffolding proteins within the post
synaptic density (Husi et al., 2000). Further enhancing
the complexity among different subunits, alternative
RNA splicing of several AMPA and kainate receptor
subunits as well as the NMDA receptor subunit GluN1
causes variation in the CTD that also will affect binding
sites for intracellular proteins.

H. Transmembrane a-Amino-3-hydroxy-5-methyl-4-
isoxazolepropionic Acid Receptor Regulatory Proteins
and other Auxiliary Subunits

A confound in the study of AMPA receptor biophysical
properties has been the occasional lack of congruence
between the properties of recombinant receptors ex-
pressed in heterologous systems and those of native
receptors studied in isolated tissue. This mismatch sug-
gests that heterologously expressed receptors lack a mod-
ulatory component that can influence essential properties.
The discovery of the interaction between AMPA receptor
subunits and the transmembrane AMPA receptor regu-
latory proteins (TARPs) has solved many of these dis-
crepancies. TARPs are integral membrane proteins with
four transmembrane domains (Letts et al., 1998; Hashi-
moto et al., 1999; Chen et al., 2000; Tomita et al., 2003;
Coombs and Cull-Candy, 2009) that selectively interact
with AMPA receptors early in synthesis and trafficking
and direct proper expression and localization of the re-
ceptor at the cell surface (Hashimoto et al., 1999; Chen
et al., 2000; Schnell et al., 2002; Tomita et al., 2004,
2005a; Vandenberghe et al., 2005). TARPs are present in
the majority of AMPA receptor complexes in the brain,
suggesting that TARPs are auxiliary subunits for native
AMPA receptors (Fukata et al., 2005; Nakagawa et al.,
2005, 2006; Vandenberghe et al., 2005). It has been
suggested that two or four TARPs can associate with the
AMPA receptor tetramer, depending on availability
(Vandenberghe et al., 2005; Milstein et al., 2007; Shi et
al., 2009). The interaction sites between TARPs and
AMPA receptors involve intracellular, transmembrane,
and extracellular regions of both proteins (Tomita et al.,
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2005a, 2007; Bedoukian et al., 2006; Milstein and Nicoll,
2009; Sager et al., 2009).

The classic members of TARPs, y-2, v-3, y-4, and -8,
interact with all four AMPA receptor subunits. The pro-
totypical TARP (y-2 or stargazin) originally was identi-
fied in the cerebellum as a protein essential for delivery
of AMPA receptors to the plasma membrane (Letts et
al., 1998; Chen et al., 2000). The functional properties of
AMPA receptors associated with the TARP subtypes y-2,
v-3, v-4, and y-8 are different from those of AMPA re-
ceptors devoid of auxiliary subunits. In addition to their
trafficking capabilities, TARPs increase single channel
conductance, increase open probability, increase the ac-
tivation rate, slow the deactivation time course, and
reduce desensitization (Yamazaki et al., 2004; Priel et
al., 2005; Tomita et al., 2005a; Turetsky et al., 2005;
Zhang et al., 2006b; Kato et al., 2007; Soto et al., 2007,
2009). Prolonged activation of AMPA receptors triggers
a form of desensitization that results from dissociation
of the TARP, potentially providing a novel mechanism
for receptor tuning (Morimoto-Tomita et al., 2009). Fi-
nally, y-2 reduces GluA2-lacking AMPA receptor affinity
for polyamine block, resulting in receptors with weak
inward-rectification (Soto et al., 2007).

The TARP v-5 increases glutamate potency and glu-
tamate-evoked peak currents, reduces steady-state cur-
rents, and accelerates the time course of deactivation
and desensitization only in GluA2-containing receptors,
but this modulation does not involve regulation of GluA2
surface expression (Kato et al., 2008). The TARP ~-7
shares many of these properties but is not selective for
receptors comprising GluA2-containing subunits, en-
hancing peak currents in channels containing GluA1l or
GluA2 (Kato et al., 2007). In contrast, other studies
show that vy-5 interacts with all AMPA receptor subunits
and modifies their behavior (Soto et al., 2009).

Proteins with homology to TARP (STG-1 and STG-2)
and with similar functional roles have been discovered
in Caenorhabditis elegans, Apis mellifera, and Dro-
sophila melanogaster (Walker et al., 2006a; Wang et
al., 2008). However, an important difference between
TARPs and STG-1 and STG-2 is the obligatory require-
ment of an additional transmembrane auxiliary subunit
(SOL-1) that is structurally unrelated to TARPs and
interacts directly with invertebrate AMPA receptor sub-
units (GLR-1 and GLR-2) to slow and reduce the extent
of receptor desensitization (Zheng et al., 2006; Walker et
al., 2006a,b).

Another distinct class of transmembrane proteins has
been shown to assemble with and regulate AMPA recep-
tors (Schwenk et al., 2009). These proteins, CNIH-2 and
CNIH-3, are members of the mammalian CNIH family
and are homologous to the cornichon proteins from flies
and yeast (Roth et al., 1995; Bokel et al., 2006; Castro
et al., 2007). CNIH proteins are necessary for the export
of a number of proteins from the endoplasmic reticulum,
including the epidermal growth factor receptor ligands.
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The role of the CNIH proteins in AMPA receptor regu-
lation is not yet fully understood.

Accessory proteins for NMDA and kainate receptors
have also recently been described. Netol possesses a
single transmembrane domain containing two comple-
ment C1r/Cls, Uegf, Bmpl domains and is a component
of the NMDA receptor complex (Ng et al., 2009). Netol
interacts with an extracellular domain of GluN2 as well
as through an intracellular interaction with PSD95.
Loss of Netol in transgenic mice preferentially results in
a loss of synaptic GluN2A expression, with only a mod-
est impact on GluN2B expression, which leads to im-
paired hippocampal LTP and hippocampal-dependent
learning and memory (Ng et al., 2009). A second Clr/
Cls, Uegf, Bmpl domain-containing protein, Neto2, in-
teracts with GluK2 to increase peak amplitude and open
probability and to slow the decay time course of both
GluK2 recombinant receptors and kainate receptor-me-
diated mEPSCs in cerebellar granule cells (Zhang et al.,
2009¢). In recombinant expression systems, Neto2 had
no impact on GluK2 surface expression.

ITI. Regulation of Transcription and Translation

The level of expressed glutamate receptors reflects a
balance of transcription, translation, mRNA level, pro-
tein stability, receptor assembly, and presentation at the
cell surface, all of which are integrated through numer-
ous environmental stimuli. Therefore, the particular
subunits that each neuron chooses to express are strong
determinants of synaptic phenotype, and this is the ra-
tionale for understanding how the genetic cis elements
and trans factors regulate gene transcription in neural
cells. Over the past decade steady work toward under-
standing the control of ionotropic glutamate expression
in neuronal and non-neuronal cells has occurred,
roughly doubling both the number of subunits studied
and the identification of promoter elements controlling
expression in neuronal cells. Furthermore, how chroma-
tin remodeling affects glutamate receptor expression in
both neurons and non-neuronal cells has been identified
after, for example, status epilepticus or transient isch-
emia. Most studies have employed a combination of pro-
tein-DNA binding assays with functional analysis of na-
tive and mutant promoter constructs driving a reporter
gene, overexpression of candidate transcription factors
in cultured cells or in vivo, occupancy of cis elements by
transcription factors in vivo using chromatin immuno-
precipitation (ChIP) assays, and the use of real-time
quantitative polymerase chain reaction experiments.
The use of ChIP assays and real-time quantitative poly-
merase chain reaction on endogenous gene transcripts
(and also on exogenously expressed constructs) have
been particularly fruitful in helping to advance our un-
derstanding of how an acute stimulus causes a change in
transcript level dependent on candidate promoter ele-
ments and trans-acting factors. Studies such as these
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have begun to tie neuronal activity, energy metabolism,
and glutamate receptor expression together more coher-
ently. Furthermore, an appreciation for the role of epi-
genetic modifications and chromatin remodeling at glu-
tamate receptor promoters is also emerging and holds
promise for new understanding of the neurobiology of
glutamate receptors. Despite this progress, vexing
questions still remain regarding the mechanisms that
control cell-specific and developmental expression for
glutamate receptor subunits.

Glutamate receptor genes have a number of features
in common, such as multiple transcriptional start sites
in a TATAA-less promoter with high GC content. The
5'UTR ranges between 200 bp (Grial) to over 1200 bp
(Grin2a) and, in the case of Gria4, Grik5, Grin2a,
Grin2b, and Grin2c, is formed from multiple exons. Fi-
nally, one or more Spl elements reside near the major
transcriptional start site of all genes studied, several
glutamate receptor promoters contain NFkB, CRE,
AP1/2, Tbr-1, NRF-1, and RE1/NRSE sites, and gene
expression of many is responsive to neuronal activity.
The schematic organization of the promoter regions is
presented in Fig. 4. It also should be noted that NMDA,
AMPA, and kainate receptors are key mediators of sig-
nal transduction events that convert environmental
stimuli into genetic changes through regulation of gene
transcription and epigenetic chromatin remodeling in
neural cells, an area of emerging interest (Carrasco and
Hidalgo, 2006; Wang et al., 2007; Cohen and Greenberg,
2008; Lubin et al., 2008).

A. a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic
Acid Receptors

1. Grial. The rat Grial gene has been evaluated for
transcription initiation and regulation of promoter func-
tion by transfection of constructs into primary mixed
neuronal cultures. Grial promoter activity was stronger
in neurons, neuronal specificity being primarily depen-
dent on sequences lying within the regions —1395 to
—743 and —253 to —48. Although five CRE sites were
able to bind recombinant CRE binding-bZIP proteins,
conditions under which these CRE sites come into play
in native neurons are unknown. GluAl receptors (like
all AMPA receptor subunits) are expressed by neurons
and glial cells in vivo and in vitro (Gallo and Ghiani,
2000), but the density of functional receptors is much
lower in astrocytes than neurons. In oligodendrocyte
progenitor O-2A cells, the transcriptional rate of GluA1l
is increased by platelet-derived growth factor and basic
fibroblast growth factor (Chew et al., 1997). Regulation
of Grial transcription occurs via acid sphingomyelinase
and NFkB sites in the Grial promoter (Borges and
Dingledine, 2001), which was found to both account for
the elevation of GluA1l by tumor necrosis factor-a (Yu et
al., 2002) and contribute to the sensitization by tumor
necrosis factor-a of NT2-N cells to kainate-induced cell
death.
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FiG. 4. Schematic diagram of the proximal promoter regulatory regions of glutamate receptors. The proximal promoter regions of the GluN1,
GluN2A, GluN2B, and GluN2C NMDA receptors, the GluA1 and GluA2 AMPA receptors, and the GluK5 kainate receptor are shown. Promoters are
shown as thin lines and introns as thin lines with hashmarks. The 5'-untranslated exon sequences are represented by open bars; blackened bars
designate the protein coding domains. Glutamate receptor regulatory elements are identified; those requiring further confirmation are in parentheses.

The promoter regions are not drawn to scale.

2. Gria2. 'The relative use of 5’ transcriptional start
sites in Gria2 is different in cortex and cerebellum,
longer transcripts being more dominant in cerebellum
(Myers et al., 1998). Analysis of Gria2 promoter con-
structs in cultured forebrain neurons and glia revealed
that the Gria2 promoter was 30-fold neuronal selective.
In this study, Spl and NRF-1 positive regulatory ele-
ments, nestled at the 5’ end of a 141-bp transcription
initiation region, and an RE1/NRSE proximal promoter
silencer element were important for neuron-selective
expression. The RE1/NRSE repressed expression 2- to
3-fold in non-neuronal cells compared with neuronal
cells (Myers et al., 1998). Suppression of GluA2 expres-
sion in glia occurs by occupancy of the Gria2 RE1/NRSE
element by the REST/NRSF repressor, which in turn
recruits histone deacetylase (HDAC) complexes to the
Gria2 promoter, resulting in chromatin remodeling and
decreased expression (Huang et al., 1999). In neurons,
the Gria2 promoter is associated with acetylated H3 and
H4 histones, whereas in C6 glioma cells, there is little to
no association with acetylated histones, consistent with
active and inactive gene expression, respectively (Huang
et al., 1999). After induction of status epilepticus by
pilocarpine, the acetylation of histone H4 bound to the
Gria2 promoter was reduced before GluA2 expression

became down-regulated in rat hippocampal CA3 neu-
rons. Seizure-induced GluA2 mRNA down-regulation
was reversed by the HDAC inhibitor trichostatin A
(Huang et al., 2002a). Likewise, Calderone et al. (2003)
showed that global ischemia triggers expression of the
repressor REST and reduces GluA2 expression in CA1l
neurons destined to die. Moreover, kainate reduces ac-
tivity of the neuronal Gria2 promoter in a manner con-
sistent with REST occupancy of the RE1 element, re-
cruitment of HDAC to the promoter, and reduced
histone acetylation (Jia et al., 2006). It is noteworthy
that a preconditioning sublethal ischemic episode can
prevent subsequent ischemia-induced down-regulation
of GluA2 in CA1 neurons (Tanaka et al., 2002) by pre-
venting an increase in REST expression in these same
neurons (Calderone et al., 2003).

TTX reduces GluA2 expression in visual cortical neu-
rons, suggesting that expression is linked to neuronal
activity (Wong-Riley and Jacobs 2002; Bai and Wong-
Riley 2003). The transcription factor NRF-1 binds to the
Gria2 promoter (Dhar et al., 2009), confirming earlier
studies identifying the NRF-1 element as a critical fea-
ture for neuronal Gria2 transcription (Myers et al.,
1998). NRF-1 is a nuclear transcription factor important
for regulating multiple cytochrome oxidase (COX) genes.
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Reduction of NRF-1 with small hairpin RNA prevented
the depolarization-stimulated increase of GluA2 expres-
sion, whereas overexpression of NRF-1 restored GluA2
expression in the face of TTX treatment. Changes in
GluAl, GluA3, and GluA4 expression were not observed,
rendering NRF-1 control specific to GluA2 (Dhar et al.,
2009). Thus, neuronal activity is tightly coupled at the
molecular level to GluA2 expression by a process that
involves NRF-1.

3. Gria3 and Gria4. The human GRIAS3 gene is on
the long arm of the X chromosome and is subject to X
inactivation through methylation (Gécz et al., 1999).
The Gria3 transcript contains a TC repeat in the 5'-UTR
that is polymorphic and is also present in rodent tran-
scripts. The 5-UTR and ATG codon are contained in a
large 1102-bp exon 1 and are conserved in rodent and
human sequences. Neither an RE1 repressor element
nor an NRF-1 site was identified.

GluA4 is widely expressed in brain; however, its abun-
dance is less than GluA1-3 (Petralia and Wenthold,
1992). In transfected mixed cortical cultures, Gria4 pro-
moter constructs drove luciferase expression predomi-
nantly in neurons, indicating a 6- to 12-fold neuronal
preference (Borges et al., 2003). Deletion of the Gria4
transcriptional initiation region decreased luciferase ac-
tivity in neurons, but increased activity in C6 cells,
suggesting that neuronal regulatory elements reside in
this region. Sp1, Ikaros, and basic helix-loop-helix bind-
ing element sites are conserved in rat, mouse, and hu-
man genes within =150 bp of transcription initiation
sites; however, specific evaluation of these elements re-
quires further investigation. A distal region of Gria4,
—4427 to —4885, is in a long interspersed element se-
quence that has been suggested to recruit chromatin
remodeling enzymes to the Gria4 gene (Borges et al.,
2003).

B. Kainate Receptors Grikl to Grik5

Regulatory cis elements have been computationally
predicted in promoter regions of human GRIKI and
GRIK?2 genes but not functionally evaluated (Barbon
and Barlati, 2000; Barbon et al., 2001). However, GRIK2
was identified as a novel epigenetic target in gastric
cancer as a potential tumor suppressor gene (Wu et al.,
2010). There are no reports on the functional evaluation
of transcriptional regulation of the Grik3 and Grik4
genes.

Initial studies of the rat Grik5 gene identified a neg-
ative regulatory sequence in the first intron that binds
nuclear orphan receptors such as chicken ovalbumin
upstream promoter transcription factor I in both neural
and non-neural cells (Huang and Gallo, 1997; Chew et
al., 1999). Transgenic mouse lines carrying 4 kb of the
5'-flanking sequence showed lacZ reporter expression
predominantly in the nervous system. Reporter assays
in central glial (CG-4) and non-neural cells indicated
that a 1200-bp 5'-flanking region could sustain neural
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cell-specific promoter activity (Chew et al., 2001). Sp1
binding suggests a functional role for Spl in initiator-
mediated activation of Grik5 transcription that involves
transcription factor II D-mediated basal activity (Chew
et al., 2001). Removal of two putative AP2 sequences
reduced promoter activity in both neural and non-neural
cells, suggesting that these sites are also important for
basal transcription. Furthermore, a 77-bp sequence
termed the kainate cell-specific enhancer region, in-
volved in cell-specific expression, includes a functional
Spl site that when placed downstream of the Grik5
promoter, silenced reporter expression in NIH3T3 fibro-
blasts and attenuated activity in CG-4 cells. These stud-
ies show that elements contributing to tissue-specific
expression are contained within the first exon (Chew et
al., 2001).

C. N-Methyl-D-aspartate Receptors

1. Grinl. Rat, human, and chicken Grinl promoter
regions have been cloned and characterized (Bai and
Kusiak, 1993, 1995; Zimmer et al., 1995; Moreno-Gonza-
lez et al., 2008). Transcription of the Grinl gene is con-
trolled by both positive and negative regulatory ele-
ments. A consensus RE1/NRSE silencer in exonl
contributes to neuronal-specific expression (Bai et al.,
1998; Okamoto et al., 1999). Ablation of the RE1/NRSE
site elevated GluN1 expression in non-neural cell lines
and undifferentiated P19 cells (Bai et al., 1998, 2003;
Okamoto et al., 1999, 2002). Likewise, during differen-
tiation of P19 cells, REST/NRSF is down-regulated, re-
sulting in de-repression of the Grinl promoter (Okamoto
et al., 1999). De-repression of the Grinl promoter by
absence of REST/NRSF occurs before subsequent ex-
pression of positive acting trans factors required for full
Grinl promoter activity (Bai et al., 2003). A 27-bp GC-
rich region (GC-box) proximal to the transcription start
sites has been identified that controls induction of the
Grinl gene upon differentiation of P19 cells, and this
site is recognized by Spl and myc-associated zinc finger
protein transcription factors (Okamoto et al., 2002).
These sites previously were known to respond to Sp1, -3,
and -4 transcription factors (Bai and Kusiak, 1995, 1997;
Bai et al., 1998; Liu et al., 2001) and interact with an
element further 5’ in the promoter (—520/—529) that is
recognized by myocyte enhancer factor 2C (Krainc et al.,
1998). Studies with Grinl promoter constructs in PC12
cells suggest that NGF uses both the Ras/extracellular
signal-regulated kinase (ERK) and phosphatidylinositol
3-kinase pathways to up-regulate Grinl promoter activ-
ity through Spl (Liu et al., 2001). Activation of serum
glucocorticoid kinase 1, a downstream target of phos-
phatidylinositol 3-kinase, increases Grinl promoter ac-
tivity in PC12 cells and hippocampal neurons in an
NF«kB-independent manner (Tai et al., 2009). This find-
ing is consistent with a previous report that the Sp-
related factors regulate Grinl promoter activity through
occupancy of a putative NF«kB consensus element ~3 kb
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upstream of the GC box in neurons and in cell lines (Liu
et al., 2004a).

AP1 protein complexes containing AFosB bind the rat
Grinl promoter at the AP1 consensus element, and AP1
binding is up-regulated after electroconvulsive shocks.
Furthermore, an increase in Fos-like immunoreactivity
was observed in the same cortical neurons that showed
an increase in GluN1 immunoreactivity. Accordingly,
up-regulation of GluN1 did not occur after seizures in
fosB(—/—) mice (Hiroi et al., 1998).

GluN1 expression might be coupled to energy metab-
olism based on evidence that both the GrinI and mito-
chondrial COX genes are under control of the NRF-1
transcription factor via binding elements in their respec-
tive proximal promoter regions (Dhar et al., 2008, Dhar
and Wong-Riley, 2009). Grinl and Grin2b, but not
Grin2a or Grin3a, are positively regulated by the NRF-1
transcription factor through NRF-1 promoter elements.
Furthermore, control of Grinl and Grin2b by NRF-1 was
activity-dependent. KC1 up-regulated and TTX down-
regulated expression in cultured rat cortical neurons,
and NRF-1 itself is up-regulated at both protein and
mRNA levels by depolarization (Yang et al., 2006; Dhar
and Wong-Riley, 2009). Thus, NRF-1 is an essential
transcription factor in the coregulation of Grinl, Grin2b,
Gria2, and COX genes, coupling coordinated expression
of glutamate receptors and energy metabolism at the
transcriptional level (Wong-Riley et al., 1998a,b; Dhar et
al., 2008, 2009; Dhar and Wong-Riley, 2009).

A nonpalindromic T-box element in the Grinl pro-
moter is likely to be recognized and regulated by Thr-1/
CASK protein complexes in vivo because GluN1 expres-
sion was reduced in Tbr-1(—/—) (T-brain-1) mice by ~
50% (Wang et al., 2004b). Thr-1 is a neuron-specific
T-box factor (Hsueh et al., 2000) that may play a role in
neurogenesis and induction of GluN1. GluN1 expression
is subject to control by hypoxia-inducible factors that
function under stress conditions, especially during hyp-
oxia (Yeh et al., 2008). Based on GluN1 up-regulation
after lipopolysaccharide injection into the prefrontal cor-
tex and in cultured neurons, the predicted cis hypoxia
response elements were localized within the Grinl pro-
moter. However, 1 h of ischemia produced by middle
cerebral artery occlusion decreased GluN1 (Gascon et
al., 2005), possibly as a result of activation of the RE1
silencer (Fig. 4).

2. Grin2a. Regulation of the rat Grin2a promoter
was explored with a series of 3'- and 5'-truncated con-
structs in primary neurons, primary glia, and non-neu-
ronal cell lines (Desai et al., 2002; Richter et al., 2002;
Liu et al., 2003). The core promoter resides in exon 1,
prefers neurons but also requires downstream se-
quences for full activity, and does not use a consensus
TATA box. On the basis of overexpression studies and
gel shift assays in stable cell lines, three GC-boxes (A, B,
and C) seem to regulate Spl and Sp4 but not Sp3 trans-
activation (Liu et al., 2003).

TRAYNELIS ET AL.

Two regions of the mouse Grin2a promoter, from
—9.2kb/—210 or —1253/—210, were able to confer ner-
vous system expression of a transgene reporter. Based
on primary cultures prepared from a —9.2kb/—210
Grin2a luciferase mouse, there was ~700-fold selective
expression in neuronal enriched cultures compared with
glial cultures. Two RE1/NRSE-like sequences that con-
tain key mismatches in the consensus sequences were
identified at —989 and —427 and do not seem to act as
silencers of the Grin2a gene. Thus, neuronal specificity
for GluN2A expression seems to result from transcrip-
tional activation selectively in neurons rather than by
non-neuronal silencing. Furthermore, three regions
were identified (—1253/—1079, —486/—447, 8 kb 5 of
—1253) that are important for maximal neuron-selective
expression. Sequences between —9.2 kb and —1253 bp
contribute to the maturational increase of Grin2a ex-
pression in cultured neurons and elements residing be-
tween —1253 and —1180 bp are crucial for this up-
regulation (Desai et al., 2002).

Two NF«kB sites were identified in the Grin2a pro-
moter, which, when removed by mutation, resulted in
loss of modification of transactivation by constitutively
active SGK (SGK-S422D) that activates NFxB (Tai
et al., 2009). Furthermore, the transactivation of a
Grin2a construct was sensitive to the NF«B inhibitor
peptide SN50 (Lin et al., 1995). A putative CRE element
variant found in numerous promoters was identified at
—1195 in mouse and —1215 in rat and raises interest in
activity-dependent elevation of Grin2a in vivo. The pu-
tative CRE site resides in a region important for positive
neuronal expression in both rat and mouse promoters
(Desai et al., 2002; Richter et al., 2002; Liu et al., 2003).

3. Grin2b. Initial promoter analysis using transgene
constructs in mice (Sasner and Buonanno, 1996) re-
vealed that the proximal promoter region and exon 1
(—550/+255 relative to the 5'-most transcription site)
were sufficient to restrict tissue specificity to brain.
However, inclusion of intron 1 and exon 2 in the trans-
gene (—550/+1627) were required both to restrict ex-
pression to brain and to recapitulate the proper devel-
opmental profile of GluN2B expression in cerebellar
granule cells. The presence of an RE1/NRSE-like ele-
ment at the end of exon 1 was not responsible for con-
ferring neural-selective expression in the mouse trans-
genes (Sasner and Buonanno, 1996). Of several putative
RE1/NRSE elements in the more distal Grin2b pro-
moter, the —2029/—2049 NRSE element bound REST/
NRSF and repressed expression of Grin2b reporter con-
structs transfected into cultured neurons. Moreover,
ethanol treatment of cortical cultures reduced REST/
NRSF expression, resulting in GluN2B derepression
(Qiang et al., 2005). Analysis of the Grin2b promoter
identified Spl and CRE elements (Klein et al., 1998),
and the CRE site was later confirmed to bind to phos-
pho-CREB in a gel-shift assay. Mutation of the CRE
motif in the Grin2b promoter region significantly de-
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creased promoter activity in transfected cortical cells
and also abolished ethanol-induced increase in promoter
activity (Rani et al., 2005). Likewise, an AP-1 site was
active in cultured neurons and responsive to ethanol
treatment (Qiang and Ticku, 2005). Furthermore, it was
found that long-term ethanol exposure promoted de-
methylation of CpG islands in the Grin2b promoter re-
gion that could result in up-regulation of the gene in
mouse cortical neurons (Ravindran and Ticku, 2005).

Two nonpalindromic T-box elements in the Grin2b
promoter were identified that are conserved across rat,
human, and mouse (Wang et al., 2004b), and these ele-
ments are recognized by the Tbr-1 protein (Wang et al.,
2004b). Functional and mutational studies in rat hip-
pocampal cultures showed that overexpression of Tbr-1
alone and in combination with CASK elevated Grin2b
promoter-driven luciferase activity by up to 120-fold de-
pendent on each T-box element with the upstream T-
element dominant. Recognition of the Grin2b T-box
elements by a Thr-1-CASK complex in vivo was demon-
strated by ChIP analysis using rat hippocampal cul-
tured neurons (Wang et al., 2004a). In Thr-1-null mice,
GluN2B expression was decreased up to 60%, and
GluN2B expression was down-regulated in brain regions
where Tbr-1 immunoreactivity was lost in the mutant
mice. These two T-box elements reside within the min-
imal transgene construct sufficient for neuron-specific
expression of the Grin2b gene (Sasner and Buonanno,
1996). A point mutation in CASK that disrupts CASK—
Thbr-1-CASK-interacting nucleosome assembly protein
complexes down-regulates Grin2b promoter activity
(Huang and Hsueh, 2009). CASK interacts with tran-
scription factor Thr-1 and CASK-interacting nucleosome
assembly protein—cell division autoantigen-1-differen-
tially expressed nucleolar transforming growth fac-
tor-B1 target in the nuclei of neurons, which may re-
model the chromatin structure flanking Tbr-1 binding
sites (Hsueh et al., 2000; Wang et al., 2004a).

As shown for the Grin2a promoter, activation of se-
rum glucocorticoid kinase 1 pathway elevates Grin2b
gene expression in hippocampal neurons and Neuro2A
cells in an NF«kB-dependent manner. The site of NF«xB
binding in the Grin2b promoter was not specifically
identified but was proposed to reside between —1480
and —2020 bp from the rat transcription start site (Tai
et al., 2009).

Stimulation of cortical cultures with bicuculline ele-
vated GIuN2B expression in a transcription- and cal-
cineurin-dependent manner (Qiu and Ghosh, 2008) and
revealed association of the Grin2b promoter with
CREST, brahma-related gene 1, CRE binding protein,
and HDAC-1. Bicuculline stimulation increased CRE
binding protein, decreased HDACI, and increased the
association of the Grin2b promoter with acetylated his-
tones. The increase in GluN2B expression also required
NMDA receptor activation and was shown to depend on
CREST in vivo because a bicuculline-induced increase in
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GluN2B expression was absent in CREST-null neurons.
These findings suggest that the activity-dependent in-
crease in GluN2B expression involves a switch from a
repressor to activator complex and requires CREST
function that may involve CRE and Spl sites in the
promoter in a manner similar to regulation of the im-
mediate early gene c-fos.

Evidence for the coupling of GluN2B expression to
energy metabolism has also been described through a
series of electrophoretic mobility shift assay, supershift,
and ChIP assays and promoter mutations (Yang et al.,
2006; Dhar et al., 2009). GluN2B was shown to be reg-
ulated in cultured neurons by NRF-1 transcription fac-
tor via an NRF-1 element in the proximal promoter
region. GluN1, GluN2B, and NRF-1 transcripts are up-
regulated by KCl and down-regulated by TTX in cul-
tured primary neurons. Thus, NRF-1 coordinates the
coregulation of Grinl, Grin2b, and COX genes (Dhar et
al., 2008; Dhar and Wong-Riley, 2009).

4. Grin2c, Grin2d, Grin3a, and Grin3b. Elements
within Grin2c¢ exon 1 and intron 1 in transgenic mouse
lines selectively drive expression of B-galactosidase in
cerebellar granule cells (Suchanek et al., 1995, 1997).
This region contains a consensus RE1/NRSE silencer,
but the role of this element has not been fully evaluated.
Furthermore, Spl and COUP-TF consensus elements
(Nagasawa et al., 1996; Pieri et al., 1999) bound Sp1 and
fushi tarazu factor 1/COUP-TF protein in gel shift as-
says, but mutations did not modify promoter function in
a transfected neuronal cell line (Pieri et al., 1999). The
COUP-TF site seems to require other elements for func-
tion. Coexpression of steroidogenic factor-1 elevated
Grin2c promoter activity modestly in a neuronal cell line
dependent on a promoter region centered —250 from
transcription + 1 site (Pieri et al., 1999); however, direct
expression in neurons was not examined.

The developmental up-regulation of GIuN2C in the
adult cerebellum upon innervation of mossy fibers onto
granule cells has been reported to be due to neuregulin-g
(Ozaki et al., 1997). Neuregulin-3 potently up-regulated
GluN2C with no change in GluN2B expression in cul-
tured mouse cerebellar slices; up-regulation was sensi-
tive to block by TTX or the NMDA antagonist 2-amino-
5-phosphonopentanoate, suggesting that synaptically
activated NMDA receptors are involved (Ozaki et al.,
1997). Activity regulates GluN2B expression in cerebel-
lar granule cells (Vallano et al., 1996), and both GIluN2B
and GluN2C in organotypic cultures (Audinat et al.,
1994), although the stimulatory effect of neuregulin-8 on
GluN2C was not recapitulated in cultures of dissociated
granule cells (Rieff et al., 1999). For granule cells cul-
tured in low (5 mM) KCl, BDNF up-regulated GluN2C
mRNA via the tyrosine kinase receptor ERK1/2 cascade,
whereas under 25 mM KCIl, depolarization stimulated
Ca?" entry through voltage-sensitive Ca?* channels and
activated Ca®"/calmodulin-dependent calcineurin phos-
phatase, which opposed GluN2C mRNA up-regulation



424

(Suzuki et al., 2005). However, the depolarization-
induced Ca®" increases simultaneously up-regulated
BDNF mRNA via CaMK. Thus, convergent mechanisms
of the BDNF and Ca®" signaling cascades are important
for GluN2C induction in granule cells during develop-
ment (Suzuki et al., 2005). NMDA receptor activation
was shown to coordinate both the up-regulation of
GluN2C and the down-regulation of GluN2B mRNA,
including a switch of GluN2 subunit associated with cell
surface NMDA receptors in cultured mouse granule cells
(Ijima et al., 2008). Although much has been learned
about the signal transduction pathways leading to re-
ceptor subunit changes in granule cells, the promoter
control elements responsible for transcription subunit
switching remain to be identified.

In the human GRIN2D gene, the 3’-UTR contains four
half-palindromic estrogen responsive elements within a
0.2-kb region that are highly preserved in the rat, sug-
gesting that the GluN2D subunit may be up-regulated
in vivo via neuroendocrine control. In ovariectomized
rats, up-regulation of GluN2D mRNA in the hypothala-
mus upon 17B-estradiol treatment was observed (Wa-
tanabe et al., 1999), and the Grin2d half-palindromic
estrogen responsive elements, placed in a 5’ or 3'-UTR
position in a chloramphenicol acetyltransferase pro-
moter construct, were responsive to estrogen and thy-
roid hormone exposure in an orientation- and hormone
receptor-dependent manner (Watanabe et al., 1999; Va-
sudevan et al., 2002).

The amino acid sequences and expression profile for
Grin3a and Grin3b have been reported (Ciabarra et al.,
1995; Sucher et al., 1995; Andersson et al., 2001; Nishi
et al., 2001; Chatterton et al., 2002; Eriksson et al.,
2002; Matsuda et al., 2002; Bendel et al., 2005). Studies
describing control of transcription with respect to cis
regulatory elements and trans factors have not been
reported.

D. Translational Control of Glutamate Receptors

The translation of mRNA to protein is regulated by
mechanisms that control 5’ capping, 3’ polyadenylation,
splicing, RNA editing, mRNA transport, stability, and
initiation and elongation (VanDongen and VanDongen,
2004; Coyle, 2009). The 5'-UTR of most glutamate re-
ceptor mRNAs is unusually long. These long 5'-UTRs
often exhibit stretches of high GC content and some-
times contain multiple out-of-frame AUG codons that
could act as decoys for scanning ribosomes, reducing or
preventing translation initiation at the true glutamate
receptor AUG (Myers et al., 1999; VanDongen and Van-
Dongen, 2004). Translational suppression has been in-
ferred for GluN1 mRNA natively expressed in PC12 cells
because no GluN1 protein can be detected despite a
moderately high mRNA level (Sucher et al., 1993). On
the basis of that study (Sucher et al., 1993), it was
proposed that translation of GluN1 message may be
suppressed, perhaps by an unidentified motif in the 5'-
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or 3'-UTR. Two pools of GluN1 mRNA with different
translational activities have been identified in neonate
and adult brain, further implicating potential transla-
tion control mechanisms at work in neurons (Awobuluyi
et al., 2003). Whether GluN1 translation rate was deter-
mined by alternative 3'UTRs was not explored. Visual
deprivation in juvenile mice reduced the GluN2A/
GluN2B ratio in the deprived cortex with the finding
that translation of GluN2B is probably a major regula-
tory mechanism (Chen and Bear, 2007).

The efficiency of translation of another subunit,
GIluN2A, also depends upon features of the 5'-UTR.
Here, in both in vitro translation in rabbit reticulocyte
lysate and the X. laevis oocyte expression system, re-
moval of most of the 282 bases of the 5'-UTR from the
cDNA increased GluN1/GluN2A protein expression by
more than 100-fold. Mutation of three of the five up-
stream AUG codons modestly increased translation;
however, disruption of a proposed GC-rich stem-loop
structure 170 bases upstream of the AUG increased
GIluN2A translation by 40-fold (Wood et al., 1996).
Translation suppression of GluN2A transcripts in vivo is
one interpretation of the finding that high GluN2A
mRNA levels were measured in the inferior and superior
colliculus and striatum of adult rats (Goebel and Poosch,
1999), whereas immunocytochemical studies showed
staining for the GIuN2A protein to be light in these
areas (Petralia et al., 1994).

The translation efficiencies of several GluA2 5-UTR
transcripts in rabbit reticulocyte lysates, X. laevis oo-
cytes, and primary cultured neurons has been investi-
gated (Myers et al., 2004). Transcripts containing long 5’
leaders were translated poorly compared with those
with shorter leaders, and short transcripts were prefer-
entially associated with polyribosomes in vivo. Suppres-
sion of GluA2 translation was dominated by a 34- to
42-nucleotide imperfect GU repeat sequence in the 5'-
UTR predicted to form a secondary structure. It is note-
worthy that the GU repeat domain is polymorphic in
man and is included in a subset of rat and human GluA2
transcripts based on the site of transcription initiation
(Myers et al., 1998, 2004). GluA2 translation was not
modified significantly by deletion of any or all of the five
upstream AUG codons. An interpretation of both the
GluN2A and GluA2 studies is that a scanning ribosome
encounters the proposed stem-loop and stalls because of
an inability to “melt” the stem-loop structure; alterna-
tively, a ribosome may encounter a blocking protein
bound at the stem-loop motif. Either case could result in
dissociation of the ribosome from the mRNA.

GluA2 transcripts are processed to form either a short
or a long 3'-UTR giving rise to two pools of GluA2
mRNAs of 4 and 6 kb in length in brain. In the hip-
pocampus, long 3'-UTR GluA2 transcripts are retained
primarily in translationally dormant complexes of ribo-
some-free messenger ribonucleoprotein, whereas GluA2
transcripts bearing the short 3'UTR are associated
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mostly with actively translating ribosomes (Irier et al.,
2009b). After pilocarpine-induced status epilepticus, se-
lective translational derepression of GluA2 mRNA me-
diated by the long 3’-UTR transcripts was observed,
suggesting that the long 3’-UTR of GluA2 mRNA alone
is sufficient to suppress translation and that an activity-
dependent regulatory signaling mechanism exists that
differentially targets GluA2 transcripts with alternative
3'-UTRs (Irier et al., 2009b). Differential effects of anti-
biotics that target translational initiation and elonga-
tion suggest that the long 3’-UTR suppresses GluA2 at
the initiation step, implying a loop-back mechanism
(Irier et al., 2009a). The mechanism of translation is not
known but could involve binding of a cytoplasmic poly-
adenylation element binding protein (CPEB). Among
the CPEB proteins, CPEBS is expressed specifically in
neurons (Theis et al., 2003) and seems to bind to GluA2
long 3'-UTR. RNA interference knockdown of CPEB3
mRNA induces GluA2 protein expression in cultured
hippocampal neurons (Huang et al., 2006). CPEB pro-
tein regulates translation initiation (Richter and Sonen-
berg, 2005), facilitates targeting of mRNAs to dendrites
(Huang et al., 2003), and has been implicated in control
of GluN1 translation (Wells et al., 2001a). A related
report identified a deletion allele in the Grik4 gene 3'-
UTR that was negatively associated with bipolar disor-
der, and it was proposed, on the basis of expression data,
that RNA secondary structure modified mRNA stability
to enhance protein expression (Pickard et al., 2008).

The localization of translation machinery near
postsynaptic sites (Steward and Levy, 1982; Steward
and Reeves, 1988) and differential distribution of
mRNAs to dendrites, including those for GluAl,
GluA2, and GluN1, have been investigated (Steward
and Schuman, 2001; Schratt et al., 2004; Grooms et
al., 2006). It is becoming clear that these dendritic
mRNAs may form a pool poised for translation to
modify neuronal plasticity. Other studies have dem-
onstrated that protein synthesis in dendrites is criti-
cal for long-term potentiation (LTP) and long-term
depression (LTD) (Kang and Schuman, 1996; Huber et
al., 2000; Tang and Schuman, 2002; Bradshaw et al.,
2003; Cracco et al., 2005; Mameli et al., 2007). The
induction of protein synthesis is, not unexpectedly,
dependent upon NMDA receptor activation (Scheetz
et al., 2000; Huang et al., 2002b; Gong et al., 2006;
Tran et al., 2007).

IV. Post-Translational Regulation

A. a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic
Acid and Kainate Receptor Phosphorylation

Considerable advances have been made to identify
dynamically regulated post-translational phosphoryla-
tion sites on the C-terminal domains of most of the
glutamate receptor subunits and to understand the
functions of these modifications. Phosphorylation has
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been shown to regulate glutamate receptor trafficking
from the ER, insertion into the plasma membrane, en-
docytosis, synaptic localization, and binding to other
proteins (Malinow and Malenka, 2002). In a few cases,
phosphorylation seems to regulate the relative fre-
quency of opening for different subconductance levels of
the channels in a manner independent of trafficking.
However, more work is needed to understand the mech-
anisms by which phosphorylation can control glutamate
receptor function. In some cases, the strategic combina-
tion of specific phosphoprotein antibodies, site-directed
mutagenesis, and chromophore-tagged receptors has
made it possible to associate the functional conse-
quences of kinase activation with phosphorylation of
specific amino acid residues. However, the specific func-
tional roles of many phosphorylation sites have simply
not yet been explored, and in nearly all cases, the mo-
lecular mechanisms by which phosphorylation changes
receptor function (membrane insertion, open probabil-
ity, etc.) are unknown. These topics represent excellent
opportunities for future progress.

The C-terminal domains are shown for each of the
subunits in Figs. 5-7, with residues that have been
shown to be post-translationally modified in living cells
in red; residues identified only in cell-free kinase assays
are omitted. Authors have variably included the signal
sequence in the numbering schemes and studied various
C-terminal splice variants. Here, sites will be referred to
by residue position in the literature. To minimize confu-
sion with numbering schemes, we simply include the
surrounding sequences in the text together with the
most commonly used residue number. This number di-
verges from the numbering in Figs. 5 to 7 when authors
indexed the predicted signal peptide cleavage site as 1.

The GluAl C terminus has multiple phosphorylation
sites, including four for PKC, one for PKA, and one for
CAMKII. Phosphorylation of the two membrane-proxi-
mal PKC sites (SRSg;4ESg;sKR) enhances interaction
between the actin-binding 4.1N protein and the GluAl
C-terminal domain, which facilitates insertion of this
subunit into the plasma membrane (Boehm et al., 2006;
Lin et al., 2009), a mechanism involved in long-term
potentiation. Phosphorylation of TSTg,,LPR by PKC
has been suggested to influence synaptic transmission
in an age-dependent fashion (Lee et al., 2007b). Two
other GluAl phosphorylation sites control functional
properties of AMPA receptor channels. Phosphorylation
of RNSg,5GA by PKA (Roche et al., 1996) increases the
open probability of homomeric GluAl channels studied
in outside-out patches (Banke et al., 2000), which has
been proposed to reflect a change in the equilibrium of
GluA1l with an inactive state, perhaps relating to phos-
phodependent binding of intracellular regulatory pro-
teins. PKA phosphorylation additionally drives GluAl
subunits into synaptic membranes (Esteban et al., 2003;
Man et al.,, 2007). Phosphorylation of QQSg5;IN by
CAMKII or PKC (Barria et al., 1997; Mammen et al.,
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# A A AO A [ J

P42261 EFCYKSRSESKRMKGFCLIPQQSINEAIRTSTLPRNSGAGASSGGSGENGRVVSHDFPKSMQSIPCMSHSSGMPLGATGL 906
GluA2 # ®

P42262-2 EFCYKSRAEAKRMKMTLNDAMRNKARLSITGSTGENGRVMTPEFPKAVHAVPYVSPGMGMNVSVTDLS 901

# A * A

P42262 EFCYKSRAEAKRMKVAKNAQNINPSSSQNSQNFATYKEGYNVYGIESVKI 883
GluA3 #

P42263 EFCYKSRAESKRMKLTKNTQNFKPAPATNTQNYATYREGYNVYGTESVKI 894
GluAd # A

Q1WWK6 EFCYKSRAEAKRMKVAKSAQTFNPTSSQNTQNLATYREGYNVYGTESIKI 902

) ®

P48058 EFCYKSRAEAKRMKLTFSEAIRNKARLSITGSVGENGRVLTPDCPKAVHTGTAIRQSSGLAVIASDLP 902
GluK1l

P39086 EFIYKSRKNNDIEQAFCFFYGLQCKQTHPTNSTSGTTLSTDLECGKLIREERGIRKQSSVHTV 918

A A

P39086-2 EFIYKSRKNNDIEQCLSFNAIMEELGISLKNQKKIKKKSRTKGKSSFTSILTCHQRRTQRKETVA 905
Gluk2 ® # ® # D

Q13002 EFLYKSKKNAQLEKRSFCSAMVEELRMSLKCQRRLKHKPQAPVIVKTEEVINMHTFNDRRLPGKETMA 908

Q13002-5 EFLYKSKKNAQLEKRAKTKLPQDYVFLPILESVSISTVLSSSPSSSSLSSCS 892

Q13002-2 EFLYKSKKNAQLEKESSIWLVPPYHPDTV 869
Gluk3

Q13003 EFVYKLRKTAEREQRSFCSTVADEIRFSLTCQRRVKHKPQPPMMVKTDAVINMHTFNDRRLPGKDSMACSTSLAPVFP 919

A9Z178 EFVYKLRKTAEREQVSLRAWSLHRMGNGDSR 872
Gluk4

Q16099 EFLWTLRHSEATEVSVCQEMVTELRSIILCQDSIHPRRRRAAVPPPRPPIPEERRPRGTATLSNGKLCGAGEPDQLAQRLAQEAA 956

LVARGCTHIRVCPECRRFQGLRARPSPARSEESLEWEKTTNSSEPE

G1lukK5

Q16478 EFIWSTRRSAESEEVSVCQEMLQELRHAVSCRKTSRSRRRRRPGGPSRALLSLRAVREMRLSNGKLYSAGAGGDAGSAHGGPQRL 980

LDDPGPPSGARPAAPTPCTHVRVCQECRRIQALRASGAGAPPRGLGVPAEATSPPRPRPGPAGPRELAEHE
Q16478-2 EFIWSTRRSAESEETPALHPAACQCSALGPRTPLKEPSMLLVKVPSTRVQVAFSRTSLRQVCPFLLQHQLSSLYWIQATNVQICC 981

HFSSLKPSPDLTFPPSHRPLSSLLFTALAAVGGLPDASSFFFPPISSCPPLQSGIGPCHSTEATLVTSNFHV

# Palmitoylation A PKC O CAMKII

® PKA

@ Src Family ® JunK @ SUMOylation

Fic. 5. Post-translational modifications of AMPA and kainate receptor C-terminal domains. Multiple forms of post-translational modifications
(including palmitoylation, phosphorylation, and SUMOylation) that influence receptor trafficking, channel activity, and interactions with other
proteins are shown. The C-terminal domains of GluA1-4 and GluK1-5 given in the center column. The left column contains the receptor subunit with
the UniProt-SwissProt human accession number. The length of the subunit, including the signal peptide, is given in the column at right, with residue
numbering beginning with the initiating methionine. The beginning of the CTD is defined by hydrophobicity analyses. Modified residues are in red,
with the enzyme (if known) indicated by a symbol above the residue. When no enzyme is given, the modification has been identified through
fragmentation and mass spectrometry (Munton et al., 2007; Ballif et al., 2008; Trinidad et al., 2008).

1997) increases single channel conductance (Derkach et
al., 1999; Oh and Derkach, 2005). In vivo evidence from
transgenic animals suggests that GluA1l phosphoryla-
tion is critical for synaptic plasticity (Lee et al., 2000,
2003; Whitlock et al., 2006; Tsui and Malenka, 2006).
Considerably more work will be required before we
achieve adequate understanding of the relative contri-
bution of phosphorylation-linked changes in trafficking
and channel function to changes in synaptic strength
(Song and Huganir, 2002; Derkach et al., 2007; Kessel
and Malinow., 2009) (see sections IX.E and IX.F).
GluA2 splice variants create short and long C termini
(Fig. 5), phosphorylation of which influences receptor
trafficking, synaptic plasticity, and several receptor-pro-
tein interactions. The long tail has a phosphorylation
site at VMTg,,PE that is a Jun kinase target (Thomas et
al., 2008). Dephosphorylation at this site is activity-
dependent and promotes reinsertion of internalized
GluA2 back into the plasma membrane. Targeted dis-
ruption of the PKC recognition sequence around
IESgg, VK eliminated LTD in mouse cerebellum (Stein-
berg et al., 2006), confirming a major role for this mod-
ification in synaptic plasticity. The activity-dependent
phosphorylation of GluA2-short by PKC on IESgs,VK

weakens its binding to GRIP but improves binding to
protein interacting with C kinase 1, which slows recy-
cling of GluA2-containing AMPA receptors back to the
plasma membrane after internalization (Matsuda et al.,
1999; Chung et al., 2000; Seidenman et al., 2003; Lin
and Huganir, 2007; Park et al., 2009). The situation is
complex, however, because States et al. (2008) identified
a large population of synaptic GluA2 receptors bearing
phospho-Sergg,, which presumably had secured synaptic
anchors other than GRIP. Finally, phosphorylation of
the nearby NVYg,4GI by src family kinases also seems to
weaken association with GRIP (Hayashi and Huganir,
2004).

Three phosphorylation sites have been identified by
mass spectrometry (Munton et al., 2007; Ballif et al.,
2008; Trinidad et al., 2008) on the GluA3 C-tail but have
not yet been studied functionally. The TESgy, VK site
near the terminus is surrounded by sequences homolo-
gous with those of the other AMPA receptor subunits
and may be a PKC target.

GluA4 has alternate C-tails, with the short tail termi-
nated by a PKC target at TESgeIK (Esteban et al.,,
2003). The long GluA4 C-tail harbors a combined PKC/
PKA target at RLSg,,IT (Carvalho et al., 1999; Gomes et
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L 4
EIAYKRHKDARRKQMQLAFAAVNVWRKNLQQYHPTDITGPLNLSDPSVSTVV

*
EIAYKRHKDARRKQMQLAFAAVNVWRKNLQSTGGGRGALQNQKDTVLPRRAIEREEGQLQLCSRHRES

*
EIAYKRHKDARRKQMQLAFAAVNVWRKNLQDRKSGRAEPDPKKKATFRAITSTLASSFKRRRSSKDTQYHPTDITGPLNLSDPSVSTVV

* A A A®
EIAYKRHKDARRKQMQLAFAAVNVWRKNLQDRKSGRAEPDPKKKATFRAITSTLASSFKRRRSSKDTSTGGGRGALQNQKDTVLPRRAI
EREEGQLQLCSRHRES

* # # #
EHLFYWKLRFCFTGVCSDRPGLLFSISRGIYSCIHGVHIEEKKKSPDFNLTGSQSNMLKLLRSAKNISSMSNMNSSRMDSPKRAADFIQ
RGSLIMDMVSDKGNLMYSDNRSFQGKESIFGDNMNELQTFVANRQKDNLNNYVFQGQHPLTLNESNPNTVEVAVSTESKANSRPRQLWK
KSVDSIRQDSLSQNPVSQRDEATAENRTHSLKSPRYLPEEMAHSDISETSNRATCHREPDNSKNHKTKDNFKRSVASKYPKDCSEVERT

*
YLKTKSSSPRDKIYTIDGEKEPGFHLDPPQFVENVTLPENVDFPDPYQDPSENFRKGDSTLPMNRNPLHNEEGLSNNDQYKLYSKHFTL

# # v # # *
KDKGSPHSETSERYRQNSTHCRSCLSNMPTYSGHFTMRSPFKCDACLRMGNLYDIDEDQMLQETGNPATGEQVYQQDWAQNNALQLQKN
A® A *
KLRISRQHSYDNIVDKPRELDLSRPSRSISLKDRERLLEGNFYGSLFSVPSSKLSGKKSSLFPQGLEDSKRSKSLLPDHTSDNPFLHSH
*
RDDQRLVIGRCPSDPYKHSLPSQAVNDSYLRSSLRSTASYCSRDSRGHNDVYISEHVMPYAANKNNMYSTPRVLNSCSNRRVYKKMPSI
ESDV

EHLF$WKLRF?FTGV?SDRPGLLFSISRGIYS?IHGVHIEEKKKSPDFNLTGSQSNMLKLLRSAKNISSMSNMNSSRMDSPKRAADFIQ
RGSLIMDMVSDKGNLMYSDNRSFQGKESIFGDNMNELQTFVANRQKDNLNNYVFQGQHPLTLNESNPNTVEVAVSTESKANSRPRQLWK
KSVDSIRQDSLSQNPVSQRDEATAENRTHSLKSPRYLPEEMAHSDISETSNRATCHREPDNSKNHKTKDNFKRSVASKYPKDCSEVERT
YLKTKSSSPRDKIYTIDGEKEPGFHLDPPQFVENVTLPENVDFPDPYQDPSENFRKGDSTLPMNRNPLHNEEGLSNNDQYKLYSKHFTL
KDKGSPHSETSERYRQNSTH?RS?LSNMPTYSGHFTMR§PFKgDAgLRMGNLVDIDEDQMLQETGMTNANLLGDAPRTLTNTRCHPRR

# Palmitoylation A PKC ® PKA ¢ Src family v CDK5
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885
901

922

938

1464

1281

Fic. 6. Post-translational modifications of GluN1 and GluN2A NMDA receptor C-terminal domains. The GluN1 and GluN2A NMDA receptor
subunits undergo the indicated post-translational modification. The left column is the NMDA receptor subunit with the UniProt-SwissProt human
accession number. The C-terminal domains of the GluN1 and GluN2A subunits are listed in the center column. The length of the receptor subunit is
given in the right column, the numbering beginning with the initiating methionine. The beginning of the CTD is defined by hydrophobicity analyses.

Modified residues are in red, with the enzyme (when known) indicated by a symbol above.

al., 2007) and may bind directly to some PKC isoforms
(Correia et al., 2003). Phosphorylation is enhanced by
synaptic activity and promotes surface expression of
GluA4 by disrupting its association with a-actinin-1
(Nuriya et al., 2005). Similar to GluA2, the Jun kinase
site on GluA4 (VLTg55PD) is phosphorylated at rest but
rapidly dephosphorylated within minutes of synaptic
activity and presumably functions, as in GluA2-long, to
enhance surface expression of GluA4 (Thomas et al.,
2008). The functional consequence of GluA4 phosphory-
lation by c-Jun NH,-terminal kinase has not yet been
examined.

Most studies have suggested a trafficking function for
phosphorylation of specific residues in AMPA receptor C
termini, and a similar pattern seems to exist for kainate
receptor phosphorylation. Serine residues KKSg;oRT
and GKSggsSF of GluK1 are phosphorylated by PKC,
resulting in internalization (Rivera et al., 2007). These
sites, previously identified by Hirbec et al. (2003) on the
basis of in vitro kinase assays, may be involved in auto-
regulation by kainate receptor activation (Rivera et al.,
2007). The long C-tail of GluK2 is phosphorylated by
PKA on serine residues KFSg,sFC and RMSg;,LK,
which potentiates receptor activation in whole-cell patch
studies (Kornreich et al., 2007), apparently through an
increase in receptor open probability (Traynelis and
Wahl, 1997). There are no reported modification sites in
the C-tail of GluK3 or GluK5, whereas GluK4 has four
phosphorylation sites identified by mass spectrometry.

B. N-Methyl-D-aspartate and & Receptor
Phosphorylation

Given the function of NMDA receptors in synaptic
plasticity (see section IX), a wealth of studies exist de-
scribing the consequences of modification of specific res-
idues on its C termini. GluN1 has four different C-
terminal tails created by alternative splicing (Fig. 6),
only the longest of which has been shown to be influ-
enced by phosphorylation. Disrupting a ring of tyrosine
residues adjacent to the M4 domain by site-directed
mutagenesis of IAYg3,KR on GluN1 and LFYg,,WK on
GluN2A prevented use-dependent desensitization of
GluN1/GluN2A receptors (Vissel et al., 2001). It is note-
worthy that tyrosine phosphorylation of GIluN2A but not
GluN1 was detected with phosphotyrosine antibodies
(Lau and Huganir, 1995). This same ring of tyrosines is
present in all NMDA receptor subunits as well as all
AMPA and kainate receptor subunits except GluK4 and
GluKS5 (Figs. 5 to 7), but whether each of these tyrosines
is subject to phosphorylation by src family kinases with
resulting functional consequences has yet to be explored.
PKC targets serine residues ASSgo,FK and RRSgysSK
on GluN1, and PKA targets the adjacent RSSgq,KD.
Within minutes of PKC activation, phosphorylation of
ASSg9FK disrupts surface clusters of NMDA receptors
(Tingley et al., 1997). The dual PKC-PKA phosphoryla-
tion of RRSg5S 397K, on the other hand, promotes exit of
the subunit from the endoplasmic reticulum and transit
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EHLFYWQFRHCFMGVCSGKPGMVFSISRGIYS?IHGVAIEERQSVMNSPTATMNNTHSNILRLLRTAKNMANLSGVNGSPQSALDFIR
RESSVYDISEHRRSFTHSDCKSYNNPPCEENLFSDYISEVERTFGNLQLKDSNVYQDHYHHHHRPHSIGSASSIDGLYDCDNPPFTTQ
SRSISKKPLDIGLPSSKHSQLSDLYGKFSFKSDRYSGHDDLIRSDVSDISTHTVTYGNIEGNAAKRRKQQYKDSLKKRPASAKSRREF
DEIELAYRRRPPRSPDHKRYFRDKEGLRDFYLDQFRTKENSPHWEHVDLTDIYKERSDDFKRDSVSGGGPCTNRSHIKHGTGDKHGVV
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CTGPACARPDGHSACRRLAQAQSMCLPIYREACQEGEQAGAPAWQHRQHVCLHAHAHLPFCWGAVCPHLPPCASHGSWLSGAWGPLGH
RGRTLGLGTGYRDSGGLDEISRVARGTQGFPGPCTWRngELESEV

EHLVYWRLRHCLGPTHRMDFLLAFSRGMYSCCSAEAAPPPAKPPPPPQPLPSPAYPAPGPAPGPAPFVPRERASVDRWRRTKGAGPPG
GAGLADGFHRYYGPIEPQGLGLGLGEARAAPRGAAGRPLSPPAAQPPQKPPASYFAIVRDKEPAEPPAGAFPGFPSPPAPPAAAATAV
GPPLCRLAFEDESPPAPARWPRSDPESQPLLGPGAGGAGGTGGAGGGAPAAPPPCCAAPPPCPYLDLEPSPSDSEDSESLGGASLGGL
DPWWFADFPYPYAERLGPPPGRYWSVDKLGGWRAGSWDYLPPRSGPAAWHCRHCASLELLPPPRHLSCSHDGLDGGWWAPPPPPWAAG
PLPRRRARCGCPRSHPHRPRASHRTPAAAAPHHHRHRRAAGGWDLPPPAPTSRSLEDLSSCPRAAPARRLTGPSRHARRCPHAAHWGP
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# Palmitoylation A PKC O CAMKII
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Fic. 7. Post-translational modifications of the GluN2B-D NMDA and GluD1-2 § receptor C-terminal domains. The post-translational modifica-
tions of the NMDA and & receptors are shown in red. The enzymes mediating the modifications are identified (when known) by a symbol above. When
no enzyme is designated, the modification has been identified by fragmentation and mass spectrometry. The left column is the receptor subunit and
the UniProt-SwissProt human accession number. The C-terminal domains are shown in the center column, and the length of the subunit, beginning
with the initiating methionine, is in the right column. The beginning of the CTD is defined by hydrophobicity analyses.

to the surface membrane (Scott et al., 2001, 2003). The
phosphorylation of GluN1 ASSgy,FK and RRSg,,SK is
achieved by PKCy and PKCa, respectively (Sanchez-
Perez and Felipo, 2005), potentially contributing to the
selective modulation of NMDA receptor function and/or
intracellular localization. Prolonged synaptic activation
during status epilepticus initially causes dephosphory-
lation of ASSgyoFK, then hyperphosphorylation that de-
velops over hours and subsides within a day (Niimura et
al., 2005). The PKA site RSSgy,KD behaves similarly,
but the adjacent PKC site RRSg9sSK seems untouched
by status epilepticus, demonstrating a remarkable
specificity.

The GluN2A subunit also occurs with alternative C-
tails (Fig. 6) (444 and 626 amino acids), and each has
phosphorylation sites that can modify function. The con-
sequence of phosphorylation of LFYg,,WK, which is
present on both C-tails, was described above. Both C-
tails also harbor MRS,,5,PF; phosphorylation of this
serine by CDKS5 is associated with increased NMDA-
evoked currents (Li et al., 2001), and excitotoxic death of
hippocampal CA1 pyramidal cells (Wang et al., 2003).
Krupp et al. (2002) demonstrated that glycine-indepen-
dent desensitization of GluN1/GluN2A receptors could
be eliminated by mutation of either of two serine resi-

dues proximal to the fourth transmembrane domain,
LRS,,,AK and RGSg3,LI, but the kinases acting on
these serines have not been identified. Nine additional
serines or tyrosines have been reported by mass spec-
troscopy as phosphorylated on both long and short C-
tails, but phosphorylation of exclusive residues near the
end of the longer C-tail regulates NMDA receptor mod-
ulation. For example, src kinase weakens high-affinity
zinc inhibition of recombinant GluN1/GluN2A receptors,
an effect that is eliminated by mutation of DPY, 4, KH
(Zheng et al., 1998; but see Xiong et al., 1999); this same
tyrosine was shown to account for approximately 30% of
the src-induced phosphorylation of GluN2A (Yang and
Leonard, 2001). Src also phosphorylated HSY;54,DN
(Yang and Leonard, 2001), but this had no effect on zinc
inhibition (Zheng et al., 1998). By contrast, mutation of
QVY;56,QQ blocked the src effect on zinc inhibition, but
this residue does not seem to be directly phosphorylated
by sre (Yang and Leonard, 2001). These results, consid-
ered together, raise the possibility that the electrophys-
iological consequences of mutating Tyr1267 are due to
an allosteric effect on receptor function.

Insulin potentiates the activation of GluN2A-contain-
ing NMDA receptors, an effect traced to two serines
phosphorylated by PKC, QHS59;YD, and SIS,;;,LK
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(Jones and Leonard, 2005). It is noteworthy that
Ser1291 is immediately adjacent to the src target
Tyr1292, yielding high potential for cross-talk between
these kinases; one wonders, for example, whether the
lack of effect of Tyr1292 on zinc inhibition (Zheng et al.,
1998) was due to obstructive phosphorylation of the
adjacent Ser1291 by PKC.

The GluN2B C-tail (Fig. 7) contains a prominent src
target very near the C terminus on HVY,,,,EK, which
may regulate endocytosis in some conditions (Cheung
and Gurd, 2001; Nakazawa et al., 2001; Snyder et al.,
2005). Phosphorylation of this tyrosine is eliminated in a
fyn knockout (Abe et al., 2005) and is increased in hip-
pocampal CA1l during LTP (Nakazawa et al., 2001) as
well as in a chronic neuropathic pain model (Abe et al.,
2005). Although regulation of this tyrosine by fyn kinase
is well understood, the immediate functional conse-
quence of phosphorylation has not been studied. This
tyrosine is also phosphorylated in an activity-dependent
manner by the transmembrane tyrosine kinase Eph-
rinB2 (Nateri et al., 2007), which is activated by up-
stream ERK pathways. Therefore, multiple kinases tar-
get Tyr1472 in an activity-dependent manner.

Another major modification of GluN2B in the postsyn-
aptic density fraction of the forebrain occurs by phos-
phorylation of QHS5,3YD by CaMKII (Omkumar et al.,
1996). The CaMKII system provides a mechanism by
which GluN2B-containing NMDA receptors can be mod-
ified rapidly upon Ca®" influx associated with NMDA
receptor activation and in this sense may represent the
prototype of a kinase activated by its target (Bayer et al.,
2001), but the functional consequences of this modifica-
tion have not been directly addressed. Finally, the C-
terminal PDZ domain of GluN2B contains a site,
IES, 450DV, that, when phosphorylated by casein kinase
II, disrupts the interaction of GluN2B with PSD-95 and
SAP102, thereby decreasing surface expression of this
receptor (Chung et al., 2004). This represents another
activity-dependent phosphorylation that regulates traf-
ficking of GluN2B in the plasma membrane. The asso-
ciation between active CaMKII and GluN2B seems to be
required for LTP, although the phosphorylation target
has not been identified (Barria and Malinow, 2005).

PKC and PKA both phosphorylate GIluN2C RIS, 45,SL
(Fig. 7) near the extreme carboxyl terminus but exert no
apparent effect on surface expression of GluN2C or on its
interaction with PDZ family proteins on the adjacent PDZ
domain. However, a phosphomimetic GluN2C(S1230E)
mutant exhibited faster activation and inactivation ki-
netics in outside-out patches (Chen et al., 2006). Thus,
unlike other glutamate receptor subunits, phosphoryla-
tion of this serine near the PDZ domain does not affect
trafficking but instead alters channel properties. A site
in the C-terminal domain of GluN2C, HAS,y9cLP, is a
unique (among the glutamate receptors) target for PKB/
Akt; interestingly, phosphorylation of Ser1096 creates a
binding site for 14-3-3 (Chen and Roche, 2009), which
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apparently assists in the trafficking of GIluN2C to the
surface membrane. Phosphorylation of Ser1096 is en-
hanced by insulin-like growth factor-1 stimulation or
NMDA receptor activation, providing a link between
hormonal state and NMDA receptor function. Three
phosphorylated serines in GluN2D have been identified
by mass spectroscopy (Fig. 7) but have not yet been
studied functionally. Likewise, a phosphotyrosine anti-
body labels GluN2D immunoprecipitated from rat thal-
amus (Dunah et al., 1998b), but the targeted tyrosines
have not been identified.

No modifications of GluN3A, GluN3B, or GluD1 have
been described yet, but GluD2 has four phosphoserines,
one of which (TLSy,;AK) was shown to be a PKC target
(Fig. 7) (Kondo et al., 2005). The GluD2 subunit is ex-
pressed mainly by cerebellar Purkinje cells, and both it
and PKC seem to be essential for long-term depression
at the parallel fiber-Purkinje cell synapse (Kashiwabu-
chi et al., 1995; Kondo et al., 2005). However, LTD could
be rescued in a GluD2-null mouse by a GluD2(S945A)
transgene, demonstrating that phosphorylation of
Ser945 plays no role in LTD (Nakagami et al., 2008).
Indeed, a transgene lacking the transmembrane do-
mains could rescue LTD (Kakegawa et al., 2007b), sug-
gesting that GluD2 might function as a scaffolding pro-
tein rather than an ionotropic receptor.

C. Other Post-Translational Modifications of
Glutamate Receptors

Additional post-translational modifications can affect
glutamate receptor localization or activity. All ionotropic
glutamate receptor subunits seem to be glycosylated (see
section II), which seems to be involved in proper folding
of the subunit during synthesis (Everts et al., 1997; Mah
et al., 2005; Nanao et al., 2005; Gill et al., 2009). In
addition, multiple glutamate receptor subunits undergo
dynamic regulation by palmitoylation (Figs. 5-7). The
AMPA receptors have two known palmitoylation sites in
the membrane domain 2 and C-tail. All AMPA receptors
have a conserved cysteine residue proximal to M4 that
undergoes palmitoylation (GluA1l-EFCg;YK, GluA2-
C836, GluA3-C841, GluA4-C817) (Hayashi et al., 2005).
In GluAl and GluA2, palmitoylation of the C-tail resi-
due reduces insertion rate (Hayashi et al., 2005) and
regulates phosphorylation of the two serines on the C-
terminal tail by PKC (Lin et al., 2009). Thus, the inter-
play between palmitoylation and phosphorylation of
residues on this membrane-proximal region of GluAl in-
fluences membrane insertion and thus synaptic availabil-
ity of this subunit. All AMPA receptors have another
conserved cysteine residue just downstream of the QRN
site (GluA1-QGCsg5DI, GluA2-C610, GluA3-C615, GluA4-
C611) that, when palmitoylated, increases AMPA receptor
surface expression (Hayashi et al., 2005). The homomeric
kainate receptor GluK2 undergoes palmitoylation of the
cysteines SFCgssSA and LKCg,;QR, both of which have no
apparent effect on basal receptor function. In addition to
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palmitoylation, GluK2 has been shown to be SUMOylated
at lysine IVKgosTE, a process that facilitates endocytosis
after kainate receptor activation (Martin et al., 2007).
GluK3 has been shown to be SUMOylated, although the
site has not been identified (Wilkinson et al., 2008).

Like AMPA and kainate receptors, the GluN2A and
GluN2B subunits also undergo palmitoylation at their C
termini (Hayashi et al., 2009). Both of these subunits have
two separate clusters of cysteine residues that are palmi-
toylated with distinct consequences on receptor expression
and internalization. The first cluster of palmitoylated cys-
teine residues within GluN2A (RFCg,sFT, GVCg55SD,
YSCg,oIH) and the homologous cysteines in GluN2B
(Fig. 7) increase nearby tyrosine phosphorylation of the
C-tails by src family kinases, regulating surface expres-
sion and receptor internalization. Tyrosine phosphory-
lation of the C-tails eliminated receptor interaction with
activator protein-2, decreasing clathrin-mediated endo-
cytosis. Palmitoylation of the second cluster of cysteine
residues within GluN2A (THC,4,,RSC;5,7LS, FKC,936
DAC,535LR) and the homologous residues in GluN2B
plus EAC,5,5KK leads to accumulation of the NMDA
receptors in the Golgi apparatus and decreased surface
expression (Hayashi et al., 2009). Thus, palmitoylation
of GluN2A and GIluN2B provides a dual mechanism by
which post-translational modification controls NMDA
receptor surface expression. It is unknown if GluN2C or
GluN2D subunits undergo palmitoylation, but both have
cysteine residues homologous to GluN2A and GluN2B
within their C-terminal tails, leading to the possibility
that palmitoylation also regulates their surface expres-
sion. Studies so far suggest that the GluN1 subunit does
not undergo palmitoylation (Hayashi et al., 2005).

Both GluN1 and GluN2 subunits undergo S-nitrosy-
lation on cysteine thiol groups by endogenous nitric ox-
ide (NO) and exogenously applied S-nitrosothiols. The
GluN1 subunit has two cysteine groups within the
M3-M4 extracellular linker, QKC,,,DL and QEC43DS,
and the GluN2A subunit has three cysteine groups
within the ATD, HVCg,DL, ASC55,YG, and SDC;4EP,
that can be S-nitrosylated (Choi et al., 2000). The S-
nitrosylated cysteine residues within the GluN1 and
GluN2 subunits mainly fit the S-nitrosylation consensus
motif of a cysteine residue preceded by an acidic or basic
residue and followed by an acidic residue (Stamler et al.,
1997). S-Nitrosylation of any of these cysteine residues
within GIuN1/GluN2A leads to moderate NMDA recep-
tor inhibition, decreasing the response to agonist-evoked
currents by approximately 20%, but a majority of the
inhibition is due to Cys399 on the GIuN2A subunit ATD
(Choi et al., 2000). Inhibition of GluN2A current ampli-
tude through S-nitrosylation of Cys399 is due to de-
creased channel opening, which may be caused by the
increased affinity of the receptor for Zn?" and gluta-
mate, leading to receptor desensitization (Paoletti et al.,
2000; Zheng et al., 2001; Lipton et al., 2002). The
GluN2A subunit is sensitized to S-nitrosylation when
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Cys744 and Cys798 of the GluN1 subunit are S-nitrosy-
lated (Takahashi et al., 2007). It is not known whether
the remaining GluN2 subunits are S-nitrosylated or in-
hibited by this modification. The ability of NO to regu-
late NMDA receptors may provide a feedback mecha-
nism to prevent excessive receptor activity, because
NMDA receptor-catalyzed transmembrane currents in-
crease the local Ca2 " concentration, which activates neu-
ronal nitric-oxide synthase through their mutual asso-
ciation with PSD-95 (Sattler et al., 1999; Rameau et al.,
2003).

NMDA receptors are regulated by the extracellular
redox state; sulfhydryl reducing agents such as dithio-
threitol and dihydrolipoic acid potentiate NMDA-evoked
currents through the formation of free thiol groups,
whereas oxidizing agents such as 5,5'-dithio-bis(2-nitro-
benzoic acid) and oxidized glutathione inhibit currents
through the formation of disulfide bonds (Aizenman et
al., 1989; Sucher and Lipton, 1991; Kohr et al., 1994;
Choi and Lipton, 2000). Both GluN1 and GIuN2 sub-
units are responsible for redox modulation. Disulfide
bonds formed between two pairs of cysteine residues
within GluN1 (SVC,¢ED and RGC;,gVG within the ATD
and Cys744 and Cys798 in the LBD) cause the interme-
diate and slow components of redox modulation for all
GluN2-containing NMDA receptors (Sullivan et al.,
1994; Choi et al., 2001). A disulfide bond has been pro-
posed to form in the GluN2A subunit between Cys87 and
Cys320 of the GluN2A ATD and has been shown to form
between Cys86 and Cys321 in the crystal structure of
GluN2B ATD (Karakas and Furukawa, 2009). This di-
sulfide bond has been suggested to mediate a fast-com-
ponent of redox modulation, although this may also re-
flect modification of the Zn?* binding site (Kohr et al.,
1994; Choi et al., 2001). Reducing agents can chelate
zine, and transient potentiation that occurs only in the
presence of agents such as dithiothreitol reflects in part
the relief of zinc inhibition through zinc chelation (Pa-
oletti et al., 1997). In addition, reduction of cysteine
residues within GluN1/GluN2A NMDA receptors also
reduces high-affinity voltage-independent Zn?" inhibi-
tion of NMDA receptors (Choi et al., 2001).

D. Proteolysis of Glutamate Receptors

A number of proteases can cleave glutamate recep-
tors. Principal among these are serine proteases, which
can act on GluN1, GluN2A, and GluN2B. Tissue plas-
minogen activator can cleave GluN1 at ALR.g,YA,
whereas plasmin and thrombin cleave at multiple sites
within GluN1, presumably with functional conse-
quences (Gingrich et al., 2000; Fernandez-Monreal et
al., 2004; Samson et al., 2008). A specific plasmin cleav-
age site (EAK;;,AS) has been described in GIuN2A,
proteolysis of which leads to removal of the ATD and the
high-affinity Zn?* binding site contained therein (Yuan
et al., 2009b). Thrombin cleaves the analogous residue
(Lys318) in GluN2B (Leung et al., 2007). In addition, the



GLUTAMATE RECEPTOR ION CHANNELS

calcium-dependent nonlysosomal protease family cal-
pains can cleave the C termini of GluAl, GIuN2A,
GluN2B, and GluN2C, resulting in receptor degradation
and reduced synaptic activity (Bi et al., 1998a,b; Gutt-
mann et al., 2001, 2002; Rong et al., 2001; Simpkins et
al., 2003; Araujo et al., 2005). It is noteworthy that
specific proteolytic cleavage has been proposed to occur
in pathological situations such as ischemia (Yuen et al.,
2007), blood-brain barrier breakdown (Yuan et al.,
2009b), and status epilepticus (Araujo et al., 2005). In
addition, matrix metalloproteinase-7 has been shown to
cleave the LBDs of the GIuN1 and GluN2A subunits,
decreasing the NMDA receptor-mediated calcium influx
and increasing the ratio of AMPA to NMDA receptors in
cortical slices (Szklarczyk et al., 2008). Among the
AMPA receptors, GluA3 has been reported to serve as a
substrate for proteolysis by gamma secretase and gran-
zyme B (Gahring et al., 2001; Meyer et al., 2002); glyco-
sylation of ISN;¢4DS protects GluA3 from cleavage by
granzyme B during breakdown of the blood-brain bar-
rier. GluAl can be cleaved at SHDgs;FP through activa-
tion of calpain and caspase8-like activity (Bi et al., 1996;
Meyer et al., 2002). AMPA receptor proteolysis may be
common in neuropathological conditions (Bi et al.,
1998a; Chan et al., 1999).
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V. Agonist and Antagonist Pharmacology

Amino acid numbering in AMPA and kainate receptor
subunits has historically been for the mature protein
without the signal peptide, whereas amino acid number-
ing of NMDA and GluD2 receptor subunits has started
with the initiating methionine as 1. To simplify compar-
ison with the published literature, we will maintain this
informal convention here.

A. a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic
Acid, Kainate, and & Receptor Agonists

Glutamate activates all AMPA and kainate receptors
by binding within the cleft between domains D1 and D2
of the LBD to induce domain closure. Neither NMDA nor
L-aspartate can activate the non-NMDA receptors, and
D-aspartate acts as a low-affinity competitive antagonist
for native AMPA receptors (Gong et al., 2005). In the
structure of the glutamate-bound GluA2 LBD (Fig. 8A)
(Armstrong and Gouaux, 2000), the a-amino group of
glutamate forms a tetrahedral network of interactions
with the backbone carbonyl oxygen of Pro478, the side
chain hydroxyl of Thr480, and the carboxylate group of
Glu705. The a-carboxyl group of glutamate forms a bi-
dentate interaction with Arg485 and receives hydrogen

Fic. 8. Agonist binding pockets of glutamate receptors. A, binding of glutamate (yellow) in the agonist binding pocket of GluA2 (PDB code 1FTJ).
Only side chains of interacting residues are shown. Not all residues are labeled. B, binding of glutamate in GluK2 (PDB code 1S7Y). Compared with
the glutamate-bound ligand binding pocket of GluA2, there is a loss of a direct hydrogen bond to the a-amino group of glutamate at position Ala487
in GluK2, which is the site equivalent to Thr480 in GluA2. An additional water molecule forms a hydrogen bond to the a-amino group of glutamate
in GluK2. C, binding of glutamate in GluN2A (PDB code 2A5T). Compared with glutamate bound in GluA2, the salt bridge between Asp731 and the
positively charged a-amino group of glutamate is absent. Instead, the a-amino group of glutamate forms water-mediated hydrogen bonds to Glu413
and Tyr761. D, binding of glycine in GluN1 (PDB code 2A5T). Specificity of GluN1 for glycine can be explained by the hydrophobic environment created
by Val689 and the steric barrier formed by Trp731. E, binding of glycine in GluN3A (PDB code 2RC7). Trp731 of GluN1 is replaced by M844, allowing
room for a water molecule in the pocket. F, binding of D-serine in GluD2 (PDB code 2V3U).


http://www.pdb.org/pdb/explore/explore.do?structureId=1FTJ
http://www.pdb.org/pdb/explore/explore.do?structureId=1S7Y
http://www.pdb.org/pdb/explore/explore.do?structureId=2A5T
http://www.pdb.org/pdb/explore/explore.do?structureId=2A5T
http://www.pdb.org/pdb/explore/explore.do?structureId=2RC7
http://www.pdb.org/pdb/explore/explore.do?structureId=2V3U
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bonds from the backbone amide nitrogens of Thr480 and
Ser654. The glutamate y-carboxyl group interacts with
the hydroxyl group and backbone amide nitrogen of
Thr655 (Fig. 8A), whereas the isoxazole hydroxyl group
of AMPA interacts with the amide nitrogen of Thr655
via a water molecule. Furthermore, the side chain of
Tyr450 forms an electron-dense ring structure above the
glutamate a- and B-carbon atoms resembling a lid above
the agonist binding pocket (Fig. 8A). Structures of the
kainate receptor subunits GluK1l and GluK2 LBDs
show similar atomic contacts for the a-carboxyl group,
a-amino group, and y-carboxyl groups of glutamate, al-
though residues lining the GluK1 agonist binding pocket
are smaller than GluK2 (Mayer, 2005; Nanao et al.,
2005; Naur et al., 2005; Mayer et al., 2006) (Fig. 8B).
There are several noteworthy differences among the kai-
nate receptor LBDs, such as the loss of a hydrogen bond
to the agonist a-amino group at GluK2 Ala487, which is
equivalent to Thr480 in GluA2 and Thr503 in GluK1.
This may contribute to the higher glutamate EC;, for
GluK2 compared with GluK1 (Mayer, 2005). A central
feature of AMPA and kainate receptor agonist binding is
closure of the cleft in which the agonist binds, a confor-
mational change mediated by movement of D2 relative
to D1 within the bilobed LBD (Armstrong and Gouaux,
2000; Mayer, 2005) (see sections II.D, VII.B).

In addition to glutamate, a number of naturally occur-
ring molecules, such as ibotenic acid and willardiine,
plus an array of AMPA, ibotenic acid, and willardiine
analogs, activate AMPA and kainate receptors (Table 5).
It has been difficult to identify naturally occurring or
synthetic agonists that discriminate well between all
AMPA and kainate receptors. AMPA acts as a partial
agonist at some kainate receptor subunit combinations
(Herb et al., 1992; Swanson et al., 1996; Schiffer et al.,
1997), and kainate can induce very rapid desensitization
of neuronal AMPA receptors (Patneau et al., 1993). Nev-
ertheless, there are some examples of kainate receptor-
selective agonists, such as (2S,4R)-4-methylglutamic
acid (SYM2081) and perhaps ATPA, a tert-butyl analog
of AMPA (see Tables 5 and 6). Crystal structures of the
GluK1 and GluK2 LBDs have revealed differences be-
tween kainate and AMPA receptors that partly explain
these kainate receptor-selective actions. The agonist-
binding cavities of GluK1 and GluK2 are 40 and 16%
larger, respectively, than GluA2, allowing GluK1 and
GluK2 to accommodate larger ligands (Mayer, 2005;
Naur et al., 2005). Indeed, steric occlusion between the
4-methyl group of SYM2081 and GluA2 Leu650 contrib-
utes to its selectivity for GluK1 and GluK2, both of
which have a smaller valine in the corresponding posi-
tions (GluK1, Val670; GluK2, Val654) (Armstrong et al.,
1998, 2003; Mayer, 2005). Likewise, the isoprenyl group
of kainate shows reduced steric occlusion in GluK1 and
GluK2 compared with GluA2 because of the smaller
valine residues. Steric occlusion also may explain selec-
tivity of ATPA for GluK1, because its bulky tert-butyl
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TABLE 5
AMPA receptor agonist EC, values in micromolar
ECj, values for GluAl, GluA3, or GluA4 coexpressed with GluA2 can be found in
Stein et al. (1992), Coquelle et al. (2000), Nakanishi et al. (1990), and Vogensen
et al. (2000).

Agonist GluAl GluA2 GluA3 GluA4
uM

L-Glutamate 3.4-22v4 6.2-296%*/ 1.3-35%¢ 560¢
AMPA 1.3-8.7¢m1 66" 1.4-130%"7 1.3¢
Kainate 32-34%" 130-17¢/ 31-36°"
Willardiine 11.5% 6.3
F-Willardiine 0.47% 0.2-0.5%™ 20.9™ 11.9™
Br-Willardiine 2.8% 0.84
I-Willardiine 33.6* 1.5
Br-HIBO 14¢ 5.4% 2024 39
Cl-HIBO 4.7 1.7 2700™ 1300™
(S)-CPW399 24.9° 13.9° 224° 34.3°
(S)-ATPA 22° 7.9 7.67
ACPA 1.1-11%9 159 0.1-5%¢ 1.1¢
(S)-4-AHCP 4.5 7.27 15"
(S)-Thio-ATPA 5.2° 13-40° 32° 20°
2-Et-Tet-AMPA 42! 52! 18° 4f
(S)-2-Me-Tet-AMPA 0.16° 3.4 0.014¢ 0.009¢
SYM2081 132° 453°
Domoic Acid 1.3 0.97° 21°

ACPA, (R,S)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid; (S)-4-
AHCP, (R,S)-2-amino-3-(3-hydroxy-7,8-dihydro-6 H-cyclohepta[d Jisoxazol-4-yl)propi-
onic acid; 2-Et-Tet-AMPA, (R,S)-2-amino-3-[3-hydroxy-5-(2-ethyl-2H-5-tetrazolyl)-
4-isoxazolyl]propionic acid; (S)-2-Me-Tet-AMPA, (S)-2-amino-3-[3-hydroxy-5-(2-
methyl-2H-tetrazol-5-yl)isoxazol-4-yl |propionic acid; (S)-ATPA, (S)-2-amino-3-(5-
tert-butyl-3-hydroxyisoxazol-4-yl)propionic acid; (S)-thio-ATPA, (S)-2-amino-3-(5-
tert-butyl-3-hydroxy-4-isothiazolyl)propionic acid; (S)-CPW399, (S)-1-(2-amino-2-
carboxyethyl)-6,7-dihydro-1H-cyclopentapyrimidine-2,4(1H,3H)dione; Br-HIBO, (R,S)-
4-bromo-HIBO; CI-HIBO, (R,S)-4-chloro-HIBO.

“Coquelle et al. (2000). (S)-Br-HIBO is active; however, the racemic mixture was
used for the determination of ECy,. *Donevan et al. (1998). “Banke et al. (1997).
“Dawson et al. (1990). “Jin et al. (2002). Zhang et al. (2006b). #Schiffer et al. (1997).
"Nakanishi et al. (1990). ‘Vogensen et al. (2000). /Holm et al. (2005). “Kizelsztein et
al. (2000). “Jin et al. (2003). ™Greenwood et al. (2006). "Bjerrum et al. (2003).
°Campiani et al. (2001). PStensbgl et al. (1999). Strange et al. (2006). "Brehm et al.
(2003). *Stensbol et al. (2001). ‘Jensen et al. (2007).

group interacts with Leu650, Thr686, and Met708 in
GluA2, which are replaced by the smaller amino acids
Val670, Ser706, and Ser726, respectively, in GluK1
(Lunn et al., 2003). The availability of crystallographic
data for multiple kainate receptor subunits emphasizes
how useful structural information can be across each
subunit family. Thus, there remains the need for new
crystallographic data for additional members of each
glutamate receptor subtype, as opposed to the reliance
on homology modeling and molecular dynamics simula-
tions. Although useful, molecular dynamics simulations
of homology models carry significant caveats, including
uncertainty associated with representation of amino
acid insertions, placement of new ligands, approxima-
tions of force fields for membrane-spanning elements,
and computational limitations in simulating movement
of large multisubunit protein assemblies. At the same
time, crystals are rarely formed on demand, low resolu-
tion can create ambiguities in protein threading and
details of ligand binding pose, and dynamic aspects
ranging from ligand interactions to domain coupling are
not revealed by a static X-ray structure. Early in a
project, in the absence of a three-dimensional structure,
a homology model can offer unique insights, whereas in
late phases of a project, possession of a crystal structure
can benefit significantly from dynamic refinement and
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TABLE 6
Kainate receptor agonist ECy, values in micromolar
Agonist GluK1 GluK2 GluK3 GluK1/GluK2 GluK1/GluK5 GluK2/GluK5
uM
L-Glutamate 47 9 5900° 48 19¢ 8
AMPA 208 N.E-° N.E.“ 154 123« 137
Kainate 4.9 1.1¢ 7.4% 1.5¢ 0.6
Willardiine 28.9° 127"
F-Willardiine 1.8°
Cl-Willardiine 0.057¢
Br-Willardiine 0.0091¢
I-Willardiine 0.21¢ N.E~ 0.47¢ 0.06* 30
(S)-ATPA 0.33 N.E.~ 0.8% 0.38* 106
SYM2081 0.18* 0.29¢ 0.38* 0.06* 0.34¢
Domoic acid 0.36* 0.07¢ 0.19¢ 0.05% 0.12¢
LY339434 2.5% >100¢ -
Dysiherbaine 0.0005" 0.0013" N.D!
neoDH 0.008" 0.03"
ACPA 22 101
(S)-4-AHCP 0.13* N.E* 6.4*
(S)-Thio-ATPA 0.1 N.E/! 4.9
2-Me-Tet-AMPA 8.7 15.3™
8-Deoxy-neoDH 0.0015™ 48" 2.9"
9-Deoxy-neoDH 0.169" >100" >100"
MSVIII-19 3.6° N.E. (>100)°

ACPA, (R,S)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid; (S)-4-AHCP, (R,S)-2-amino-3-(3-hydroxy-7,8-dihydro-6H-cycloheptaldJisoxazol-4-yl)propionic
acid; AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; 2-Me-Tet-AMPA, 2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol-4-yl Jpropionic acid; (S)-
ATPA, (S)-2-amino-3-(5-tert-butyl-3-hydroxyisoxazol-4-yl)propionic acid; (S)-thio-ATPA, (S)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isothiazolyl)propionic acid; N.D., not deter-
mined; N.E., no effect; neoDH, neodysiherbaine.

“Data from calcium influx (fluorometric imaging plate reader) in HEK293 cells stably transfected with human receptors and treated with con A (Alt et al., 2004). *Data
from patch-clamp recordings in HEK293 cells transfected with rat receptors (Schiffer et al., 1997). “Egebjerg et al. (1991). “Schiffer et al. (1997). °K; values from displacement
of [*H]kainate at human receptors (Jane et al., 1997). ‘Data from willardiine-evoked currents from HEK293 cells expressing GluK2/GluK5 (Fukushima et al., 2001). €Data
from patch-clamp recordings in HEK293 cells stably transfected with human receptors and treated with con A. EC5, of LY339434 at isolated dorsal root ganglion, cerebellar
Purkinje cells and cultured hip})ocampal neurons was 0.8, 362, and 2.5 uM, respectively. The EC5, of LY339434 at GluAl, GluA2, and GluA4 receptors was greater than
10,000 uM (Small et al., 1998). "Data for dysiherbaine and neodysiherbaine are K; values based on inhibition of [*’H]kainate binding to receptors expressed in HEK293 cells
from Sakai et al. (2001b) and Sanders et al. (2005), respectively. The K; for dysiherbaine binding to neuronal AMPA receptors was 26-153 uM (Sakai et al., 2001b).
‘GluK1/GluKS5 receptors were proposed to have a high-affinity dysiherbaine binding site at GluK1 and a low-affinity site at GluK5. Supporting this, dysiherbaine bound to
homomeric GluK5 receptors with a K; of 4.9 uM (Swanson et al. 2002)./Strange et al. (2006). *Data from X. laevis oocytes treated with con A (Brehm et al., 2003). Data from
Stensbgl et al. (2001). "Data from X. laevis oocytes (Vogensen et al., 2000). "Although both 8-deoxy-neoDH and 9-deoxy-neoDH elicited current from GluK1 receptors, their
potencies were reported as K; values calculated from ICs, values for displacing [*H]kainate at recombinant kainate receptors (Lash et al., 2008). °ECj, for MSVIII-19 at GluK1
recombinant receptors expressed in HEK293 cells treated with Con A. MSVIII-19 failed to displace kainate from recombinant GluK2 expressed in HEK293 cells (Frydenvang

et al., 2009).

trajectory analysis. The approaches are complementary
both in terms of a project’s evolution and the information
content provided by the two structural perspectives.

A few agonists show useful selectivity between the
GluA1/GluA2 and GluA3/GluA4 subunits (Table 5). Br-
HIBO, an analog of ibotenic acid, preferentially acti-
vates GluAl and GluA2 versus GluA3 and GluA4 recep-
tors (Coquelle et al.,, 2000) through involvement of
water-mediated hydrogen bonding to Tyr702 in GluAl
and GluA2, which is Phe in GluA3 and GluA4. Thus,
ordered water molecules within the agonist binding site
interact with the ligand to influence specificities among
GluA subunits (Banke et al., 2001; Hogner et al., 2002;
Pentikéinen et al., 2003; Frandsen et al., 2005). ClI-
HIBO was synthesized after molecular modeling pre-
dicted that the exchange of bromine for chlorine would
improve selectivity (Bjerrum et al., 2003). C1-HIBO ac-
tivates GluAl and GluA2 with 275- to 1600-fold selec-
tivity over GluA3 or GluA4, respectively. The agonist
2-benzyl-tetrazol-AMPA shows 40-fold selectivity for
GluA4 over GluAl (Jensen et al., 2007). Crystal struc-
tures of 2-benzyl-tetrazol-AMPA bound to the GluA2
LBD reveal that the benzyl group occupies a novel cavity
opened up by movement of Met708 in GluA2, and the
selectivity of 2-benzyl-tetrazol-AMPA is due to residues

adjacent to this cavity (Val690 and Ala691), which are
conserved in GluA2 to GluA4 but correspond to Met686
and I1e687 in GluAl (Vogensen et al., 2007).

Although some agonists discriminate between GluA1/
GluA2 and GluA3/GluA4 subunits, it remains to be
shown whether agonists that act selectively at an indi-
vidual GluA subunit can be developed. The amino acid
sequences for the LBDs of the four GluA subunits are
80% identical (Table 2). Ligands with agonist activity at
AMPA receptors contain a chemical moiety equivalent to
the a-amino and a-carboxyl groups of glutamate, and
the binding of this moiety is conserved for the agonists
crystallized thus far. Moreover, crystal structures and
homology models show the residues in direct contact
with agonists such as glutamate, AMPA, and kainate
are fully conserved across all GluA subunits. Crystalli-
zation of LBDs bound to additional agonists, however,
could allow identification of novel binding modes or dif-
ferences in agonist binding that could be exploited
through medicinal chemistry efforts to achieve greater
subunit selectivity. Alternatively, molecular modeling,
which can account for important motions within the
receptor, could allow for analysis of binding to subunits
that have not been crystallized and has been used suc-
cessfully, for example, to predict the activity of CI-HIBO.
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The development of useful subunit-selective com-
pounds is further complicated by the formation of het-
eromeric receptors in native tissue, which contain two
different GluA subunits, and by the association of AMPA
receptors with interacting partners. Association of the
TARP auxiliary subunits with AMPA receptors (see sec-
tion II.H) increases efficacy and affinity for a range of
AMPA receptor agonists, including kainate (Turetsky et
al., 2005; Kott et al., 2007). Because agonist pharmacol-
ogy has been studied extensively in recombinant sys-
tems without coexpression of TARPs, the caveat exists
as to whether agonist properties (Table 5) will remain
the same in the presence of TARPs.

Kainate has a 2-carboxypyrrolidine-3-acetic acid back-
bone, and analogs containing this backbone, known as
kainoids (Sonnenberg et al., 1996; Hodgson et al., 2005;
Sagot et al., 2008; Bunch and Krogsgaard-Larsen, 2009),
include domoic acid (Hampson et al., 1992; Alt et al.,
2004) and acromelic acid (Kwak et al., 1992; Smith and
MeclIlhinney, 1992). Agonist potency and efficacy are sub-
unit-specific, because kainate and domoic acid are po-
tent agonists of GluK1 and GluK2 but show low potency
at GluK3 receptors (Table 6; Jane et al., 2009). Agonists
acting preferentially at kainate receptors over AMPA
receptors include the glutamate analogs SYMZ2081
(Zhou et al., 1997), dysiherbaine (Sakai et al., 1997), and
neodysiherbaine (Sakai et al., 2001a). SYM2081 has
similar potencies for GluK1 and GluK2 and causes pro-
nounced desensitization (Jane et al., 2009). Dysi-
herbaine has nanomolar affinity for GluK1 and GluK2
and micromolar affinity for GluK5 (Sakai et al., 2001b;
Swanson et al., 2002; Sanders et al., 2005). Because of
its high affinity for GluK1, dysiherbaine promotes a
desensitized state of the receptor that persists for at
least 20 to 45 min after removal. This unique activity of
dysiherbaine was used to block GluK1l subunits in
GluK1/GluK5 diheteromeric receptors, which revealed
that glutamate evokes a desensitizing response from the
remaining GluK5 subunits (Swanson et al., 2002). This
finding suggests that kainate receptors undergo sub-
unit-specific gating similar to AMPA receptors (Jin et
al., 2003).

Multiple agonists act selectively at GluK1 over the other
kainate receptor subunits (Table 6). The neodysiherbaine
analogs 8-deoxy-neodysiherbaine, 9-deoxy-neodysiherbaine,
and MSVIII-19 show nanomolar affinity for GluK1 and
>1000-fold selectivity over GluK2, GluK3, and GluK5,
with 8- and 9-deoxy-neodysiherbaine acting as a par-
tial and full agonists, respectively (Lash et al., 2008).
MSVIII-19 was originally reported as a GluK1 antag-
onist (Sanders et al., 2005), but crystallographic studies
revealed that it induces full domain closure of the GluK1
LBD, prompting further functional studies that showed
it to be an agonist of extremely low efficacy (Frydenvang
et al., 2009). (25,4R,6E)-2-Amino-4-carboxy-7-(2-naph-
thyl)hept-6-enoic acid (1.LY339434), ATPA, (S)-2-amino-
3-(3-hydroxy-7,8-dihydro-6 H-cycloheptald]isoxazol-4-yl)
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propionic acid, (S)-5-iodowillardiine, and (4R)-isopentyl
glutamate are potent agonists at homomeric GluK1 re-
ceptors but have little to no activity at GluK2 receptors
(Clarke et al., 1997; Jane et al., 1997; Zhou et al., 1997;
Small et al., 1998; Brehm et al., 2003; Bunch et al.,
2009). GluK1 selectivity arises from the larger GluK1
binding cavity, which relieves steric occlusion of the
bulky tert-butyl group of ATPA and halogen atom of
(S)-5-iodowillardiine (Mayer, 2005). Likewise, steric oc-
clusion explains why AMPA binds GluK1 but not GluK2,
because the isoxazole ring cannot make key contacts
with D2 (Mayer, 2005). Mutagenesis studies have con-
firmed the importance of cavity size, and the exchange of
Ser706 in GluK1 to the larger Asn690 in GluK2 predict-
ably alters potency of AMPA, iodowillardiine, and ATPA
toward GluK1 (Swanson et al., 1997a, 1998; Nielsen et
al., 2003).

The LBD of the GluD2 (62) family of glutamate recep-
tor subunits binds D-serine, sharing some but not all
features of D-serine binding to GluN1 (Fig. 8F) (Naur et
al., 2007). However, GluD2 receptor function remains
poorly understood. Transgenic experiments show that
insertion of a mutant GluD2 into GluD2(—/—) mice can
rescue these mice from neurological deficits even when
the inserted GluD2 has a mutation in the ion channel
pore that either disrupts Ca®* permeability (Kakegawa
et al., 2007a) or abolishes current flow through the ion
channel (Kakegawa et al., 2007b). In addition, GluD2
can induce presynaptic terminal differentiation even
without its LBD, which contains the D-serine binding
site (Kuroyanagi et al., 2009; Torashima et al., 2009).
These data suggest that GluD2 does not influence cere-
bellar function through actions as a ligand-gated ion
channel. No data has yet shown functional ionic cur-
rents in wild-type GluD2 receptors. However, a muta-
tion in M3, GluD2(A654T), within the highly conserved
SYTANLAAF gating motif causes spontaneously active
receptors (Zuo et al., 1997; Kohda et al., 2000), and these
receptors are inhibited by the binding of D-serine, per-
haps through destabilization of the dimer interface and
desensitization (Naur et al., 2007; Hansen et al., 2009).
It remains to be determined whether D-serine has func-
tional effects on neuronal GluD2.

B. N-Methyl-D-aspartate Receptor Agonists

NMDA receptors are unique among the glutamate
receptor family in that the simultaneous binding of gly-
cine to GluN1 and glutamate to GluN2 is required for
activation (Kleckner and Dingledine, 1988). Crystal
structures of the bilobed GluN1 LBD show that glycine
and related agonists (Table 7) bind within the cleft be-
tween the D1 and D2 domains. The a-carboxyl group of
glycine forms hydrogen bonds within the binding pocket
with Arg522, Thr518, and Ser688, whereas the amino
group of glycine interacts with the carbonyl oxygen of
Pro516, the hydroxyl group of Thr518, and the carboxy-
late oxygen of Asp732 (Fig. 8D) (Furukawa and Gouaux,
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TABLE 7

EC,, values in micromolar for agonists binding to the GluN1 subunit of the NMDA receptor
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Percentage relative efficacy (in parentheses) is the current response to a maximally effective concentration of agonist relative to the response to a maximally effective
concentration of glycine. All values are from recombinant rat NMDA receptors expressed in X. laevis oocytes and coactivated by glutamate (Chen et al., 2008; Dravid et al.,
2010) except HA 966 and ACBC (Priestley et al., 1995). Values are given to two significant digits.

Glycine-Site Agonist GluN2A GluN2B GluN2C GluN2D
uM (%)

Glycine 1.1 (100) 0.72 (100) 0.34 (100) 0.13 (100)
L-Serine 212 (95) 77 (98) 27 (110) 15 (98)
D-Serine 1.3 (98) 0.65 (96) 0.32 (110) 0.16 (93)
L-Alanine 96 (79) 36 (65) 28 (92) 13 (97)
D-Alanine 3.1(96) 0.89 (84) 0.56 (96) 0.22 (99)
D-Cycloserine 19 (90) 8.2 (65) 3.3 (190) 2.9 (94)
HA 966 12 (12) 4.6 (14)
B-Cl-p-Alanine 21 (84) 9.9 (88) 3.7(79) 1.7.(81)
B-F-pDL-Alanine 11 (92) 0.98 (88) 0.40 (84) 0.40 (91)
tri-F-pL-Alanine 1.3 (130) 0.65 (64) 0.32 (110) 0.16 (93)
ACPC 1.3 (79) 0.65 (89) 0.35 (88) 0.083 (89)
ACBC 45 (13) 6.6 (33)

ACBC, 1-aminocyclobutane-1-carboxylic acid; ACPC, 1-aminocyclopropane-1-carboxylic acid; HA 966, (+)-(1-hydroxy-3-aminopyrrolidine-2-one).

2003). Trp731 within the GluN1 binding pocket has been
proposed to hinder glutamate binding because of steric
clash between Trp731 and the glutamate vy-carboxyl
group. In GluN2A, the smaller side chain of Tyr730 is in
van der Waals contact with the y-carboxylate of gluta-
mate (Fig. 8C). GluN1 has Val689 corresponding to
GluN2A Thr690, which leads to loss of a hydrogen bond
donor that stabilizes the glutamate y-carboxyl group in
GluN2A (Fig. 8, C and D). Comparison between crystal-
lographic structures of the GluN1 subunit bound to full
and partial agonists indicates that the degree of closure
of the LBDs’ D1 and D2 domains is not correlated with
relative agonist efficacy, as has been demonstrated with
the GluA2 LBD. Partial agonists 1-aminocyclobutane-1-
carboxylic acid and 1-aminocyclopropane-1-carboxylic
acid (Priestley et al., 1995) induce a similar degree of
domain closure as glycine, differing by less than 0.5°
(Inanobe et al., 2005).

In addition to glycine, the D- and L-isomers of serine
and alanine are agonists at the GluN1 subunit (Pullan
et al., 1987; McBain et al., 1989) (Table 7). D-Serine is
more potent than L-serine and may be the primary li-
gand for GIuN1 in regions such as the supraoptic nu-
cleus (e.g., Panatier et al., 2006). D-Serine is synthesized
from L-serine by serine racemase in both astrocytes
(Wolosker et al., 1999) and neurons (Mustafa et al.,
2004; Miya et al., 2008; Wolosker et al., 2008). It is
noteworthy that serine racemase is regulated by NMDA
receptor activity, mGluR5 activation, nitrosylation, di-
valent cations, and nucleotides (Shoji et al., 2006; Baum-
gart and Rodriguez-Crespo, 2008; Balan et al., 2009;
Mustafa et al., 2009), and deletion of serine racemase
alters glutamatergic synaptic transmission and pro-
duces behavioral phenotypes (Basu et al., 2009).

Cyclic and halogenated analogs of glycine, including
D-cycloserine, act as GluN1 partial agonists (Hood et al.,
1989; Priestley and Kemp, 1994; Sheinin et al., 2001;
Dravid et al., 2010) (Table 7). Although D-cycloserine is
a partial agonist of GIuN2A-, GluN2B-, and GluN2D-
containing NMDA receptors, the responses of GluN2C-

containing NMDA receptors are greater in D-cycloserine
than those evoked by glycine (Sheinin et al., 2001;
Dravid et al., 2010). This raises the possibility that
potentiation of GluN2C-containing NMDA receptors
could underlie the positive effects of D-cycloserine on
cognition, fear extinction, and motor dysfunction (Kalia
et al., 2008; Norberg et al., 2008) through action on
GluN2C-expressing neurons (Monyer et al., 1994). It is
noteworthy that the identity of the GIuN2 subunit
within the NMDA receptor determines the potencies of
GluN1 agonists, which are least potent (highest ECy,)
for GluN1/GluN2A and most potent (lowest EC;,) for
GluN1/GluN2D (Kuryatov et al., 1994; Wafford et al.,
1995; Furukawa and Gouaux, 2003; Chen et al., 2008)
(Table 7).

Glutamate binding to GluN2A involves interactions of
the agonist a-carboxylate group with Arg518 and the
agonist +y-carboxylate group with Tyr730 within the
binding pocket, together with an interdomain hydrogen
bond formed between Tyr730 and Glu413 (Fig. 8C; Fu-
rukawa et al., 2005). The crystal structure of the ago-
nist-bound GluN1-GluN2A LBD heterodimer suggests a
mechanism for selectivity for NMDA over AMPA recep-
tors (Furukawa et al., 2005). The GluN2A subunit has
Asp731 within the binding pocket, whereas the GluA2,
GluK1, and GluK2 receptor subunits have a glutamate
residue at the corresponding position that interacts with
the agonist amino group (Fig. 8, A—C). Because the as-
partate residue within the GluN2A subunit is a methyl-
ene group shorter than the glutamate residue found in
GluA and GluK subunits, it cannot interact with the
agonist a-amino group of glutamate, which instead forms
water-mediated hydrogen bonds to GluN2A Glu413 and
Tyr761. Surprisingly, the charge-conserving substitution
GluN2A(D731E) and GIluN2B(D732E) renders the recep-
tor nonfunctional (Williams et al., 1996; Laube et al.,
2004; Chen et al., 2005), perhaps a result of interference
with the water-mediated interactions at the a-amino
group of glutamate and/or a disruption of the binding
pocket. The reduced side-chain length of Asp731 also
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creates space for NMDA to fit within the GluN2A bind-
ing pocket. Modeling of NMDA into the GIluN2A LBD
suggests that the N-methyl group of NMDA is accom-
modated in the binding pocket by displacement of the
water molecule that binds the a-amino group of gluta-
mate (Furukawa et al., 2005). Other studies using mu-
tagenesis and homology modeling of GluN2A and
GluN2B LBDs have suggested that NMDA cannot bind
to GluA subunits because of steric clash between the
N-methyl group of NMDA and Met708 in GluA2, which
is conserved among all AMPA receptors (Laube et al.,
2004; Chen et al., 2005).

GluN2 endogenous agonists include glutamate, D- and
L-aspartate (Benveniste, 1989; Nicholls, 1989; Fleck et
al., 1993; Schell et al., 1997; Wang and Nadler, 2007;
Errico et al., 2008; Zhang and Nadler, 2009), homocyste-
ate, and cysteinesulfinate (Do et al., 1986, 1988; Olney
et al., 1987; Yuzaki and Connor, 1999) (Table 8). Cyclic
analogs with conformationally constrained rings also act
as potent GluN2 agonists, in some cases with EC;, val-
ues lower than glutamate (Shinozaki et al., 1989; Scho-
epp et al., 1991; Erreger et al., 2007) (Table 8). The
potencies and relative agonist efficacies of GluN2 li-
gands generally display a graded variation among
GluN2A- through GluN2D-containing NMDA receptors,
with the lowest potency at GluN2A-containing NMDA
receptors and the highest potency at GluN2D-containing
receptors (Kutsuwada et al., 1992; Monyer et al., 1992;
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Erreger et al., 2007) (Table 8). Selective agonists that
distinguish between the GluN2 subunits have not been
developed, although series such as the N-hydroxypyra-
zol-5-yl glycine derivatives show promising selectivity
for some GlulN2 subunits (Clausen et al., 2008) (Table 8).
In addition, SYM2081 has a 46-fold lower EC;, value for
GluN2D-containing receptors compared with GluN2A-
containing NMDA receptors (Table 8). The modest sub-
unit selectivity of SYM2081 may be due to steric clash of
the 4-methyl substituent with the Tyr730, which in mo-
lecular dynamics simulations resides within the cleft of
GluN2A but makes a hydrogen bond with the y-carboxyl
of glutamate in GluN2D (Erreger et al., 2007).

GluN3, like GluN1, binds glycine and can coassemble
with other NMDA receptor subunits. Several differences
exist between the manner by which GluN3 and GluN1
subunits bind glycine (Yao et al., 2008). Glycine and
D-serine bind within the GluN3 cleft of the clamshell
formed by domains D1 and D2, which causes a degree of
closure similar to that caused by glycine when bound to
GlulN1. In GluN3A, the a-carboxyl group interacts with
Arg638, Ser633, and Ser801, and the a-amino group
interacts with Asp845, Ser631, and Ser633 (Fig. 8E)
(Yao et al., 2008). Although both GluN1 and GIluN3
subunits bind glycine, their LBDs are only ~30% homol-
ogous, and glycine affinity for the isolated GluN3 LBD is
more than 600-fold higher than that for the isolated
GluN1 LBD (Yao and Mayer, 2006). The ligand binding

TABLE 8
EC;, values in micromolar for agonists binding to the GluN2 subunit of the NMDA receptor
Percentage relative efficacy (in parentheses) is the current response to a maximally effective concentration of agonist relative to the response to a maximally effective
concentration of glutamate. All values are from recombinant rat NMDA (GluN1 plus the indicated GluN2) receptors expressed in X. laevis oocytes activated by agonist plus
maximally effective concentration of glycine. NHP5G, ethyl-NHP5G, and propyl-NHP5G values are from Clausen et al. (2008). L-trans-ADC values are from Sivaprakasam
et al. (2009). cis-2,3-Piperidinedicarboxylic acid are from Priestley et al. (1995). All remaining values are from Erreger et al. (2007). Values are given to two significant digits.

Glutamate-Site Agonist GluN2A GluN2B GluN2C GluN2D
uM (%)

L-Glutamate 3.3 (100) 2.9 (100) 1.7 (100) 0.51 (100)
D-Glutamate 250 (99) 160 (120) 110 (100) 42 (110)
L-Aspartate 48 (99) 14 (78) 41 (110) 12 (91)
D-Aspartate 30 (103) 10 (91) 9.3 (99) 2.1(90)
N-Methyl-L-aspartate 580 (99) 130 (69) 150 (66) 40 (75)
N-Methyl-p-aspartate 94 (93) 30 (78) 22 (86) 7.3(92)
SYM2081 140 (72) 25 (89) 18 (71) 3.2(75)
L-Homocysteinsulfinate 73 (91) 18 (94) 14 (70) 6.2 (84)
D-Homocysteinsulfinate 36 (89) 14 (99) 7.9 (92) 3.0 (100)
L-Homocysteate 34 (86) 8.1 (90) 12 (53) 3.4 (69)
D-Homocysteate 180 (92) 86 (94) 110 (74) 22 (87)
L-Cysteinesulfinate 140 (110) 100 (81) 22 (100) 9.2 (98)
L-Cysteate 560 (95) 180 (77) 80 (82) 30 (83)
D-Cysteate 220 (31) 210 (67) 580 (110) 100 (97)
Homoquinolinate 22 (75) 16 (96) 81 (51) 32 (88)
Ibotenate 160 (99) 26 (89) 40 (72) 13 (78)
(R,S)-(Tetrazol-5-yl)glycine 1.7 (98) 0.52 (97) 0.49 (89) 0.099 (78)
L-CCG-IV 0.26 (99) 0.083 (120) 0.11 (90) 0.036 (110)
trans-ACBD 3.1(91) 0.99 (81) 1.2 (67) 0.51(81)
cis-ADA 890 (100) 220 (95) 80 (81) 32 (140)
trans-ADC 470 (38) 170 (48) 95 (73) 50 (80)
cis-ACPD 61 (76) 21 (75) 22 (49) 11(77)
cis-2,3-Piperidinedicarboxylic acid 21 (3) 38 (7)
(R)-NHP4G 150 (33) 61 (76) 120 (54) 48 (77)
(R,S)-Ethyl-NHP5G 47 (5) 68 (45) 91 (52) 43 (70)
(R)-Propyl-NHP5G N.E. 105 (6) 429 (22) 153 (37)

trans-ACBD, trans-1-aminocyclobutane-1,3-dicarboxylate; cis-ACPD, (1R,3R)-aminocyclopentane-cis-dicarboxylate; ADC, azetidine-2,4-dicarboxylic acid; cis-ADA, cis-
azetidine-2,4-dicarboxylic acid; L-CCG-1V, (2S,3R,4S)-2-(carboxycyclopropyl)glycine; N.E., no effect; NHP4G, 2-(N-hydroxylpyrazol-4-yl)glycine; NHP5G, 2-(N-hydroxypyra-

zol-5-yl)glycine.



GLUTAMATE RECEPTOR ION CHANNELS

site of GluN3A is capped by Tyr605, which hydrogen
bonds with the side chains of Ser631 and Glu522. These
interactions are not present in GluN1 because all three
amino acids differ. The differences in GluN1 and GluN3
residues within the binding pocket markedly alter the
water molecule organization. Eight interdomain inter-
actions between domains D1 and D2 of the GluN3 sub-
unit are unique for the GluN3 subunit when glycine is
bound and may contribute to the differences in ligand
affinity (Yao and Mayer, 2006; Yao et al., 2008).

The GluN3 subunit forms functional diheteromeric
cation-permeable GluN1/GlulN3 receptors in X. laevis
oocytes, and GluN3 may be incorporated into GluN1/
GluN2/GluN3 receptors (Cavara and Hollmann, 2008;
Schiiler et al., 2008; Ulbrich and Isacoff, 2008). The
exact nature and extent of GluN3 involvement in neu-
ronal and glial receptors is an area of active study (Stys
and Lipton, 2007). Within recombinant GluN1/GluN3
receptors expressed in heterologous systems, binding of
glycine to GluN3 alone seems permissive for channel
activation, in contrast to GluN1/GluN2 receptors, which
require simultaneous binding of glycine to GluN1 and
glutamate to GluN2. Occupancy of the GluN1 subunit by
ligand within GluN1/GluN3 receptors seems to facilitate
desensitization. In GluN1/GluN3 receptors, GluN3 is
activated fully by glycine and partially by D-serine and
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1-aminocyclopropane-1-carboxylic acid (Chatterton et
al., 2002; Smothers and Woodward, 2007), which may
account for observations that D-serine antagonized
GluN1/GluN3 receptors (Awobuluyi et al., 2007).

C. a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic
Acid and Kainate Receptor Competitive Antagonists

AMPA and kainate antagonists typically possess an
a-amino group connected by a heterocyclic ring system
to an acidic moiety (Szymariska et al., 2009). The first
widely used competitive AMPA receptor antagonists
were quinoxalinediones (CNQX, DNQX, NBQX), which
were highly selective over NMDA receptors but antago-
nized kainate receptors. NBQX seems to be more selec-
tive for AMPA receptors (Wilding and Huettner, 1996)
and is thus commonly used to block AMPA receptor-
mediated currents (Table 9). Surprisingly, association of
AMPA receptors with TARPs converts CNQX and
DNQX, but not NBQX, from antagonists to weak partial
agonists. CNQX and DNQX induce partial domain clo-
sure, consistent with the activity of a partial agonist
(Armstrong and Gouaux, 2000). Although it is not
known how interaction with TARPs results in the par-
tial agonist activity of CNQX and DNQX, it is possible
that the auxiliary subunits alter the extent of domain

TABLE 9
Equilibrium dissociation constants in micromolar for AMPA receptor competitive antagonists

For all antagonist tables, K; is the equilibrium dissociation constant calculated from radioligand binding studies, and Ky is the equilibrium dissociation constant calculated
from functional assays using either a Schild analysis or a Cheng-Prusoff correction of ICs, values. IC5, values are the concentration of drug required to produce half-maximal
inhibition. Data for CNQX and NBQX inhibition of GluAl or GluA4 coexpressed with GluA2 can be found in Stein et al. (1992).

Antagonist GluAl GluA2 GluA3 GluA4
uM

CNQX 0.6* 0.18° 2.11°
DNQX 0.25¢ 0.45° 1.66° 0.19-0.49¢
NBQX 0.4° 0.59" 0.31-0.63%" 0.1°
ATPO 38" 65" 1107 150"
YM90K 1.96¢
NS102 N.E*
NS1209 0.12¢ 0.13% 0.11% 0.06°
Kynurenic acid 1900"
LY293558 9.2 0.4-3.2% 32" 51
LY377770 >100/
1.Y382884 N.E/! N.E/ N.E! N.E/!
LY466195 5™ 270™ N.E/ 312™ 432"
UBP296 N.E.”
UBP310 >100°
ACET >100°

ACET, (S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxy-5-phenylthiophene-3-yl-methyl)-5-methylpyrimidine-2,4-dione; LY377770, (3S,4aR,6S,8aR)-6-(((1H- tetrazol-5-ylm-
ethyl)oxy)methyl)-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid; N.E., no effect; NS102, 5-nitro-6,7,8,9-tetrahydrobenzo[gJindole-2,3-dione-3-oxime; UBP296,
(R,S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxybenzyl)pyrimidine-2,4-dione; YM90K, 6-(1H-imidazol-1-yl)-7-nitro-2,3-(1H,4H)-quinoxalinedione.

9Ky values are from Schild analysis of responses from rat receptors expressed in X. laevis oocytes and activated by kainate (Dawson et al., 1990). °K; values are for
displacing [*HJAMPA binding to BHK cells transfected with GluA2(Q) (Tygesen et al., 1995). °Ky, values are from the Cheng-Prusoff correction of ICsq values for inhibition
of Ca?" influx evoked by 30 uM glutamate in HEK293 cells transfected with human GluA3 (Varney et al., 1998). 9K; values are for displacing [SHJAMPA binding to BHK
cells transfected with rat cDNA (Andersen et al., 1996). °Ky values are from Schild analysis of responses from recombmant receptors expressed in X. laevis oocytes activated
by glutamate (Stein et al., 1992). /Ky, values are from the Cheng-Prusoff correction of IC5, values for inhibition of glutamate-activated Ca®" influx in HEK293 cells stably
transfected with rat recombinant receptors (Strange et al., 2006). #Data for GluAl and GluA4 are K; values for displacement of [PHJAMPA from Sf9 cells. GluA4 exhibited
low- and high-affinity binding; the high-affinity K; is reported here. Data for GluA2 and GluA3 are Ky values from the Cheng Prusoff correction of IC5, values for inhibition
of Ca?* influx stimulated by glutamate (250 uM) in HEK293 cells stably expressing GluA2 or GluA3 (Kasper et al., 2006). Ic'ro values are for inhibition of GluA2 expressed
in X. laevis oocytes and activated by 100 uM glutamate (Prescott et al., 2006). ‘K; values are for displacing [* H]AMPA at human receptors expressed in HEK293 cells
(Simmons et al., 1998). /Ky, values are from the Cheng-Prusoff correction of IC5q values from inhibition of glutamate (200 uM)-evoked Ca®* influx at HEK293 cells expressing
GluA2 LY377770 caused a 35% inhibition at 100 uM, whereas 1.Y382884 and LY466195 (called compound 5 i 1n this reference) had no effect at 100 uM (Jones et al., 2006).

K values are for displacing [PHJAMPA at human GluA3 expressed in HEK293 cells (Bleakman et al., 1999). K values are for displacing [*’HJAMPA at human receptors
expressed in HEK293 cells. N.E. indicates 1LY382884 displaced less than 30% at 100 uM (Bortolotto et al , 1999). ”‘K values are for dlsplacmg [*H]AMPA at human receptors
expressed in HEK293 cells (Weiss et al., 2006). "Ky values are from the Cheng-Prusoff corrected IC5, values for 1nh1b1t1on of Ca®" influx evoked by glutamate (100 uM) at
human receptors expressed in HEK293 cells (Dolman et al., 2005). °IC5, values are for inhibition of Ca?" influx activated by 100 uM glutamate at HEK293 cells expressing
human GluA2 (Dolman et al., 2007).
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closure necessary for channel opening (Menuz et al.,
2007; Kott et al., 2009).

Crystal structures of DNQX and the structurally dis-
tinct competitive AMPA receptor antagonist ATPO in com-
plex with the GluA2 LBD showed that both ligands induce
only a small degree of domain closure and that their bind-
ing to the receptor is different. DNQX interacts with resi-
dues primarily within domain D1 of the clamshell, thereby
depriving agonist of its initial contact sites with the open
cleft of the binding pocket (Armstrong and Gouaux, 2000).
By contrast, ATPO binds in a manner similar to agonists,
contacting residues in domains D1 and D2, but the bulky
v-substituents prevent cleft closure (Hogner et al., 2003;
Hald et al., 2007). In contrast to ATPO and DNQX, the
AMPA receptor competitive antagonists 8-methyl-5-(4-
(N,N-dimethylsulfamoyl)phenyl)-6,7,8,9-tetrahydro-1H-
pyrrolo(3,2-h)-isoquinoline-2,3-dione-3-0O-(4-hydroxybutyric
acid-2-yloxime (NS1209) and (aS)-a-amino-3-[(4-carboxy-
phenyl)methyl]-3,4-dihydro-2,4-dioxo-1(2H)-pyrimidine-
propanoic acid (UBP282) stabilize the LBD in a hy-
perextended conformation compared with the apo
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state (Kasper et al., 2006; Ahmed et al., 2009), sug-
gesting that the LBD has more flexibility than previ-
ously thought.

Several classes of GluK1-selective antagonists designed
from different templates include the decahydroisoquino-
lines (3S,4aR,6S,8aR)-6-((4-carboxyphenyl)methyl)-1,2,3,
4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid
(LLY382884) (Bortolotto et al., 1999) and 6-((2-carboxy-4,
4-difluoro-1-pyrrolidinyl)methyl)decahydro-3-isoquino-
linecarboxylic acid (LY466195) (Weiss et al., 2006),
and the 3-substituted phenylalanine analogs (Szymanska
et al., 2009) (Table 10). LY382884 is a competitive antag-
onist of heteromeric kainate receptors, including GluK1/
GluK2 and GluK1/GluK5, with similar potencies as at
homomeric GluK1 (Bortolotto et al., 1999; Alt et al., 2004).
The willardiine analogs UBP302 (More et al., 2004), (S)-1-
(2-amino-2-carboxyethyl)-3-(2-carboxythiophene-3-yl-
methyl)-5-methylpyrimidine-2,4-dione (UBP310) (Mayer et
al., 2006), and (S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxy-5-
phenylthiophene-3-yl-methyl)-5-methylpyrimidine-2,4-dione
(Dolman et al., 2007; Dargan et al., 2009) also are selective for

TABLE 10
Equilibrium dissociation constants in micromolar for kainate receptor competitive antagonists
Antagonist GluK1 GluK2 GluK3 GluK1/GluK2 GluK1/GluK5 GluK2/GluK5
wM
CNQX“ 2.6 1.5 1.3 1.6 5.3
DNQX 0.35°
NBQX“ 8.0 1.7 3¢ 6.2 4.2 6.4
ATPO 547 >3407
NS102 1.4¢
NS1209 0.62" 13/
LU97175% 0.088 0.31 0.022
LU115455¢% 1.3 0.37 0.21
LU136541# 1.1 1.2 0.26
Kynurenic acid* 130 33 160 99 N.E.
LY293558“ 0.22 N.E. N.E. 0.65 0.80 N.E.
LY377770* 0.064 N.E. 0.13 0.16 N.E.
1.Y382884 0.64 N.E. N.E. 1.3 0.64 N.E.
LY466195" 0.024 N.E. 8.9 0.024 0.054
UBP296 0.6° N.E/ 374/ 0.8 1.0° N.E/
UBP302* 0.6 N.E™ 4.0m 0.8 1.0/ N.E/!
UBP304 0.12" N.E” 111° 0.12" 0.18" N.E.”
UBP310 0.010° N.E/! 0.023™ 0.008' N.E/!
ACET? 0.007 N.E. 0.092™ 0.005 N.E.
2,4-Epi-neoDHY 7.5(2.4) 74 (7.7)

2,4-Epi-neoDH, 2,4-epi-neodysiherbaine; ACET, (S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxy-5-phenylthiophene-3-yl-methyl)-5-methylpyrimidine-2,4-dione; CNQX, 6-cyano-7-nit-
roquinoxaline-2,3-dione; LU115455, N-(1-(1-carboxymethyl-5,6,7,8-tetrahydro-benzo[f]quinoxaline-2,3-(1H,4H)-dion-9-yl)pyrrol-3-yl)methyl-NO-(4-carboxyphenyl)-urea; LU136541,
N'~(4-carboxyphenyl)-N-(1-(1-hydroxy-5,6,7,8-tetrahydrobenzo[f]quinoxaline-2,3-(1H,4H)-dion-9-yl)pyrrol-3-yl)methyl-urea; LU97175, 1-benzamido-7-pyrrol-1-yl-6-trifluorometh-
ylquinoxaline-2,3-(1H,4H)-dione; LY377770, (3S,4aR,6S,8aR)-6-(((1LH-tetrazol-5-ylmethyl)oxy)methyl)-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid; N.E., no effect;
NS102, 5-nitro-6,7,8,9-tetrahydrobenzo[glindole-2,3-dione-3-oxime; UBP296, (R,S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxybenzyl)pyrimidine-2,4-dione; UBP302, 1-(2-amino-2-car-
boxyethyl)-3-(2-carboxybenzyl)pyrimidine-2,4-dione; UBP304, 1-(2-amino-2-carboxyethyl)-3-(2-carboxythiophene-3-ylmethyl)pyrimidine-2,4-dione.

“Ky values for NBQX, CNQX, kynurenic acid, LY293558, LY377770, and LY382884 are calculated using the Cheng-Prusoff correction with the IC5, values reported in
Alt et al. (2004). °K; values are for displacing [SHJAMPA binding to BHK cells stably transfected with GIuK2 (Tygesen et al., 1995). °K; values are calculated from the
Cheng-Prusoff correction using ICs, values for displacement of [*H]kainate in GluK3 receptors expressed in HEK (Loscher et al., 1999). dKB values are from the
Cheng-Prusoff correction of ICs, values for inhibition of glutamate-activated Ca?" influx in HEK293 cells stably transfected with rat recombinant receptors (Strange et al.,
2006). °K; values are from inhibition of [*H]kainate binding to homomeric GluK2 expressed in HEK293 cells (Verdoorn et al, 1994). In functional studies, however, 10 uM
NS102 caused only 50% inhibition of currents evoked from GluK2 by 300 uM glutamate and inhibited GluA2/GluA4 receptors 20%. In functional studies at rat cerebral
cortical neurons or dorsal root ganglion neurons, taken to be AMPA receptors and kainate receptors, respectively, NS102 had a Ky of 114 uM and 6 M, respectively (Wilding
and Huettner, 1996). 'K, values are for inhibition of [*H]JAMPA and [*H |kainate binding at recombinant human GluK1 and GluK2, respectively, expressed in HEK293 cells
(Christensen et al., 2004b). éK; for displacement of [*H]kainate to recombinant receptors expressed in HEK293 cells. LU 97175 had a K; of 1.3 uM and LU 115455 had a K;
of 0.018 uM for displacement of [PHJAMPA at rat brain membranes (Loscher et al., 1999). "K; values are for displacement of [*H]kainate at human receptors expressed in
HEK293 cells (Weiss et al., 2006). ‘K values are from the Cheng-Prusoff corrected IC5, values for inhibition of Ca?" influx evoked by glutamate (100 uM) at recombinant
human receptors expressed in HEK293 cells (More et al., 2004).K; value are for displacement of [*H]kainate from human GluK3 expressed in HEK293 cells (Dolman et al.,
2005). *UBP302 is the active enantiomer of UBP296. 'K}, values are for inhibition of Ca?" influx evoked by glutamate (100 M) at human recombinant receptors expressed
in HEK293 cells (Dolman et al., 2007). "IC5, values are for inhibition of currents activated by glutamate (30 mM) at HEK293 cells expressing recombinant receptors (Perrais
et al., 2009). "Ky, values were calculated using the Cheng-Prusoff correction for inhibition of Ca?* influx in HEK293 cells expressing human recombinant receptors (Dolman
et al., 2006). °K; values were calculated from displacement of [*H]kainate from human GluK3 expressed in HEK293 cells (Dolman et al., 2006). ”Data for ACET at GluK1,
GluK2, GluK1/GluK5, and GluK2/GluK5 are from Dolman et al. (2007). 9IC5, values are for inhibition of currents activated by glutamate (10 mM) from HEK293-T/17 cells
expressing recombinant receptors (Lash et al., 2008). In the same assay, 300 uM 2,4-epi-neoDH failed to inhibit GluA4 receptors. K; values for displacement of [*H]kainate
from HEK293-T/17 cells expressing recombinant receptors are given in parentheses.
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GluK1- or GluK3-containing kainate receptors over GluK2
and AMPA receptors (Perrais et al., 2009). Crystal structures
of UBP302 and UBP310 bound to the GluK1 LBD indicate
that the antagonists force the LBD of GluK1 to adopt a
conformation that is more open than for quinoxalinediones.
In contrast to other agonists and antagonists, the a-amino
group of these ligands does not directly interact with the
carboxyl group of Glu723 in GluK5 (Glu705 in GluA2); in-
stead, Glu723 adopts a conformation similar to that of the
corresponding Glu705 in the apo structure of the GluA2 LLBD.
GluK1 selectivity is achieved as a result of steric clash be-
tween the antagonist and residues lining the GluA2 and
GluK2 binding pockets.

D. N-Methyl-D-aspartate Receptor
Competitive Antagonists

Many competitive antagonists of the GluN1 subunits
have been identified, including 7-chlorokynurenic acid
and its analog 5,7-dichlorokynurenic acid (5,7-DCKA)
(Birch et al., 1988; Kemp et al., 1988; Mayer et al., 1988;
Kessler et al., 1989; Kleckner and Dingledine, 1989;
McNamara et al., 1990) (Table 11). The GluN1 LBD
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shows 24° less domain closure when 5,7-DCKA is bound
compared with when glycine is bound, suggesting that
the antagonist stabilizes an open-cleft conformation (Fu-
rukawa and Gouaux, 2003). A majority of the contacts
5,7-DCKA forms with residues within the binding
pocket are with domain D1 of the LBD. The carboxylate
of 5,7-DCKA forms a hydrogen bond with Thr518 and
interacts with Argh523, and the amino group forms a
hydrogen bond with Pro516. Van der Waals interactions
are formed between the aromatic rings of Phe408 and
Trp731 and the chlorine atoms of 5,7-DCKA. Although
GluN1 agonists have interdomain contacts formed be-
tween GIn405 and Trp731/Asp732, these interactions
are disrupted by 5,7-DCKA (Furukawa and Gouaux,
2003). Like the GluN1 agonists, the GIuN2 composition
of the NMDA receptor influences the potencies of these
antagonists by less than 10-fold (Ikeda et al., 1992;
Kutsuwada et al., 1992; Buller et al., 1994; Priestley et
al., 1995). The noble gas xenon exerts anesthetic actions
independent of effects on GABAergic transmission and
has been proposed to inhibit the NMDA receptor
(Franks et al., 1998; de Sousa et al., 2000) through a

TABLE 11
Equilibrium dissociation constants in micromolar for NMDA receptor competitive antagonists

Data presented as K; except where indicated as Kp or Kj.

Competitive Antagonist Site GluN2A GluN2B GluN2C GluN2D
uM
7-CKA” GluN1 0.6 0.2
5,7-DCKA® GluN1 0.03 0.05 0.17 0.09
CGP-61594 (Kj)" GluN1 0.43 0.045 0.16 0.34
CGP-58411 (Kp)* GluN1 0.24 0.13
GV150,526A¢ GluN1 0.08 0.08 0.11 0.05
GV196,771A% GluN1 0.48 0.22 0.18 0.15
MDL105,519¢ GluN1 0.012 0.015 0.012 0.018
ACEA-1011 (Kp)° GluN1 0.33 0.46 0.21 0.74
ACEA-10217 GluN1 0.004 0.004 0.003 0.011
L-689,560 (Kp)° GluN1 0.004 0.02
L-701,324* GluN1 0.005 0.005
(R)-AP5* GluN2 0.28 0.46 1.6 3.7
(R)-AP7# GluN2 0.49 4.1 6.4 17
PMPA# GluN2 0.84 2.7 3.5 4.2
(R)-CPP# GluN2 0.041 0.27 0.63 1.99
NVP-AAMO77 (Ky)" GluN2 0.015 0.078
PPDA'! GluN2 0.55 0.31 0.096 0.13
(R)-a-AA’ GluN2 6.5 25 44 110
PBPD! GluN2 16 5.0 89 4.3
UBP14V GluN2 14 19 4.2 2.8
CGS-19755 (selfotel® GluN2 0.15 0.58 0.58 1.1
CGP-43487 (Kp)° GluN2 0.28 1.6
CGP-40116 (Kp)° GluN2 0.04 0.03
Con-Br* GluN2 0.68 0.14 4.9 0.31
Con-G! GluN2 >10 0.1 1 1
Con-Pr1’ GluN2 >10 0.2 >10 1
Con-Pr2! GluN2 >10 0.5 >10 1
Con-Pr3! GluN2 >10 0.5 >10 8
Con-R! GluN2 1 1 7 >10
Con-T (Ko™ GluN2 3.2 2.9

a-AA, a-aminoadipate; 5,7-DCKA, 5,7-dichlorokynurenic acid; 7-CKA, 7-chlorokynurenic acid; ACEA-1011, 5-chloro-7-trifluoromethyl-1,4-dihydro-2,3-quinoxalinedione; ACEA-
1021, licostinel; AP5, 2-amino-5-phosphonopentanoate; AP7, 2-amino-7-phosphonopentanoate; CGP-61594, (+)-trans-4-[2-(4-azidophyenyl)acetylamino]-5,7-dichloro-1,2,3,4-tetra-
hydroquinoline-2-carboxylic acid; CGP-40116, D-(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid; CGP-43487, D-(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid methyl
ester; CGP-58411, 7-chloro-4-hydroxy-3-phenyl-1H-quinolin-2-one. CGS-19755, (2R,4S)-4-(phosphonomethyl)piperidine-2-carboxylic acid; CPP, 4-(3-phosphonopropyl) pizerazine-
2-carboxylic acid; GV150,526A, gavestinel; GV196,771A, (E)-4,6-dichloro-3-[(2-oxo-1-phenyl-3-pyrrolidinylidene)methyl]-1H-indole-2-carboxylic acid; L-689,560, 4-trans-2-carboxy-
5,7-dichloro-4-phenylaminocarbonylamino-1,2,3,4-tetrahydroquinoline; L-701,324, 7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(1H)-quinolone; MDL105,519, (E)-3-(2-phenyl-2-car-
boxyethenyl)-4, 6-dichloro-1H-indole-2-carboxylic acid; PBPD, (2S,3R)-1-(biphenyl-4-carbonyl)piperazine-2,3-dicarboxylic acid; PMPA, (R,S)-4-(phosphonomethyl)-piperazine-2-
carboxylic acid; PPDA, (2S,3R)-1-(phenanthren-2-carbonyl)piperazine-2,3-dicarboxylic acid.

@Ky values are from the Cheng-Prusoff correction of ICy, values measured for inhibition of glycine-activated currents in mouse L(tk—) cells (Priestley et al., 1995). ®Hess
et al. (1998). “Hess et al. (1996). “Chopra et al. (2000). “‘Woodward et al. (1995a). 'Woodward et al. (1995b). éFeng et al. (2005). "Frizelle et al. (2006). ‘Feng et al. (2004).’Morley
et al. (2005). *Twede et al. (2009). ‘Teichert et al. (2007). ™K, was calculated from on and off rates (Sheng et al., 2007).
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direct interaction within the glycine binding site (Dick-
inson et al., 2007). Thus, xenon, like ketamine, may
target the glutamatergic system to provide anesthetic
effects.

The GluN2 competitive antagonist (R)-2-amino-5-phos-
phonopentanoate and its analogs are used widely as phar-
macological tools to distinguish NMDA receptor-mediated
activity from AMPA and kainate receptor activity (Davies
et al.,, 1981, 1986; Evans et al., 1981; Lester et al., 1990)
(Table 11). Unfortunately, GluN2 subunit selectivity has
been difficult to achieve for competitive antagonists. For
example, the antagonist 3-((R)-2-carboxypiperazin-4-yl)-
propyl-1-phosphonic acid shows ~50-fold preference for
GluN2A over GluN2D but has intermediate affinities at
GluN2B and GluN2C (Ikeda et al., 1992; Kutsuwada et al.,
1992; Feng et al., 2005) (Table 11). The competitive antag-
onist (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-
1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl-phosphonic acid
(NVP-AAMO77), originally reported to have more than
100-fold selectivity for GluN2A-containing receptors over
GluN2B-containing receptors, was used to evaluate phys-
iological roles of GluN2A and GluN2B in rodent models of
synaptic plasticity and neurotoxicity before a full pharma-
cological characterization was completed (Liu et al., 2004b;
Massey et al., 2004; Zhou and Baudry, 2006). Subsequent
determination of K from Schild analysis suggested that
the selectivity was only ~5-fold, precluding its use as a
selective tool (Frizelle et al., 2006; Neyton and Paoletti,
2006). Antagonists with bulky, hydrophobic substituents,
such as phenanthrene-piperazine dicarboxylic acid ana-
logs (2S,3R)-1-(phenanthren-2-carbonyl)piperazine-2,3-di-
carboxylic acid and (2R,3S)-1-(phenanthrenyl-3-carbon-
yDpiperazine-2,3-dicarboxylic acid (UBP141), show only
modest 10-fold higher affinity for GluN2C- and GluN2D-
containing receptors over GluN2A and GluN2B (Feng et
al., 2004, 2005; Morley et al., 2005; Costa et al., 2009)
(Table 11). Subunit selectivity for competitive antagonists
may be difficult to achieve because of high homology
among GluN2 subunit LBDs. Of the 39 residues lining the
binding pocket, only 8 are divergent in GluN2A to
GluN2D. All 10 residues that come into direct contact with
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glutamate are conserved between GluN2 subunits (Fu-
rukawa et al., 2005; Kinarsky et al., 2005).

Conantokins, peptides of 17 to 27 amino acids that lack
disulfide bonds and are rich in y-carboxyglutamate resi-
dues, have both competitive and noncompetitive antago-
nist activity on NMDA receptors (Prorok and Castellino,
2007). Conantokin-G is 20-fold more potent on GluN2A
and GluN2B-containing NMDA receptors than on GluN2C
and GluN2D-containing receptors (Wittekindt et al.,
2001; Sheng et al., 2007; Teichert et al., 2007), and
conantokin-Br is more potent for the GluN2D-contain-
ing NMDA receptors than other conantokins (Table 11)
(Twede et al.,, 2009). Although conantokin-G binds
within the GIuN2 ligand binding pocket, one molecular
determinant of specificity of conantokin-G for GluN2B
has been identified as a Met739 residue outside of the
binding pocket within the D2 domain of the LBD. This
residue is not conserved in GIuN2A receptors but is
present in GluN2C and GluN2D subunits (Teichert et
al., 2007). Conantokin-R and conantokin-T are antago-
nists of NMDA receptors, but antagonism is not GluN2
subunit-specific (Klein et al., 2001; Sheng et al., 2007;
Teichert et al., 2007). Conantokins R and G have been
studied preclinically for their effectiveness in the treat-
ment of chronic pain, stroke, and seizure (White et al.,
2000; Layer et al., 2004; Hama and Sagen, 2009).

E. Noncompetitive Antagonists

Several classes of noncompetitive antagonists at AMPA
receptors have been used to selectively block AMPA but not
kainate receptors, including 2,3-benzodiazepines and 1,2-di-
hydrophthalazines, as well as tetrahydroisoquinolines (Gitto
et al., 2003). However, the most potent of the 2,3-benzodiaz-
epines, 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-
2,3-benzodiazepine (GYKI-53655) (Table 12), blocks GluK2/
GluK3 heteromeric and GluK3 homomeric receptors with an
IC;, that is approximately 10-fold higher than at AMPA
receptors (Bleakman et al., 1996; Perrais et al., 2009). In
contrast to the competitive antagonists CNQX and DNQX,
GYKI-53655 remains an effective AMPA receptor antagonist
in the presence of TARPs, with the potency of the antagonist

TABLE 12
IC;,, values in micromolar for noncompetitive AMPA and kainate receptor antagonists
Noncompetitive Antagonist GluAl GluA2 GluA3 GluA4 GluK1 GluK2 GluK3 GluK2/GluK5
uM
GYKI 52466 18-117+° 34° 22-66%° >100* >100*
GYKI 53405 (LY 293606) 24 28« >100* >100*
GYKI 53773 (LY 300164)* 21° 18° 19¢ 18°¢ >100¢
GYKI 53655 (LY 300168) 6 5% >100* 198" 63" >100*
GYKI 53784 (LY 303070)¢ 3¢ 3¢ >100¢ >100¢ >100¢
CP-465,022 0.5% 0.5% 0.3¢ >100¢ >1"
NS-3763 1.6° >30° N.E/

GYKI 52466, 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine; GYKI 53405, 1-(4-aminophenyl)-3-acetyl-4-methyl-3,4-dihydro-7,8-
methylenedioxy-5H-2,3-benzodiazepine; GYKI 53655, 1-(4-aminophenyl)-3-methylcarbamoyl-4-methyl-3,4-dihydro-7,8-methylenedioxy-5H-2,3 benzo-
diazepine; GYKI 53784, (—)-1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-4,5-dihydro-3-methylcarbamoyl-2,3-benzodiazepine.

“Bleakman et al. (1996). *Johansen et al. (1995). °IC,, value was determined from inhibition of Ca®* influx activated by 30 uM glutamate at human
GluA3 expressed in HEK69-8 cells (Varney et al., 1998). “This compound is the active enantiomer of the compound directly above it. °Cotton and
Partin (2000). "Perrais et al. (2009). #Balannik et al. (2005). "“Lazzaro et al. (2002). ‘Values are for inhibition of Ca?" influx evoked by domoate (2 uM
for GluK1 and 0.2 uM for GluK2) in HEK293 cells expressing recombinant human receptors (Christensen et al., 2004b). ’Values are for inhibition of
glutamate-evoked currents at HEK293 cells expressing recombinant receptors (Christensen et al., 2004b).
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increased (Menuz et al., 2007; Cokié¢ and Stein, 2008). (S)-3-
(2-Chlorophenyl)-2-[2-(6-diethylaminomethyl-pyridin-2-yl)-
vinyl]-6-fluoro-3H-quinazolin-4-one (CP-465,022) (Menniti et
al., 2000), an analog of quinazolinone, is approximately 100-
fold more potent than GYKI-53655 at neuronal AMPA recep-
tors (Bleakman et al., 1996; Menniti et al., 2000; Lazzaro et
al., 2002) and seems 100-fold selective for AMPA over kainate
receptors (Lazzaro et al., 2002). Mutagenesis studies suggest
that GYKI-53655 and CP-465,022 share overlapping molec-
ular determinants of action, requiring both S2-M4 and the
S1-M1 linkers (Fig. 9; Balannik et al., 2005), the latter of
which may be a critical element in gating (Sobolevsky et al.,
2009) (see section VIL.B and VIL.D). The mechanism of block
remains unclear but seems not to involve desensitization
(Donevan and Rogawski, 1998).

A major advance in kainate receptor pharmacology
was made with the identification of arylureidobenzoic
acids as noncompetitive GluK1 receptor antagonists
(Valgeirsson et al., 2003, 2004). The most potent of these
2-arylureidobenzoic acids is 4,6-bis(benzoylamino)-1,3-
benzenedicarboxylic acid (NS-3763), a selective antago-
nist of homomeric GluK1 (Table 12) that has no activity
at heteromeric GluK1/GluK2 or GluK1/GluK5, AMPA
receptors, or NMDA receptors. NS-3763 exhibits 10-fold
greater potency in inhibiting glutamate-evoked currents
from GluK1-2b versus GluK1-1a, two splice variants
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differing in 15 extracellular amino acid residues in the
ATD and a cytoplasmic domain (Christensen et al.,
2004b). Because NS-3763 inhibits only homomeric
GluK1 receptors, it has been useful in exploring na-
tive kainate receptor stoichiometry (Christensen et
al., 2004a).

The first subunit-selective NMDA receptor antagonist
was the phenylethanolamine ifenprodil, which defined a
new class of noncompetitive, voltage-independent par-
tial antagonists (maximal inhibition ~90%) of GlulN2B-
containing NMDA receptors (Table 13). Ifenprodil inhib-
its GluN2B-containing receptors with high affinity and
is 200 to 400-fold more potent for GluN1/GluN2B recep-
tors than for GluN1/GluN2A, GluN1/GluN2C, or GIuN1/
GIluN2D receptors (Williams, 1993; Hess et al., 1998;
IC5y ~150 nM). GIluN1 splice variants do not influence
the ability of ifenprodil to inhibit GluN2B-containing
receptors (Gallagher et al., 1996), but triheteromeric
receptors containing GluN1/GluN2A/GluN2B are pro-
posed to be less sensitive to ifenprodil (Hatton and Pa-
oletti, 2005), and insensitive to CP-101,606 (Brimecombe
et al., 1997; Chazot et al., 2002). The kinetic properties of
ifenprodil also are altered in triheteromeric receptors; the
macroscopic association rate of ifenprodil in GluN1/
GluN2A/GluN2B receptors was slower, whereas the disso-
ciation rate was faster than in GluN1/GlulN2B receptors

AMPA, kainate receptors

ATD
lectins

LBD agonist
binding pocket
partial and full agonists
competitive antagonists

ion channel pore
uncompetitive antagonists
polyamines, cations

GluN1 glycine
binding pocket
partial and full agonists
competitive antagonists

ion channel pore
uncompetitive antagonists
polyamines, Zn%*, Mg2*

LBD dimer interface
cyclothiazide (AMPA)
aniractetam (AMPA)

CX614 (AMPA)
Cl- and K* (kainate)
Ca?* (GluD2)

LBD-TMD linkers
GYKI-53655 (AMPA)
CP-465,022 (AMPA)

GIluN2 ATD
ifenprodil (GIuN2B)
polyamines (GIuN2B)
Zn?* (GIuN2A, GIuN2B)

GIuN2 LBD agonist
binding site
partial and full agonists
competitive antagonists

GluN2 LBD-D2
pregnenolone sulfate
(GIuN2A, GIuN2B)

Fic. 9. Binding sites for the agonists, antagonists, and modulators described in sections V and VI are shown for the glutamate receptor. The
receptor targets of ligands selective for one or several subunits are listed in parenthesis. AMPA and kainate indicates that the ligand selectively
targets GluA or GluK receptor subunits, respectively. The ATDs, LBDs, TMDs, and linkers are shown in purple, orange, green, and gray, respectively.
[Adapted from Sobolevsky AI, Rosconi MP, and Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor.
Nature 462:745-756. Copyright © 2009 Nature Publishing Group. Used with permission.]
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TABLE 13
1C;, values in micromolar for noncompetitive GluN2B-selective NMDA
receptor antagonists

Data are for rat recombinant receptors, except for ifenprodil, which was character-
ized on human recombinant receptors. Data for ifenprodil are from Hess et al. (1998).
Values for Ro 25-6981 are from Fischer et al. (1997) and values for CP 101,606 are
from Mott et al. (1998). Values for eliprodil are from Avenet et al. (1997), and values
for felbamate are from Harty and Rogawski (2000). Values for haloperidol are from
Ilyin et al. (1996).

Noncompetitive
Anta ggni‘st“’ GluN2A GluN2B GluN2C GluN2D
uM
Ifenprodil 39 0.15 29 76
Ro 25-6981 52 0.0090
CP-101,606 >100 0.039 >100 >100
Eliprodil >100 3.02
Felbamate 2600 520 2400
Haloperidol N.E. 3 N.E. N.E.

CP-101,606, traxoprodil mesylate; N.E., <10% inhibition at 300 uM.

(Hatton and Paoletti, 2005). Ifenprodil and its more potent
derivatives, including a-(4-hydroxyphenyl)-B-methyl-4-
(phenylmethyl)-1-piperidine propanol (Ro 25-6981), 1-[2-
(4-hydroxy-phenoxy)-ethyl]-4-(4-methyl-benzyl)-piperidin-
4-0l (Ro 63-1908), besonprodil (CI-1041), and traxoprodil
mesylate (CP-101,606) (Gotti et al., 1988; Williams,
1993; Chenard et al., 1995; Fischer et al., 1997; Mott et
al., 1998; Gill et al., 2002; Barton and White, 2004)
(Table 13) are thought to interact with the GluN2B ATD
and have been proposed to act by stabilizing an agonist-
bound state in which the receptor has a low open prob-
ability (Kew et al., 1996, 1998; Fischer et al., 1997;
Perin-Dureau et al., 2002) (Fig. 9). Ifenprodil inhibition
is incomplete at saturating concentrations, and ifen-
prodil binds to a known modulatory domain, suggesting
its actions might also be considered negative allosteric
modulation, although it is widely referred to in the lit-
erature as a noncompetitive antagonist. Similar to Zn%*
binding to the ATD of GluN2A (see section VI.E), ifen-
prodil increases the potency of proton inhibition of
NMDA receptors (Pahk and Williams, 1997; Mott et al.,
1998). Rich pharmacology exists for this site, with
nearly a dozen structural classes described, including
oxamides (Barta-Szalai et al., 2004), 4-(3,4-dihydro-1H-
isoquinolin-2-yl)-quinolines (Biittelmann et al., 2003),
benzamidines (Claiborne et al., 2003), 5-substituted ben-
zimidazoles (McCauley et al., 2004), indole-2-carboxam-
ides (Borza et al., 2006, 2007), benzyl cinnamamidines
(Tamiz et al., 1999; Curtis et al., 2003), and other biaryl
analogs (Tamiz et al., 1998; Wright et al., 2000; Tahi-
rovic et al., 2008; Mosley et al., 2009).
GluN2B-selective antagonists have been implicated in
the treatment of a variety of diseases and neurological
disorders (see section X). However, development of
GluN2B-selective antagonists has been hindered by
their activity at al-adrenergic receptors, serotonin re-
ceptors, calcium channels, and hERG potassium chan-
nels (Lynch and Gallagher, 1996). The problem of target
selectivity has been partially overcome by potent ifen-
prodil analogs such as Ro 25-6981 and CP-101,606
(Fischer et al., 1997; Taniguchi et al., 1997; Tahirovic et
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al., 2008). Off-target activity at hERG channels by
GluN2B antagonists is decreased by eliminating basic
nitrogen atoms; increasing the number of oxygen at-
oms within the linker of GluN2B antagonists also
decreases affinity for hERG channels and al-adrener-
gic receptors (Kawai et al., 2007; Mosley et al., 2009).
The GluN2B selective antagonist (3S,4R)-4-methyl-
benzyl 3-fluoro-4-((pyrimidin-2-ylamino)methyl)pip-
eridine-1-carboxylate (MK-0657) unexpectedly in-
creased both systolic and diastolic blood pressure. It is
unclear whether these effects occur peripherally or
centrally (Addy et al., 2009; Mony et al., 2009).

Certain quinazolin-4-one analogs of the noncompeti-
tive AMPA receptor antagonist CP-465,022 can also in-
hibit recombinant NMDA receptors in a voltage-inde-
pendent and noncompetitive fashion (Mosley et al.,
2010). These data suggest that a new site for noncom-
petitive antagonism may exist on recombinant NMDA
receptors. Some quinazolin-4-ones are greater than 50-
fold more potent at recombinant NMDA receptors that
contain GluN2C/GluN2D subunits over NMDA recep-
tors that contain GluN2A/GluN2B subunits or AMPA/
kainate receptors. These compounds could provide a
starting point for the development of new classes of
subunit-selective antagonists for NMDA receptors that
contain GluN2C or GluN2D subunits.

Ethanol has been proposed to be a noncompetitive
antagonist of NMDA receptors, with sensitivity depen-
dent upon the GluN2 subunit (Lovinger et al., 1989,
1990; Kuner et al., 1993; Masood et al., 1994; Mirshahi
and Woodward, 1995; Kash et al., 2008; Nagy, 2008) but
independent of GluN1 splice variant, pH, Zn®", or redox
state (Kuner et al., 1993; Chu et al., 1995; Peoples and
Weight, 1999). A wide range of studies has suggested
that actions at native NMDA receptors contribute to the
central effects of alcohol, which may involve perturba-
tion of the interaction between glutamate and dopamine
(Lovinger, 2002; Maldve et al., 2002). However, recent
studies suggest that recombinant NMDA receptor inhi-
bition is modest at the U.S./U.K. drink-drive limit as
well as at intoxicating levels (Otton et al., 2009). Dynor-
phin peptides have been reported to have a variety of
actions on NMDA receptors, acting as noncompetitive
antagonists (Chen and Huang, 1998; Kanemitsu et al.,
2003; Oz et al., 2004) as well as potentiators under some
circumstances (Zhang et al., 1997; Caudle and Dubner,
1998; Lai et al., 1998). Dynorphin A (1-17) and (2-17)
can displace glycine at GluN1 (Voorn et al., 2007) and
can bind to an anionic intracellular epitope on GluN1
that may interact with dopamine receptors (Jackson et
al., 2006; Woods et al., 2006). Potency for Dynorphin A
(1-13) is dependent upon GluN2 subunit, with the pep-
tide being most potent for GluN2A-containing NMDA
receptors (Brauneis et al., 1996). Longer dynorphin pep-
tides are more potent inhibitors [e.g., Dynorphin A (1—
32); Chen and Huang, 1998]. Inhibition by dynorphin A
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is pH sensitive in that inhibition increases at lower pH
(Kanemitsu et al., 2003; Oz et al., 2004).

F. Uncompetitive Antagonists

Open channel blockers require that the receptor pore
be open to allow access to the blockers’ binding site to
cause subsequent block of receptor activity (Neely and
Lingle, 1986; Huettner and Bean, 1988; Kiskin et al.,
1989) (Fig. 9). Because of this requirement, the onset of
inhibition is use-dependent and increases with increas-
ing channel open probability. After channel closure,
some blockers can become trapped in the pore, and these
antagonists are called trapping blockers [PCP, dizo-
cilpine maleate (MK-801), ketamine at NMDA receptors,
1-trimethylammonio-5-(1-adamantane-methylammonio-
pentane dibromide) (IEM-1460) at AMPA receptors] and
partially trapping blockers (memantine at NMDA recep-
tors). Channel block by trapping blockers is slow to
reverse and requires channel reactivation by agonists
before the blocker can dissociate (Brackley et al., 1993;
Parsons et al., 1995; Blanpied et al., 1997; Magazanik et
al., 1997).

A large number of naturally occurring AMPA and
kainate receptor channel blockers, as well as a host of
synthetic analogs, have been identified (Table 14), in-
cluding argiotoxin-636 (Herlitze et al., 1993), Joro spider
toxin (Blaschke et al., 1993), Ageltoxin-489 (Washburn
and Dingledine, 1996), philanthotoxin-433 (Jones et al.,
1990), IEM-1460 (Magazanik et al., 1997), and N'-naph-
thylacetylspermine (Koike et al., 1997), which also
blocks mutant Lurcher GluD2 channels. Some of these
compounds have nonspecific actions at other ion chan-
nels (Welch et al., 2008). All of these uncompetitive
antagonists have structural similarity (i.e., a polyamine
moiety) and, when applied extracellularly, exhibit volt-
age-dependent block. These compounds act primarily on
GluA2-lacking Ca®*-permeable AMPA receptors, al-
though Joro spider toxin and philanthotoxin also block
unedited GluK2 channels (Blaschke et al., 1993; Bahr-
ing and Mayer, 1998). The QRN site at the apex of the
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M2 reentrant pore-lining loop is a key structural deter-
minant of polyamine block (see sections II.LE and VIII),
with receptors lacking the edited GluA2(R) subunits
showing strong block by polyamines and toxins. Thus,
these channel blockers have been useful pharmacologi-
cal tools to probe the subunit composition of AMPA
receptors (Laezza et al., 1999; Liu and Cull-Candy, 2000;
Plant et al., 2006), although many also show actions at
kainate receptors. The amino groups of these compounds
interact with residues that reside deeper in the pore
than the QRN site, including the main-chain oxygen
atom from the QRN + 2 site (Tikhonov et al., 2002), and
at least two amino groups are required for potent antag-
onism at AMPA receptors (Bolshakov et al., 2005). Some
compounds (e.g., phenylcyclohexyl derivative IEM-1925)
can permeate the channel, allowing closed channels to
escape from block (Tikhonova et al., 2008). Other block-
ers [e.g., adamantane derivative IEM-1676 (Tikhonova
et al., 2008)] produce a voltage-dependent closed chan-
nel block from the intracellular compartment in addition
to open channel block from the extracellular compart-
ment (Tikhonova et al., 2009). Association of AMPA
receptors with TARPs 2, y3, and y8 reduces channel
block by N'-naphthylacetylspermine (Kott et al., 2009),
an intriguing finding because TARPs also increase chan-
nel opening frequency (Tomita et al., 2005a) (see section
I1.H).

Structure-activity relationships of philanthotoxins
have highlighted the importance of the polyamine moi-
ety and led to potent and selective AMPA receptor block-
ers. Shortening the polyamine chain of PhTX-343 caused
a marked decrease in potency at AMPA receptors (Mel-
lor et al., 2003). Moreover, replacing the two secondary
amines in the polyamine moiety with either oxygen or
methylene resulted in a complete loss of activity,
whereas replacing only one with methylene improved
potency 15-fold and increased selectivity for AMPA ver-
sus NMDA receptors to 100-fold (Mellor et al., 2003).
Further modification of the polyamine tail of PhTX-343
resulted in PhTX-56 and PhTX-74, which differ in the

TABLE 14
IC;, values in micromolar for uncompetitive AMPA receptor antagonists

All data from GluA2 are from the edited form [GluA2(R)].

Uncompetitive Antagonist GluAl GluA2 GluA3 GluA4 GluA1/GluA2
uM

Argiotoxin 636 0.35-3.4%° N.E.“ 0.23* 0.43* 300°
Joro spider toxin 0.04°¢ N.E.c 0.03¢ N.E.-
Philanthotoxin 433% 0.8 N.E.
Philanthotoxin 343 2.8° 270°
Philanthotoxin 56 3.3 pM* 5.2¢
Philanthotoxin 74 0.17¢ 1.6°
TEM-1460 1.6" N.E# 1.6"

IEM-1754 6.0/ 6.0/

HPP-spermine? 0.5 0.08 0.5 N.E.

HPP-spermine, N-(4-hydroxyphenylpropanoyl)spermine trihydrochloride; IEM-1754, 1-ammonio-5-(1-adamantane-methylammoniopentane dibromide); N.E., no effect.

“Herlitze et al. (1993); holding membrane potential was —70 mV. ®Brackley et al. (1993); holding membrane potential, —80 mV. “Blaschke et al. (1993); holding membrane
potential, —100 mV. “Washburn and Dingledine (1996); holding membrane potential, —70 mV. Although ICs, values were not calculated, initial experiments suggested that
philanthotoxin-433 had a lower affinity for GluA1l and GluA4 receptors compared with GluA3. “Philanthotoxin 56 has an ICs, of 3.3 pM for recombinant GluAl (Kromann
et al., 2002); holding membrane potential, —80 mV. /Magazanik et al. (1997); holding membrane potential, —80 mV. #Schlesinger et al. (2005); holding membrane potential,

—60 mV, recombinant human GluA2(R).
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number of amines and intervening methylenes (Kro-
mann et al., 2002). PhTX-56 is highly selective for Ca?"-
permeable AMPA receptors, being 1000-fold more potent
at GluA2-lacking receptors. Ph'TX-56 is 500-fold selec-
tive for AMPA over kainate receptors (Kromann et al.,
2002). PhTX-74 inhibits GluA1/GluA2 but not GluA2/
GluA3 receptors (Nilsen and England, 2007).
Uncompetitive NMDA receptor antagonists include
Mg?*, polyamines (see section VIII.C), dissociative an-
esthetics phencyclidine and ketamine, MK-801, amino-
adamantane derivatives memantine and amantadine,
pentamidine, 9-tetrahydroaminoacridine, dextrometho-
rphan, and its metabolite dextrorphan (Table 15). It is
noteworthy that pentamidine and 9-tetrahydroamino-
acridine also inhibit currents of the mutant Lurcher
GluD2 receptors (Williams et al., 2003). The structure-
activity relationship underlying the trapping nature of
blockers is unrelated to lipophilicity, and thus blockers
are not capable of escaping through the membrane
(Mealing et al., 2001; Bolshakov et al., 2005). Partially
trapping blockers, such as memantine and amantadine,
bind after channel opening. However, these drugs also
unbind rapidly (Blanpied et al., 1997, 2005; Chen and
Lipton, 1997; Mealing et al., 1999), which has been pro-
posed to be therapeutically beneficial, because normal
synaptic transmission may not be influenced by the
drug, but overactivation of NMDA receptors should be
decreased (Chen and Lipton, 2006) (see section X.G).
Memantine may access multiple binding sites, one of
which has been proposed to reside superficially near the
extracellular end of the pore in GluN1/GluN2A. Occu-
pancy of this superficial site may prevent full channel
closure (Sobolevsky and Koshelev, 1998; Sobolevsky et
al., 1998; Bolshakov et al., 2003); however, more work is
needed to determine the exact location with respect to
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the gate of this superficial site. The presence of the
superficial binding site also could be relevant for im-
proved side effect profile for memantine (Kotermanski et
al., 2009).

Most NMDA receptor channel blockers are either
nonselective or at best weakly selective (<10-fold) for
specific GluN2 subtypes (Yamakura et al., 1993). For
example, MK-801 is ~10-fold more potent for GluN2A-
and GluN2B-containing receptors than GluN2C- and
GluN2D-containing receptors (Bresink et al.,, 1996;
Dravid et al., 2007). However, aryl-polyamine deriva-
tives show high potency as well as slightly better sub-
unit selectivity, with N-dansyl-spermine and the
tribenzyltriamine TB-3-4 showing approximately 40-
fold lower IC;, values at GluN2A- than GluN2D-con-
taining NMDA receptors (Chao et al., 1997; Igarashi et
al., 1997; Jin et al., 2007). The molecular determinants
of activity of channel blockers are not identical but over-
lap, with dependence on residues within the M2 reen-
trant pore region and residues in other pore-forming
elements as well as the pre-M1 region (Yamakura et al.,
1993; Yamakura and Shimoji, 1999; Kashiwagi et al.,
2002; LePage et al., 2005; Jin et al., 2007). The sequence
similarity within the pore-forming elements of NMDA
receptors may constitute a challenge in the future de-
velopment of subunit-selective compounds. It is note-
worthy that the potencies of channel blocking com-
pounds are sensitive to pH. Although acidic pH reduces
NMDA receptor open probability (Traynelis and Cull-
Candy, 1990), acidic pH paradoxically increases the as-
sociation rate of the trapping blocker MK-801, which
may reflect an interaction of MK-801 with the structural
elements forming the gate of the receptor (Dravid et al.,
2007). Several reports raise the possibility that trapping
blockers do not passively reside in the pore when their

TABLE 15
IC;, values in micromolar for uncompetitive NMDA receptor antagonists

All values were measured in 0 Mg2+, unless otherwise indicated. Values for memantine and (*)-ketamine are from Kotermanski and Johnson (2009) with membrane
potential held at —66 mV. All remaining values are from Dravid et al. (2007) with membrane potential held at —40 mV.

Uncompetitive Antagonist GluN2A GluN2B GluN2C GluN2D
M

(+)-MK-801 0.015 0.009 0.024 0.038
(—)-MK-801 0.35 0.32 0.038 0.17
(—)-Ketamine 16 1.6 1.1 15
(*)-Norketamine 51 8.7 5.6 7.5
Dextromethorphan 11 3.7 1.1 5.4
Levomethorphan 13 2.2 1.1 2.6
Dextrorphan 1.3 0.33 0.15 0.74
Levorphanol 1.8 1.2 0.58 2.1
Phencyclidine 0.82 0.16 0.16 0.22
PCA 19 3.9 1.6 1.7
CNS-1102 0.13 0.068 0.087 0.14
Amantadine 130 70 35 38
Remacemide 81 35 92 63
Pentamidine 0.72 15 10 9.1
9-aminoacridine 7.8 7.5 29 38
Memantine 0.80 0.57 0.52 0.54
Memantine-1 mM Mg?* 13 10 1.6 1.8
(+)-Ketamine 0.33 0.31 0.51 0.83
(+)-Ketamine—1 mM Mg?* 5.4 5.08 1.2 2.9

CNS-1102, aptiganel; PCA, 1-phenylcyclohexylamine.
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exit path is removed as a result of channel closure, but
rather stabilize the closed state, thereby promoting
channel closure and their own subsequent trapping
(Blanpied et al., 2005; Yuan et al., 2005). Recent work
conducted on ketamine and memantine indicate that
these antagonists may be more selective at physiological
conditions than previously reported, because 1 mM
Mg?* produced a 5- to 10-fold selectivity for GluN2C-
and GluN2D-containing receptors over GIluN2A and
GluN2B (Table 15; Kotermanski and Johnson, 2009).
These findings may be clinically and functionally signif-
icant, depending on concentrations of memantine
reached in brain. These results also emphasize the need
to study pharmacology under physiological conditions.

VI. Allosteric Regulation

Allosteric modulators for glutamate receptors have
attracted attention because of their ability to fine-tune
normal receptor function as well as for their potential
utility as therapeutic agents. Drug-like positive or neg-
ative allosteric modulators have distinct therapeutic ad-
vantages over agonists and competitive antagonists, in-
cluding higher potential for receptor subtype selectivity,
because they often target less conserved regions than
the agonist binding site (Figs. 2 and 9). Clinically, mod-
ulators are generally thought to be better tolerated be-
cause they modify existing levels and patterns of recep-
tor activation, rather than constitutively blocking (as
with antagonists) or overactivating (as with agonists) all
receptors.

A. Positive and Negative Allosteric Modulators

A growing range of compounds potentiate AMPA re-
ceptor activity through modification of the deactivation
and/or desensitization time course (Arai et al., 1994;
Staubli et al., 1994; Lauterborn et al., 2000). Binding of
AMPA receptor agonists within the cleft of the LBD
induces closure around the ligand, which has been pro-
posed to create strain within the receptor complex that
can be relieved by channel opening or relaxation of the
LBD dimer interface to a desensitized state, in which
agonist remains bound but the channel is closed (Sun et
al., 2002; Sobolevsky et al., 2009) (Fig. 3). The receptor
deactivates as the channel closes and the ligand fully
unbinds, exiting the binding cleft. Positive AMPA recep-
tor modulators bind at the LBD dimer interface, making
a number of intraprotomer atomic contacts that stabilize
the dimerized configuration and prevent transition to
the relaxed state after agonist binding, thus preventing
desensitization (Figs. 3 and 10B). Some of these com-
pounds also can slow the rate of agonist exit, thus pre-
venting deactivation.

At present, there are three structural classes of positive
AMPA receptor modulators: 1) pyrrolidinone and related
piperidine compounds [e.g., aniracetam, piracetam, oxirac-
etam, and the ampakines 2H,3H,6aH-pyrrolidino(2”,1"-3’,
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2")1,3-o0xazino(6’,5'-5,4)benzo(e)1,4-dioxan-10-one (CX614),
ampalex (CX516), and 1-(1,4-benzodioxan-6-ylcarbonyl)
piperidine (CX546)], 2) benzothiadiazide compounds
[e.g., cyclothiazide, diazoxide, (S)-2,3-dihydro-(3,4)cyclo-
pentano-1,2,4-benzothiadiazine-1,1-dioxide (S18986), and
7-chloro-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine-
S,S-dioxide (IDRA-21)], and 3) biarylpropylsulfonamide
compounds [e.g.,, PEPA, N-[2-(4'-cyanobiphenyl-4-yl)pro-
pyllpropane-2-sulfonamide (LY404187), N-(2-(4-(thiophen-
3-yl)phenyl)propyl)propane-2-sulfonamide (1.Y392098), (R)-
2-(4-(3,5-difluorobenzoylamino)phenyl)-1-(2-propanesulfon-
amido)-propane (1LY450108), LY451395, and L.Y503430] (Ito
et al., 1990; Copani et al.,, 1992; Arai et al., 1996, 2000;
Baumbarger et al., 2001a,b). Although positive AMPA recep-
tor modulators fall into three structural classes, the most
important difference between them is their mechanisms of
action.

Aniracetam primarily slows the deactivation rate
without changing agonist potency. In contrast, PEPA
potentiates AMPA receptor function by attenuating the
extent of receptor desensitization without any effect on
deactivation (Sekiguchi et al., 2002). Cyclothiazide
seems to slow the onset of desensitization and indirectly
slow the channel closure rate by increasing agonist po-
tency (Yamada and Tang, 1993; Partin et al., 1994, 1996;
Sekiguchi et al.,, 2002; Arai and Kessler, 2007).
L.Y404187 stabilizes the open state of AMPA receptors
in the presence of agonist without altering the rate at
which channels desensitize, thereby permitting desensi-
tized AMPA receptors to make a transition to an open
state either directly or through intermediate desensi-
tized and/or closed states (Baumbarger et al., 2001b).
Some compounds (e.g., CX614) inhibit both desensitiza-
tion and deactivation; the mechanism underlying this is
not well understood (Arai et al., 2000).

Further complexity arises from differences in the po-
tencies of positive allosteric modulators for RNA splice
variants of the AMPA receptors, particularly the flip/
flop region within the LBD. Cyclothiazide almost com-
pletely eliminates desensitization of flip splice variants
but only slows the entry into desensitized state for the
flop splice variant (Johansen et al., 1995; Partin et al.,
1996; Hennegriff et al., 1997; Sekiguchi et al., 2002). The
specificity of cyclothiazide for flip splice variants arises
from its interaction with Ser754, which is a larger Asn in
flop variants and precludes tight cyclothiazide binding
(Sun et al., 2002). Aniracetam has a similar potency at
flip and flop splice forms, but the efficacy is greater for
the flop form (Johansen et al., 1995). PEPA and CX614
are selective for the flop variants (Hennegriff et al.,
1997; Sekiguchi et al., 1997, 1998). LY404187 and
LY503430 suppress receptor desensitization with a dis-
tinct time-dependence in the presence of agonist; these
compounds show the highest potency for flip variants of
GluA2 and GluA4 (Miu et al., 2001; Murray et al., 2003).

The functional effects of the different positive alloste-
ric modulators are complex because multiple partially
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Fic. 10. Allosteric regulation of glutamate receptors. A, the structure of the dimer formed between LBDs of the L483Y mutated GluA2 (PDB code
1LB8) is shown from the top (left) and perpendicular (right) to the 2-fold axis. Mutation of residue 483 (blue) located on D1 from Leu to Tyr attenuates
desensitization and stabilizes the dimer interface by interactions with Leu748 and Lys752 on the opposing protomer. B, the LBD dimer interface
contains two binding sites for the positive AMPA receptor modulator cyclothiazide (blue) that inhibits receptor desensitization (PDB code 1LBC).
Cyclothiazide stabilizes the dimer interface by forming additional intersubunit interactions in the dimer interface. C, structure of the GluN2B ATD
with bound Zn?* (PDB code 3JPY). The cleft formed by the upper R1 and the lower R2 lobes can be divided into three pockets: the hydrophobic pocket
(gray carbon atoms), the ion binding site with Na* and Cl1~, and the hydrophilic pocket with the Zn* binding site. The hydrophobic pocket is thought

to bind ifenprodil and its analogs.

overlapping binding sites exist (Partin et al., 1996;
Yamada and Turetsky, 1996; Lindén et al., 2001; Arai et
al., 2002; Sun et al., 2002). The binding sites of com-
pounds that affect desensitization reside within the
dimer interface between the ligand binding domains,
which supports the interpretation that desensitization
involves rearrangement of the dimer interface. Crystal-

lographic studies indicate that cyclothiazide, which
mainly modulates desensitization, has two binding sites
within the dimer interface, whereas CX614 and anirac-
etam, which control desensitization and deactivation
time course, bind at a different site at the hinge of the
dimer interface in two alternate orientations (Sun et al.,
2002; Jin et al., 2005) (Fig. 10, A and B). Aniracetam and


http://www.pdb.org/pdb/explore/explore.do?structureId=1LB8
http://www.pdb.org/pdb/explore/explore.do?structureId=1LBC
http://www.pdb.org/pdb/explore/explore.do?structureId=3JPY
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CX614 bind to the center of the dimer interface and do
not penetrate the ligand binding domain clamshell. The
binding sites for aniracetam/CX614 and cyclothiazide do
overlap, with the endocyclic sulfonamide group from
cyclothiazide overlapping with the site recognizing the
five-member rings of CX614/aniracetam. Aniracetam
and CX614 stabilize the closed-cleft conformation of the
ligand binding domain, slowing the deactivation time
course. Cyclothiazide, which does not significantly sta-
bilize the closed-cleft conformation of the LBD, instead
stabilizes the dimer assembly, leading to an attenuation
of desensitization. These data indicate that the molecu-
lar and structural determinants of deactivation and de-
sensitization are separable (Sun et al., 2002; Jin et al.,
2005). The challenge is now to understand how these
mechanistically distinct compounds differentially affect
brain circuitry to produce effects on behavior that are
therapeutically meaningful (Lynch, 2006).

Con A, a plant lectin from Canavalia ensiformis, irre-
versibly potentiates agonist-evoked currents from most
kainate receptors by apparently reducing receptor de-
sensitization and increasing agonist affinity (Huettner,
1990; Partin et al., 1993; Wong et al., 1994; Bleakman et
al., 2002). Lectins seem to bind to N-linked glycosylation
within the ATD (Everts et al., 1997, 1999). The action of
con A is state-dependent, because agonist-induced de-
sensitization before application of con A eliminates po-
tentiation (Fay and Bowie, 2006). Con A has been sug-
gested to keep the activated channel in the open state
and inhibit conformational changes leading to the de-
sensitized state (Partin et al., 1993; Wong and Mayer
1993; Yue et al., 1995). Alternatively, con A may shift
the contribution of different kainate receptor open states
(Bowie et al., 2003). Although con A has proven experi-
mentally useful for characterizing kainate receptor
pharmacology, it does not alter synaptic kainate recep-
tor currents and only weakly potentiates whole-cell cur-
rents from cultured hippocampal neurons (Wilding and
Huettner, 1997). Other lectins, however, including
wheat germ agglutinin, soybean agglutinin, and succi-
nyl-concanavalin A, potentiate native kainate receptor
function (Thio et al., 1993; Yue et al., 1995).

B. Divalent Ions

Multiple divalent cations influence glutamate recep-
tor inactivation, voltage-dependent channel block, and
agonist dissociation rates, in addition to potentiating
and inhibiting receptor responses. Among divalent cat-
ions, extracellular Zn?" most potently inhibits native
(Peters et al., 1987; Westbrook and Mayer, 1987) and
recombinant NMDA receptors (Williams et al., 1996; Chen
et al., 1997; Paoletti et al., 1997; Traynelis et al., 1998). The
endogenous ion zinc is packaged into synaptic vesicles in
axons terminating in the hippocampus, striatum, amyg-
dala, neocortex, and cortex (Pérez-Clausell and Danscher,
1985; Frederickson, 1989; Valente et al., 2002; Danscher
and Stoltenberg, 2005; Paoletti et al., 2009) and may be
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coreleased with glutamate from the vesicles into the syn-
aptic cleft during neuronal activity. The expression of
GluN2A- and GluN2B-containing NMDA receptors may
allow zinc to act as an endogenous modulator of the NMDA
receptor, depending on its synaptic concentration. Zn?"
inhibition curves for GluN1/GluN2A receptors are bipha-
sic, revealing high-affinity voltage-independent inhibition
(IC5, 10—-30 nM) and low-affinity voltage-dependent chan-
nel block (IC5, 20-100 pM). In the absence of voltage-
dependent channel block, Zn?" inhibition is incomplete
even at saturating concentrations. The high-affinity Zn?"*
binding site resides within the cleft of the GIluN2A bilobed
ATD and most likely involves Zn?* coordination by a series
of histidine residues (Choi and Lipton, 1999; Fayyazuddin
et al., 2000; Low et al., 2000). Removal of the GluN2A ATD
by mutagenesis or alteration of this domain after cleavage
by the endogenous serine protease plasmin at Lys317 elim-
inates or reduces voltage-independent high-affinity Zn?"
inhibition, respectively (Gielen et al., 2009; Yuan et al.,
2009a,b). Low-affinity voltage-dependent Zn?" inhibition
involves residues inside the reentrant M2 pore loop similar
to the Mg?" blocking site (Legendre and Westbrook, 1990;
Paoletti et al., 2000).

Micromolar concentrations of Zn?* inhibit GluN2B-
containing receptors in both a voltage-independent and
voltage-dependent manner (Williams, 1996; Traynelis et
al., 1998; Choi and Lipton, 1999; Rachline et al., 2005).
Crystallographic coordinates of the GluN2B ATD show
that a Zn®" binding site exists within the cleft of the
clamshell of the ATD (Fig. 9C) (Karakas et al., 2009),
and mutagenesis suggests that this site can account for
voltage-independent inhibition. As hypothesized for
high-affinity binding of Zn%* to the GluN2A ATD (Pa-
oletti et al., 2000), crystallographic studies of GluN2B
show Zn?" binding stabilizes a closed-cleft conformation
within the ATD through direct contact with residues
His127 and Glu284. Mutation of these residues does not
influence inhibition by the GluN2B-selective antagonist
ifenprodil, suggesting that Zn?" and ifenprodil bind at
unique sites within the GIluN2B ATD. Residues Glu47
and Asp265, although not directly involved in Zn?" bind-
ing, influence Zn?" sensitivity, perhaps through coordi-
nation of water molecules that can interact with Zn?*
(Karakas et al., 2009). It is noteworthy that mutations at
GluN2B His127, one of the residues in contact with
Zn?*, also block potentiation of GluN2B receptors by
Ni2* (Marchetti and Gavazzo, 2005; Gavazzo et al.,
2009).

Studies with covalent modification of mutant GluN2A
receptors that harbor a cysteine residue within the ATD
cleft raise the idea that the extent of ATD closure around
the Zn?" binding cleft negatively correlates with open
probability, perhaps through actions at the LBD dimer
interface (Gielen et al., 2009). Specifically, high-affinity
Zn?" inhibition of NMDA receptors has been proposed to
involve domain closure within the bilobed ATD around
Zn?", and this has been suggested to destabilize the
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dimer interface of the LBD (Mayer, 2006; Gielen et al.,
2008) analogous to desensitization of AMPA and kainate
receptors (Armstrong et al., 2006; Weston et al., 2006b;
Plested and Mayer, 2007) (see sections II.D and VIL.E).
In support of this idea, mutations that destabilize the
LBD dimer interface enhance Zn?" sensitivity, whereas
cysteine cross-linking of the dimer interface of mutant
GluN1 and GluN2A receptors reduce Zn?" inhibition
(Gielen et al., 2008). In addition to effects at the dimer
interface, Zn?" shifts the proton inhibition curve left-
ward, suggesting that Zn?" binding to the ATD in-
creases proton sensitivity (discussed below in section
VI.D) and consequently increases the proportion of pro-
tonated, nonfunctional receptors at physiological pH
(Choi and Lipton, 1999; Low et al., 2000). Fitting both
macroscopic and single-channel data with kinetic mod-
els containing explicit Zn®>" and proton binding steps
suggests that association of Zn%* with its GluN2A bind-
ing site enhances proton binding (Erreger and Traynelis,
2005, 2008). Mutations at the same LBD dimer interface
residues that alter Zn®" inhibition also strongly influ-
ence proton inhibition (Gielen et al., 2008), supporting a
functional link between these two forms of modulation
and confirming the hypothesis that Zn®" binding en-
hances proton inhibition. The potential link between
proton inhibition and NMDA receptor LBD dimer inter-
face stability fits well with previous observations that
protons modify GluA receptor desensitization (Ihle and
Patneau, 2000; Lei et al., 2001), a process unequivocally
shown to involve rearrangement at the LBD dimer in-
terface (see sections II.D and VIL.E). Chen et al. (1997)
first described a rapid component of desensitization in
the presence of extracellular Zn?* and postulated that
Zn?" accelerated receptor desensitization. Subsequent
studies, drawing from the mechanism of glycine-depen-
dent desensitization (see section VII.E), showed that a
positive intrasubunit interaction occurs between gluta-
mate binding to the LBD and Zn?" binding to the ATD
(Zheng et al., 2001). The working hypothesis, supported
by multiple lines of evidence, suggests that binding of
glutamate enhances Zn?* binding, which at subsaturat-
ing concentrations of Zn%" causes a relaxation to a new
equilibrium as Zn?"* binds to the receptor in a concen-
tration-dependent fashion (Zheng et al., 2001; Erreger
and Traynelis, 2005). Thus, the Zn?"-dependent desen-
sitization time course reflects the time course for Zn%*
association with GluN2A receptors after a shift of the
Zn?" binding site into a high-affinity state.

Calcium, barium, magnesium, and zinc ions can in-
hibit or potentiate current responses of recombinant and
native AMPA receptors (Rassendren et al., 1990; Bres-
ink et al., 1996; Dreixler and Leonard, 1997; Shen and
Yang, 1999; Zhang et al., 2002; Blakemore and Tromb-
ley, 2004; Kreitzer et al., 2009) and kainate receptors
(Hoo et al., 1994; Fukushima et al., 2003; Mott et al.,
2008). Zn?" and Ca®" can permeate through AMPA/
kainate receptors (Sensi et al., 1999; Weiss and Sensi,
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2000) (see section VIII.B). Of these various actions, kai-
nate receptors are most sensitive to inhibition by Zn?*,
which exerts voltage-independent inhibition, suggesting
it acts as a noncompetitive antagonist (Fukushima et al.,
2003). Zinc inhibition of kainate receptors is subunit-
dependent, because GluK4- and GluK5-containing re-
ceptors have lower 1C;, values (1-2 uM) than GluK1-3
receptors (~70 pwM). Inhibition by Zn2?" is also depen-
dent upon pH, because increasing the proton concentra-
tion decreases Zn?" potency by 2- to 9-fold for recombi-
nant receptors and 15-fold for synaptic receptors (Mott
et al., 2008). One possible mechanism for proton-depen-
dent zinc inhibition of kainate receptors is that receptor
protonation diminishes the ability of Zn?* to bind the
receptor, but this has not been tested.

Although the GluD2 glutamate receptor has no
known agonists or modulators, the spontaneously ac-
tive Lurcher mutant GluD2 receptor is positively mod-
ulated by Ca®* (Wollmuth et al., 2000). The current
amplitude of Lurcher GluD2 more than doubles in the
presence of Ca®" in a voltage-independent manner un-
affected by editing of the QRN site within the pore
(Wollmuth et al., 2000). Potentiation by Ca®" reflects
stabilization of the LBD dimer interface, which de-
creases desensitization of the active receptor (Hansen et
al., 2009). Ca%?* decreases the potency of D-serine, a
ligand that inhibits Lurcher GluD2 currents, and crystal-
lographic data of the GluD2 LBD show that Ca®* binds at
the interface and is coordinated by residues Glu531,
Aspb535, and Asp782 (Naur et al., 2007; Hansen et al.,
2009). Taken together, these results suggest that Ca?*
binding stabilizes the LBD dimer interface, thereby reduc-
ing the ability of D-serine to cause dimer interface break-
down and desensitization (Hansen et al., 2009).

C. Monovalent Ions

External monovalent ions, such as Na™ and Cl~, reg-
ulate the gating of kainate receptors, but not AMPA or
NMDA receptors, through an allosteric mechanism in-
volving both anions and cations (Bowie, 2002; Wong et
al., 2007). Increased concentrations of external Na™ and
Cl™ potentiate the amplitude and prolong deactivation
of kainate receptor responses. Structural studies indi-
cate that two Na ™ ions flank a single C1~ ion and bind in
a charged pocket of the LBD dimer interface between
two subunits, leading to a 50-fold increase in dimer
affinity and a decrease in the rate of receptor desensiti-
zation (Plested and Mayer, 2007; Chaudhry et al., 2009).
Other monovalent cations, including Li*, K*, Rb", and
Cs™, are capable of binding to kainate receptors, but these
ions bind at lower affinity and are less efficacious than
Na* (Plested et al., 2008). Mutation of a Met770 in the D1
region of the GluK2 LBD dimer interface, although not
directly involved in cation binding, can perturb the site
(Paternain et al., 2003; Plested and Mayer, 2009).

Neuronal NMDA receptor function is potentiated up
to 2-fold by increases in intracellular Na™ to 40 mM,
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with Na* sensitivity set by the nonreceptor tyrosine
kinase src (Yu and Salter, 1998, 1999). The enhance-
ment of action by intracellular Na* interacts with Ca?"-
dependent inactivation (Xin et al., 2005). Increases in
intracellular Na* concentration peak during high fre-
quency firing coincident with sr¢ activation (Yu and
Salter, 1999), suggesting that this effect could be rele-
vant to synaptic plasticity and cell death caused by
overactivation of NMDA receptors (Yu, 2006).

D. Protons

Protons inhibit all glutamate receptors without
changing ionization of the agonist (Christensen and
Hida, 1990; Giffard et al., 1990; Tang et al., 1990;
Traynelis and Cull-Candy, 1990; Vyklicky et al., 1990;
Ihle and Patneau, 2000; Lei et al., 2001; Mott et al.,
2003). Among NMDA receptors, proton 1C;, for inhibi-
tion varies with the GIuN2 subunit, with 1C;, values
near physiological pH for GIuN2A, GIluN2B, and
GluN2D (7.0-7.4), leading to the idea that these recep-
tors are under tonic inhibition (Traynelis et al., 1995;
Gielen et al., 2009). Proton inhibition depends on alter-
native RNA splicing of the GluN1 subunit within the
ATD (Traynelis et al., 1995), a region that controls pro-
ton sensitivity on its own (Gielen et al., 2009) and
through association with Zn?" (see section VI.B) or ifen-
prodil (Mott et al., 1998) (see section V.E). Proton inhi-
bition is independent of voltage and ligand binding
(Banke et al., 2005). At the single channel level, protons
reduce open probability of GluN2B subunit-containing
NMDA receptors, with modest effects on open duration
and single channel conductance (Traynelis and Cull-
Candy, 1991; Banke et al., 2005). Protons inhibit GluN1/
GIluN2A receptors somewhat differently than GluN1/
GluN2B, reducing mean channel open time and open
probability (Dravid et al., 2007; Erreger and Traynelis,
2008). Mutagenesis data show a cluster of residues that
mediate pH sensitivity located near the gate and the
LBD dimer interface (Low et al., 2003; Gielen et al.,
2008; Sobolevsky et al., 2009), and it seems likely that
the NMDA receptor gating elements are tightly coupled
to the proton sensor. Evidence supporting tight coupling
between protons and gating includes the ability of chan-
nel blockers to sense the protonation state of the recep-
tor while entering the pore (see section V.F), and the
observation that the proton sensor is a common down-
stream substrate for modulators binding to the ATD.

Extracellular protons inhibit AMPA receptors in a
voltage-independent manner by enhancing receptor de-
sensitization and lowering channel open probability
(Christensen and Hida, 1990; Ihle and Patneau, 2000;
Lei et al., 2001). Proton inhibition varies with receptor
subunit and flip/flop isoform, because GluA4 flop recep-
tors are most sensitive to proton inhibition (Thle and
Patneau, 2000). Extracellular protons also inhibit re-
combinant and native kainate receptors in a voltage-
independent manner without altering the desensitiza-
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tion time course (Mott et al., 2003). The IC5, values for
GluK1 and GluK2 correspond to pH 6.9, indicating that
receptors may be partially inhibited by protons at phys-
iological pH. Like AMPA receptors, inhibition of kainate
receptors by protons is subunit-dependent, because het-
eromeric receptors containing GluK5 are less sensitive
to inhibition by protons, and GluK2/GluK4 heteromeric
receptors are potentiated by protons (Mott et al., 2003).
Mutant Lurcher GluD2 receptors are incompletely in-
hibited by protons in a voltage-independent manner but
with an IC;, corresponding to pH ~7.5 (Williams et al.,
2003). Thus, pH sensitivity is a shared feature across
the entire glutamate receptor family and could be im-
portant during processes that alter extracellular pH
such as normal synaptic activity, glutamate release, glu-
tamate uptake (Siesjo, 1985; Chesler and Kaila, 1992),
and neuropathological conditions including stroke and
seizure (Balestrino and Somjen, 1988; Giffard et al.,
1990; Nedergaard et al., 1991; Kaku et al., 1993; Hirano
et al., 2003).

E. Polyamines

Voltage-dependent block of glutamate receptors by
polyamines and their analogs is described in section
VIII.C. In addition, extracellular polyamines such as
spermine and spermidine enhance NMDA receptor
responses in a voltage-independent manner by both gly-
cine-dependent and -independent mechanisms. Glycine-
dependent potentiation occurs in GluN2A- and GluN2B-
containing NMDA receptors through enhancement of
glycine binding (Ransom and Deschenes, 1990; Ransom,
1991; Williams et al., 1994; Zheng et al., 1994; Dingle-
dine et al., 1999) as a result of an allosteric interaction
between polyamine binding to the ATD and glycine bind-
ing to the LBD (Masuko et al., 1999a; Han et al., 2008).
Glycine-independent polyamine potentiation of NMDA
receptor function occurs in saturating glycine concentra-
tions only for GluN2B-containing NMDA receptors (for
review, see Johnson 1996; Williams, 1997; Dingledine et
al., 1999). Polyamine binding shifts the pK, of the proton
sensor to reduce tonic inhibition at physiological pH in
NMDA receptors that lack the highly charged GluN1
exonb (Durand et al., 1993; Traynelis et al., 1995; Wil-
liams et al., 1995; Kashiwagi et al., 1996, 1997; Kum-
amoto, 1996; Masuko et al., 1999a).

Similar to its action on NMDA receptors, the endoge-
nous polyamine spermine potentiates edited GluK2(R)
receptor current response, apparently by relieving pro-
ton inhibition (Mott et al., 2003). Spermine potentiation
is voltage-independent and affects neither the time
course of desensitization nor agonist EC5, (Mott et al.,
2003). However, unedited GluK2(Q) is inhibited by
spermine and spermidine in a manner similar to AMPA
receptors (see section VIII.C). Polyamines accelerate the
deactivation of GluK2(Q), possibly through increased
closing rate and stabilization of closed states (Bowie and
Mayer, 1995; Bowie et al., 1998). Studies on the effects of
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polyamines on the Lurcher GluD2 receptors indicate
that they undergo voltage-dependent channel block by
endogenous and synthetic polyamines (Wollmuth et al.,
2000; Williams et al., 2003).

F. Neurosteroids

NMDA receptors can be positively or negatively mod-
ulated by endogenous sulfated neurosteroids, the sulfate
or negatively charged group at the C3 carbon being
essential for activity (Wu et al., 1991; Park-Chung et al.,
1997; Weaver et al., 2000). Unsaturated sulfated neuro-
steroids act as potentiators of NMDA receptors, whereas
planar, saturated neurosteroids act as inhibitors (Weaver
et al., 2000). Neurosteroid potentiation is subunit-depen-
dent, because pregnenolone sulfate significantly potenti-
ates GluN2A- and GluN2B-containing NMDA receptors
but has much lower efficacy at GluN2C- and GluN2D-
containing NMDA receptors (Malayev et al., 2002; Jang et
al., 2004; Horak et al., 2006). This subunit-selectivity was
used to identify the molecular determinants of potentiation
for pregnenolone sulfate, which reside on the D2 domain of
the GluN2 LBD (Jang et al., 2004; Horak et al., 2006; Stoll
et al., 2007). Pregnenolone sulfate causes potentiation by
increasing channel open probability, but no consensus has
developed regarding the underlying mechanism (Bowlby,
1993; Ceccon et al., 2001; Malayev et al., 2002). Other
saturated sulfated steroids, including pregnanolone sul-
fate, are use-dependent yet voltage-independent NMDA
receptor inhibitors (Park-Chung et al., 1997; Petrovic et
al., 2005). Pregnanolone sulfate reduces open probability,
reduces channel open time, and increases receptor desen-
sitization (Park-Chung et al., 1997; Petrovic et al., 2005;
Kussius et al., 2009). Inhibition by pregnanolone sulfate is
weakly subunit-dependent, being 2-fold more potent at
GluN2C- and GluN2D-containing NMDA receptors than
GluN2A- and GluN2B-containing receptors (Petrovic et al.,
2005).

Although less work has been conducted on neuroste-
roid activity at AMPA and kainate receptors compared
with NMDA receptors, studies have shown that sulfated
steroids, such as pregnenolone sulfate, pregnanolone
sulfate, and pregnenolone hemisuccinate inhibit GluA1l
and GluA3 AMPA receptors and GluK2 kainate recep-
tors (Yaghoubi et al., 1998; Shirakawa et al., 2005; Sed-
lacek et al., 2008). Sulfated steroid inhibition is voltage-
independent and noncompetitive, reducing agonist
efficacy but not potency. Steroids may bind AMPA re-
ceptors at the LBD (Spivak et al., 2004).

G. Fatty Acids

NMDA receptors are positively modulated through a
direct interaction with polyunsaturated fatty acids, in-
cluding arachidonic acid, oleic acid, and docosahexae-
noic acid (Miller et al., 1992; Nishikawa et al., 1994).
Potentiation by arachidonic acid occurs through an in-
crease in open probability with no change in channel
conductance (Nishikawa et al., 1994; Tabuchi et al.,
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1997; Casado and Ascher, 1998). The fatty acid binding
site is not known. It is noteworthy that lysophospholip-
ids reversibly inhibited the NMDA receptor in a voltage-
independent manner (Casado and Ascher, 1998).

Although saturated fatty acids, such as myristic,
palmitic, and stearic acids have no effect on kainate
receptors, unsaturated fatty acids inhibit AMPA and
kainate receptors in a voltage-independent and use-in-
dependent manner (Kovalchuk et al., 1994; Wilding et
al., 1998). Inhibition of kainate receptors by fatty acids
depends on the residue at the QRN site within the re-
entrant M2 loop (Wilding et al., 2008). GluK2(R) ho-
momers and GluK1(R)/GluK2(R) heteromers are inhib-
ited by docosahexaenoic acid, arachidonic acid, and
linolenic acid (Wilding et al., 1998, 2005). However,
GluK1(Q), GluK2(Q), and GluK1(Q)/GluK2(Q) hetero-
mers containing at least one unedited subunit with Q at
the QRN site are less sensitive to unsaturated fatty
acids (Wilding et al., 2005).

H. Other Allosteric Modulators

In addition to the modulators discussed above, NMDA
receptor function also is sensitive to osmotic pressure,
with open probability reduced by compression and in-
creased by stretch (Paoletti and Ascher, 1994; Casado
and Ascher, 1998). Pb%" is a voltage-independent antag-
onist of NMDA receptors that has been proposed to
share a partially overlapping binding site with ZnZ"
(Guilarte and Miceli, 1992; Biisselberg et al., 1994; Gui-
larte and McGlothan, 2003; Marchetti and Gavazzo,
2005; Gavazzo et al., 2008). The neuropeptide N-acety-
laspartylglutamate is an inhibitor of NMDA receptor
function, although some studies suggest that it may also
act as a potentiator (Westbrook et al., 1986; Coyle, 1997;
Greene, 2001; Bergeron et al., 2005, 2007; Fricker et al.,
2009). Another peptide, the pituitary adenylate cyclase-
activating polypeptide, increases NMDA receptor open-
ing frequency (Wu and Dun, 1997; Liu and Madsen,
1998; Yaka et al., 2003; Yang et al., 2009). In addition,
ATP may have actions on NMDA receptors (Kloda et al.,
2004). It is noteworthy that aminoglycoside antibiotics
(Masuko et al., 1999b) and histamine (Bekkers, 1993;
Vorobjev et al., 1993; Williams, 1994; Burban et al.,
2010) have been suggested to selectively potentiate the
function of GluN2B-containing NMDA receptors. By
contrast, some H3-histamine receptor competitive an-
tagonists also bind to the GluN2B ATD to inhibit recep-
tor function, perhaps at a site overlapping the histamine
binding site (Hansen et al., 2010).

VII. Molecular Determinants of Gating

A. Time Course of Glutamate Receptor Activation
and Deactivation

One of the most prominent features of glutamate re-
ceptors is their diversity in gating kinetics, which de-
fines the time course of synaptic currents (Lester et al.,
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1990) and their role in synaptic physiology and plasticity.
The response time course varies among receptor subtypes,
specific subunits within each subtype, alternative RNA
splicing, posttranslational modifications, and accessory
subunits. Recombinant AMPA receptor subtypes show fast
activation and deactivation rates in addition to both rapid
and strong desensitization (Table 16; Fig. 11), which re-
strict signaling to the millisecond time scale (Mosbacher
et al., 1994; Edmonds et al., 1995; Erreger et al., 2004).
In contrast, NMDA receptors show much slower gating
kinetics, activating in milliseconds, deactivating be-
tween tens and thousands of milliseconds, with rela-
tively weak or no desensitization (Monyer et al., 1992;
Vicini et al., 1998; Wyllie et al., 1998) (Table 16; Fig. 11).
One idea advanced to explain the slow deactivation time
course of the NMDA receptor was derived from struc-
tural data showing that GluN1 Tyr535 occupies a posi-
tion in the GluN1/GluN2A LBD heterodimer analogous
to that of the AMPA receptor potentiator aniracetam in
GluA2 LBD homodimer (see section VI.A). Because
Tyr535 is complexed at the protomer interface in a man-
ner analogous to that of aniracetam, it may similarly
modulate deactivation of NMDA receptors, assuming
the two receptors share similar mechanisms underlying
deactivation (Furukawa et al., 2005). The time course of
deactivation of virtually all GluN1/GluN2 receptors can
be described by multiple exponential components, which
for GluN2A may reflect complex channel behavior (e.g.,
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Erreger et al., 2005b; Zhang et al., 2008b). Heterolo-
gously expressed recombinant kainate receptors, like
AMPA receptors, can show relatively fast gating kinetics
and strong desensitization (Table 16). At synapses, the
time course of a single evoked excitatory postsynaptic
current mediated by AMPA receptors is faster than that
mediated by NMDA receptors (Fig. 12). Native kainate
receptors mediate a slower synaptic current than AMPA
receptors (Castillo et al., 1997; Kidd and Isaac, 1999,
2001) (Fig. 12A).

B. Mechanisms Linking Agonist Binding to
Channel Gating

Many studies using varied approaches have addressed
how ligand binding can lead to opening of the glutamate
receptor pore. Glutamate receptors have, as core struc-
tural/functional elements, an LBD and an ion channel
(see section II). Our current understanding of how ago-
nist binding leads to channel opening has so far largely
been driven by structural (e.g., crystallography or NMR)
and functional (e.g., UV and IR spectrometric measure-
ments) studies of the water-soluble LBD (S1S2 con-
struct) combined with functional studies of the intact
receptor. Structures of the LBD are available for repre-
sentatives of all major GluR subtypes, including the
unbound or apo state, the agonist-bound state, and
with various competitive antagonists (Madden, 2002;
Gouaux, 2004; Mayer, 2006; Oswald et al., 2007). The

TABLE 16
Kinetic parameters describing glutamate activation of AMPA, kainate and NMDA receptors
EC;,! r-Deactivation? 7-Desensitization Recovery®* SS/Peak Ratio
uM ms ms ms
GluA1-flip 500-700>¢ 0.7-1.27° 2.5-4.1710 111-14757 0.002-0.0327-11:12
GluA1l-flop 4503 0.86-1.37-914 3.2—4.27710-14 147-155714 0.023-0.0807-41%
GluA2-flipQ*® 13907 0.62-1.1%17 5.9-9.99:10:17 11.7Y7 0.068"7
GluA2-flopQ*® 1140-1380"%17 0.54-0.9%17 1.2-1.99:10:17 31.317 0.011'7
GluA3-flip 1000-197015-18:19 0.56'° 3.0-5.18:10:15:20 15-70*%2* 0.024-0.05415-21
GluA3-flop 1100-1780'%18:19 0.63-1.05'41% 1.1-2.88°10:14.15.20 55-14214.15.22 0.01%
GluA4-flip 1810218 0.6% 3.6-5.1810 6-21%2% 0.006-0.04%*
GluA4-flop 44,3225 0.6% 0.9810 31-43%! 0.0032*
GluA1-flip/GluA2-flip 5.1%¢ 28-67%¢ 0.009%¢
GluA3-flip/GluA2-flip 4.9%6 15-262¢ 0.015-0.022%¢
GluKla Q¢ 63027 4.1-8.9,69%7:28 50,510029-30 0.01%°
GluK2 Q'¢ 427-10403-34 1.6-2.529:32:33 3.4-5.331736 1900-302031-33:35:37 0.008-0.0431:35:36
GluK3a®® 590039 8.4-9%° 0.04%°
GluK1 Q/GluK5%° 19*1 2.1-15%2
GluK2 Q/GluK5 15-313441 0.5, 46%* 4.734 2400-2700%*
GluK3a/GluK4 7.6%° 0.03%
GluK3a/GluK5 5.3%° 0.018%°
GluN1/GluN2A 1.8-7.743:44 22-230%°47 386-750, 2000%°47 618% 0.28-424849
GluN1/GluN2B 0.9—413:44.50 71-95, 538—6174%:5° 100, 495°° 1014-21005-° 0.027-0.5318:50-51
GluN1/GluN2C 1.024:52:58 260-382%5-47 59-719%* 1.0%7
GluN1/GluN2D 0.424:53:55 1700-440845-5¢ N.A. N.A. 1.0%6

N.A., not applicable; i.e., GluN1/GluN2C and GluN1/GluN2D receptors show no or minimal desensitization in the continued presence of agonist.

!Determined from the peak response to rapid glutamate application. 2Measurements are from outside out-patches; two time constants can be detected for many receptors.
3See Lomeli et al. (1994) for RNA editing control of 7 recovery. “The rate of recovery from desensitization is more complex; see Bowie (2002), Robert and Howe (2003). *Wahl
et al. (1998). *Robert and Howe (2003). “Partin et al. (1995, 1996). Mosbacher et al. (1994). *Krampfl et al. (2001). 1°Quirk et al. (2004). 1'Banke et al. (2000). 1?Robert et
al. (2001). *3Pei et al. (2009). **Banke et al. (2001). 1*Sekiguchi et al. (2002). °Edited receptors or mutant receptors had a glutamine at the Q/R/N site. 1"Koike et al. (2000).
18yalues predicted from simulations using rate constants. 19Pei et al. (2007). 2°Grosskreutz et al. (2003). 2'Lomeli et al. (1994). 22Schlesinger et al (2005). 23Gallo et al. (1992).
24Determined in X. laevis oocytes. 2°Determined for activation by kainate. 2Mosbacher et al. (1994). 2"Sommer et al. (1992). 2*Swanson et al. (1997a). 2Swanson and
Heinemann (1998). 3°Onset and recovery from desensitization is variable from cell to cell. *'Traynelis and Wahl (1997). 32Weston et al. (2006a). **Kistler and Fleck (2007).
34Barberis et al. (2008). **Heckmann et al. (1996). 3¢Zhang et al. (2008c). *"Bowie (2002). **Splice variants 7a and 7b have similar rates. >*Schiffer et al. (1997). “°Determined
by rapid application of glutamate; kainate-evoked currents desensitized with a dual exponential time course, with the fastest time constant being 15 ms (Herb et al., 1992).
41Alt et al. (2004). *>Swanson et al. (2002). **Varney et al. (1996). **Chen et al. (2001). **Vicini et al. (1998). **Monyer et al. (1992). *"Villarroel et al. (1998). **Wyllie et al.
(1996). “*Krupp et al. (1998). *°Banke and Traynelis (2003). >1SS/Peak current ratio is typically higher in whole-cell recordings. ?Ishii et al. (1993). °3Yuan et al. (2009a).

54Dravid et al. (2008). *°Tkeda et al. (1992). **Wyllie et al. (1998).
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Fic. 11. Desensitization of recombinant AMPA, kainate, and NMDA receptors expressed in the absence of accessory proteins, which can alter
response time course (section IT). AMPA and kainate receptors activated by L-glutamate undergo pronounced and rapid desensitization that occurs
within milliseconds after activation and results in steady-state currents less than 5% of the peak response. A and B, voltage-clamp recordings are
shown from outside-out patches excised from human embryonic kidney 293 cells expressing recombinant rat GluAl AMPA receptors (A) or
recombinant rat GluK2 kainate receptors (B). Receptors are activated by saturating glutamate (10 mM) for 75 ms. C, voltage-clamp recordings from
excised outside-out patches for GluN1/GluN2A-C and a whole-cell voltage-clamp recording of GluN1/GluN2D are given in which the receptors are
activated for 1 s by saturating L-glutamate and glycine. The degree and time course of desensitization is subunit-dependent. GluN2A-containing
receptors desensitize rapidly, GluN2B-containg receptors show slower desensitization, and GluN2C- and GluN2D-containing receptors undergo little
to no desensitization. All traces are shown with the peak amplitude normalized to 1. Bottom, steady-state single-channel recordings of GluA1, GluK2,
GluN1/GluN2A and GluN1/GluN2D are shown beneath appropriate panels, and illustrate qualitative differences in unitary currents exhibited by
AMPA, kainate, and NMDA receptors. Unpublished data for GluK2, GluN2A, GluN2C, and GluN2D, from S. M. Dravid, K. M. Vance, and S. F.
Traynelis. Data for GluAl single-channel recordings were from Banke et al. (2000), GluK2 single channel recordings were from Zhang et al. (2009¢),

and GluN2B macroscopic current recordings were from Banke et al. (2005).

principles of agonist binding and channel gating seem to
be common across all glutamate receptor subtypes and
involve at least three sequential steps: 1) initial agonist
association or binding, 2) a conformational change—so-
called clam shell closure—that prevents agonist dissoci-
ation (Armstrong et al., 1998; Abele et al., 2000; Arm-
strong and Gouaux, 2000; Cheng et al., 2005), and 3) a
conformational change in the ion channel that is tightly
coupled to that in the LBD (Jin et al., 2003; Zhang et al.,
2008a). The slower activation kinetics of NMDA receptors
allows additional kinetically distinct conformational
changes to be observed that have yet to be clearly linked to
structural elements (see section VII.D).

Crystallographic studies unequivocally indicate that
the agonist binding site is in the cleft of a clamshell-like
structure (Armstrong et al., 1998; Armstrong and
Gouaux, 2000; Sobolevsky et al., 2009). The D1 portion
of the LBD clamshell (Figs. 1 and 3) forms an interface
between the LBD of adjacent dimerized subunits, and
the second lobe (D2) moves as +y-carboxylate atomic in-
teractions are satisfied to “close the clamshell” and pre-
vent glutamate dissociation during subsequent gating
steps (Fig. 13). Considerable evidence (with a few excep-
tions) supports the idea that movement of D2, the lobe
proximal to the ion channel with connections to M1 and

M3, enhances the probability of channel opening. This
combination of agonist binding and clamshell closure
provides the energy to drive channel opening in NMDA,
AMPA, and kainate receptors.

Evidence supporting the idea that binding proceeds
via a two-step process comes in part from time-resolved
monitoring of agonist binding to LBD in solution using
UV and IR spectrometric measurements with ultrafast
application of agonists (Abele et al., 2000; Cheng et al.,
2005). These results show that the ligand initially
makes contact with residues on D1, inducing a relatively
slower second step during which D2 undergoes a tran-
sition to form further ligand-protein and D1-D2 interac-
tions. This leads to closure of the clamshell and locking
of the ligand into the agonist-bound conformation (Arm-
strong and Gouaux, 2000). Similar dock-and-lock mech-
anisms are well described for the LBD of the homologous
G-protein coupled mGluRs (Lampinen et al., 1998; Salo-
pek-Sondi et al., 2003).

Dimerization of the LBD of adjacent subunits is a key
structural/functional feature that underlies coupling of
cleft closure to conformational changes in the ion chan-
nel (Sun et al., 2002). Within the receptor, the four LBDs
are arranged as 2-fold symmetric pairs, each pair com-
posed of a back-to-back dimer interface that includes
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Fic. 12. Contribution of glutamate receptor subtypes to synaptic ac-
tivity. A, a recording of spontaneous mEPSCs in the presence of 100 uM
(R)-2-amino-5-phosphonopentanoate (D-APV), 100 uM bicuculline, and 1
M tetrodotoxin from a CA3 pyramidal cell shows the contribution of
AMPA and kainate receptors to synaptic activity. Fast mEPSCs mediated
by synaptic AMPA receptors and slower mEPSCs mediated by synaptic
kainate receptors were both present before application of 100 uM ben-
zenamine (GYKI-52466), but only the slower kainate receptor-mediated
mEPSC persisted in the presence of GYKI-52466. CNQX blocks both fast
AMPA-mediated and slow kainate receptor-mediated mEPSCs. B, AMPA
and NMDA receptor-mediated EPSCs at the pyramidal to multipolar
interneuron synapse in the visual cortex. The contributions of AMPA and
NMDA receptors to synaptic time course are contrasted using evoked
responses from a synaptically connected pair of neurons (pyramidal-to-
interneuron). In the presence of the AMPA receptor antagonist CNQX
and the absence of Mg?*, the NMDA receptor activity is isolated, high-
lighting the slow rise time and deactivation time course. There is no
significant kainate receptor component at this synapse. Data in A is from
Mott et al., 2008; unpublished data in B is from L. P. Wollmuth.

both hydrophobic and nonhydrophobic surface regions
on the D1 domain (Armstrong and Gouaux, 2000; Sun et
al., 2002; Sobolevsky et al., 2009) (see Fig. 3). The inter-
subunit D1-D1 contacts formed across the dimer inter-
face constrain D1 movement (Horning and Mayer, 2004;
Furukawa et al., 2005; Mayer, 2005; Naur et al., 2007;
Sobolevsky et al., 2009). In contrast, the D2 domains
appear relatively free to move, which is of particular
interest because this part of the LBD contains the an-
chor points that, in full-length receptors, extend to the
ion channel-containing transmembrane segments (Fig.
1). Superposition of apo and agonist-bound structures
reveals a striking difference in the relative position of
residues that in the intact receptor would be connected
to the transmembrane segments. These structures sug-

453

gest that the distance between the linkers on the bottom
of D2 in the LBD dimer is increased after agonist bind-
ing, consistent with a structural model for AMPA recep-
tor activation in which cleft closure involves movement
of D2, whereas D1 and the dimer interface remain rel-
atively fixed. The D2 transition leads to displacement of
the linker regions, which would reposition transmem-
brane segments (such as M3) in the intact subunit and
drive channel opening (Erreger et al., 2004; Mayer,
2006; Hansen et al., 2007) (discussed further in section
VIL.D).

Crystal structures, although valuable, are inherently
static in nature and do not provide details of permitted
motions that underlie the protein transitions under
physiological conditions—a problem highlighted by find-
ings that some functionally distinct partial agonists in-
duce a similar degree of cleft closure in GluA2 (e.g.,
Holm et al., 2005) and by functional and crystallo-
graphic studies of GluN1 and GluN3 (Inanobe et al.,
2005; Yao et al., 2008) (see section V.D). Computer-aided
molecular dynamics (MD) simulations that are based on
the growing number of LBD structures can be a useful
tool to estimate protein fluctuations at physiological
temperatures, provided the appropriate caveats are rec-
ognized (see section V.A). Such studies have provided
hints about permissible intraprotein motions within the
LBD during the cleft closure transition as well as inter-
actions at the domain interface (Arinaminpathy et al.,
2002; Kaye et al., 2006; Lau and Roux, 2007; Dravid et
al., 2010). MD simulations can provide estimates of the
stability of the ligand-protein interactions in the binding
pocket, adding further detail to our understanding of
ligand selectivity and efficacy (Mendieta et al., 2001,
2005; Erreger et al., 2005b; Kaye et al., 2006; Penti-
kéinen et al., 2006; Erreger et al., 2007). Additional
experimental techniques that can test predictions ob-
tained from MD simulations or crystal structures in-
clude NMR, ultraviolet or infrared spectroscopy, and
fluorescence resonance energy transfer (McFeeters
and Oswald, 2002, 2004; Cheng et al., 2005; Du et al.,
2005; Madden et al., 2005; Valentine and Palmer,
2005).

C. Molecular Determinants and Mechanisms of
Partial Agonism

Structural data have stimulated new work addressing
the mechanism by which different ligands can occupy
the same binding site yet have different relative effica-
cies. Partial agonists exist for all glutamate receptor
subtypes (see sections V.A and V.B) and show different
effects on the LBDs. A series of AMPA receptor partial
agonists, the 5-substituted willardiines (Table 5), vary
by a single atom and induce a differential degree of cleft
closure that correlates with their relative efficacy (Par-
tin et al., 1994; Jin et al., 2003). Single-channel studies
show that willardiines with different relative efficacies
activate different proportions of the same set of conduc-
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Fic. 13. A, the structure of GluA2 with two subunits (A and C) transparent. Red dashed line indicates interface between LBD and TMD. B,
expanded view of the LBD-TMD regions of subunits B and D. The structure of the water-soluble GluA2 LBD (S1S2) crystallized in complex with
glutamate has been superimposed, using the D1 domain, on the corresponding region of GluA2cryst and is shown in green. Helical regions of the ion
channel as well as parts of LBD that are proposed to move upon activation are shown as cylinders. Purple and green spheres indicate positions of the
a-carbons for the residues Lys393 and Pro632. Stick models of ZK200775 and glutamate are shown in purple and green, respectively. Red arrows
indicate proposed movement during receptor activation. C, the transmembrane domain architecture is shown for subunit A parallel to the channel pore
as a ribbon structure (left). The transmembrane domains for all four subunits are shown viewed from the intracellular side down the axis of the pore
(center), and as a surface representation for subunits B, C, and D with subunit A membrane-associated helices shown as green cylinders (right).
[Adapted from Sobolevsky AI, Rosconi MP, and Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor.
Nature 462:745-756. Copyright © 2009 Nature Publishing Group. Used with permission.]

tance levels. Building on previous studies (Rosenmund
et al., 1998; Smith and Howe, 2000), AMPA receptors
have been proposed to ratchet open their channel as a
function of the agonist-induced conformational changes
within each subunit, with the probability that each sub-
unit can partially open the gate increasing with the
degree of agonist-induced cleft closure (Jin and Gouaux,
2003; Jin et al., 2003). This finding provides a structural
mechanism underlying partial agonism at AMPA recep-
tors in which the relative effectiveness or efficiency with
which each agonist can activate a single subunit ac-
counts for observed changes in single channel conduc-
tances (Jin et al., 2003). This mechanism has recently
been extended to show that AMPA receptor subunit
gating displays cooperativity, a property most notable
at low agonist concentrations (Prieto and Wollmuth,
2010). Comparison of the structures of the GluK2
kainate receptor subunit in complex with full agonists
(glutamate, SYM2081, quisqualate) and a partial ag-

onist (kainate) reveals that the latter induces a lesser
degree of cleft closure, consistent with the idea that
the degree of cleft closure can influence agonist effi-
cacy for GluK2 (Mayer, 2005).

The first structures available for the LBD of GluN1
complexed with ligands exhibited cleft closure that par-
alleled agonist- or antagonist-bound GluA2 structures
(Furukawa and Gouaux, 2003; Furukawa et al., 2005;
Inanobe et al., 2005). However, in contrast to GluA2, no
substantial difference in the degree of cleft closure exists
between the full agonist glycine, the partial agonist D-
cycloserine, and a series of structurally related partial
agonists. Thus, the isolated LBD of the GluN1 subunit
shows no relationship between the degree of agonist-
induced cleft closure and agonist efficacy. This finding
suggests that important differences exist between
AMPA and NMDA receptor subunits with respect to how
intraprotein conformational changes are transmitted
from the LBD to the channel gate.
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D. Molecular Determinants and Mechanisms of Gating

The three transmembrane helical segments (M1, M3,
M4) are directly coupled to the LBD in all glutamate
receptor subunits (Fig. 1). Not surprisingly, point muta-
tions in all of these transmembrane helices, in the link-
ers that couple them to the LBD, and in the pore lining
reentrant M2 loop can affect gating (Schneggenburger
and Ascher, 1997; Zuo et al., 1997; Krupp et al., 1998;
Villarroel et al., 1998; Ren et al., 2003). Hence, multiple
structural elements contribute to the free energy of any
state-dependent conformation. Understanding how mul-
tiple structural determinants of closed and open confor-
mations relate to atomic structure presents a daunting
challenge.

The M3 segment is a key determinant of gating in
glutamate receptors. The initial evidence for this came
from the Lurcher M3 mutant GluD2(A654T), which pro-
duced constitutively active channels (Zuo et al., 1997).
This led to a number of mutagenesis studies that de-
scribed striking effects of M3 mutations on glutamate
receptor function (Kohda et al., 2000; Jones et al., 2002;
Yuan et al., 2005). This region in M3 contains the most
highly conserved motif (SYTANLAAF) among the mam-
malian glutamate receptor subunits (Kuner et al., 2003).
Several activity-dependent changes in the accessibility
and reactivity of substituted cysteines have been iden-
tified in this region (Sobolevsky et al., 2002a; Chang and
Kuo, 2008). The M3 segment in glutamate receptors is
homologous to the major gating domain (the inner helix)
in K* channels (Doyle et al., 1998; Jiang et al., 2002;
Yellen, 2002; Swartz, 2004).

An essential determinant of function in all channels is
the activation gate—the structure that occludes the flux
of ions in the closed state. Numerous mechanisms can be
envisioned to account for an activation gate, including
local potential changes, electrostatic repulsion, and
steric hindrance (Hille, 2001). In certain K* channel
subtypes, the activation gate arises from tight steric
closure (del Camino and Yellen, 2001) at the bundle
helical crossing of the inner helix located at the end of
the internal cavity (Swartz, 2004). In other K* channels
and the related cyclic nucleotide-gated channels, the
activation gate is formed at the P-loop (Flynn and
Zagotta, 2001; Bruening-Wright et al., 2002). The AMPA
receptor structure, obtained in the antagonist-bound
(closed) state, showed that positions (underlined resi-
dues) in the highly conserved gating motif as well as
those located C-terminal to it in tetramer subunits A/C
(SYTANLAAFLTVERM) and tetramer subunits B/D
(SYTANLAAFLTVERM) are located near each other
(Fig. 14). Given this finding, the high overall structural
similarity to inverted K* channels, and existing func-
tional data, Sobolevsky et al., (2009) persuasively argue
that this region represents the activation gate in the
glutamate receptor family.
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The idea that the activation gate was located at the
external entrance to the pore was originally based on
experiments, as in K* channels, describing the state-
dependent block by organic blockers and Mg?* (Qian
and Johnson, 2002). Most experiments have been car-
ried out in NMDA receptors (but see Tikhonova et al.,
2008) because of the diversity of channel blockers both in
terms of size and Kkinetic properties. Uncompetitive
NMDA receptor antagonists such as memantine and
amantadine act as “trapping” blockers (see section V.F)
(Blanpied et al., 1997). That is, the channel gate can
close and agonist can unbind with the blocking molecule
bound within the pore. The most likely explanation for
this result is that the blocker is trapped in a cavity
located internal to the activation gate but external to the
apex of the reentrant M2 loop, an idea supported by the
full-length GluA2 structure (Sobolevsky et al., 2009).
Additional support for this model is provided by sequen-
tial blockers such as 9-aminoacridine (Benveniste and
Mayer, 1995), larger amantadine derivatives (Antonov and
Johnson, 1996; Antonov et al., 1998), and tetrapentylam-
monium (Sobolevsky et al., 1999). These molecules appar-
ently bind in the same cavity as trapping blockers, but
their large size interferes with the gating machinery
located more externally, thus preventing channel
closure.

Experiments evaluating accessibility of substituted
cysteines to covalent modifying reagents found that the
external entrance of the pore undergoes considerable
rearrangements, becoming more restricted with channel
closure (Beck et al., 1999; Sobolevsky et al., 2002a,
2003). Experiments by Chang and Kuo (2008) taking
advantage of substituted cysteines, charge substitu-
tions, and mutant cycle analysis with the GluN1 and
GluN2B receptor subunits demonstrated that the acti-
vation gate was located within the SYTANLAAF motif,
the underlined alanine representing the point of the
bundle helical crossing.

At present, the mechanism by which the conformation
change induced by ligand binding leads to opening of the
activation gate is unknown, in part because of the ab-
sence of a structure of the intact receptor in the presence
of glutamate. Nevertheless, given the structural similar-
ity of GluA2 to known structures of open and closed
K*-selective and nonselective cation channels (Doyle et
al., 1998; Jiang et al., 2002; Alam and Jiang, 2009) and
the available structures of the water-soluble LBDs in the
antagonist- (closed) and agonist-bound states (see above),
Sobolevsky et al. (2009) propose that the gate opens via a
rotation of the M3 helices away from the central axis of the
pore, comparable with that proposed for K* channels
(Doyle et al., 1998; Jiang et al., 2002). However, given that
glutamate receptors lack a glycine hinge within their M3
transmembrane helix, a structural element proposed to be
essential for K* channel opening (Doyle et al., 1998; Jiang
et al., 2002), there will be differences in detail of how the
conformational changes in M3 occur.



456

TRAYNELIS ET AL.

LBD

“

AMPAR NMDAR
GIuA2 subunit GluN1 & GIuN2A subunits
S2 S2
A2 A2 N1 N2A
D D N S
A A i L
S S G G
E E T T
1 T M3-S2 T v
P P Q
AIC s s B/D [ ]
v \Y v
M M F<]
R R l
E E
v v Q
8. . @9« .. .50 -.- 8. 9.
L i L M
F F F F__M3 hydrophobic
@ c ® ’ r border
2 At M3
L L
»T T ‘ ’
Y Y Y ¥
s s s-1-©
S s A A
1 i . L
I I _ Nsite- g - - - |gr
- &l - - -&QRsite I T
L L M v
i T A A
F F F F
F F G F
W W A A
W W W W
v v v Y
G G M S
G G G v
v \Y L M
i i I I M3 hydrophobic
R R R K border
G G A S
s s S v
L L F m
s s S !
R R R K
P P P P
S S A N
I I G o)
591 591 604 601

Fic. 14. A, surface representation of a closed ion conduction pathway
and the pore diameter as a function of distance along the central axis of
the channel (red < 1.4 A < green < 2.8 A < purple). The residues most
proximal to each other that form the activation gate in the closed state
are located at the top of the ion channel pore. B, AMPA receptor subunit,
GluA2 (left). Subunits A/C and B/D are indicated (see section II). Se-
quence of the M3 segment (a-helical portion highlighted in gray), the

The contribution of M1 and M4 transmembrane heli-
ces to channel function are unknown, other than data
suggesting that mutations in M1 (Krupp et al., 1998;
Villarroel et al., 1998) and M4 (Ren et al., 2003) can alter
gating. M1 and M4 could act as anchors for the LBD, and
the external location of M4 relative to the M3 gating
element could serve to reduce M3 interactions with the
bilayer (Fig. 13C). It is noteworthy that channels such as
KcsA and inward rectifiers with only two transmem-
brane elements per subunit (eight per channel) can func-
tion independently of any structural elements with sim-
ilarity to M4, as can the two transmembrane prokaryotic
glutamate receptor subunit GluR0 (Chen et al., 1999a).
Yet the M4 segment appears to be required at least for
NMDA receptor function, because truncated NMDA re-
ceptor subunits lacking M4 do not show detectable glu-
tamate-activated currents (Schorge and Colquhoun,
2003). However, function can be restored if these trun-
cated subunits were coexpressed with an independently
encoded M4 segment. It is noteworthy that the M4 seg-
ment, which is found in all eukaryotic glutamate recep-
tors subunits, is associated with the ion channel core
(M1-M3) of an adjacent subunit (Fig. 13C).

Certain noncompetitive AMPA receptor antagonists
(GYKI-53655, CP-465,022) interact with the external
ends of the M1 and M4 transmembrane helices (Balan-
nik et al., 2005). The linker region preceding the M1
transmembrane helix (the pre-M1 region; Fig. 13) makes
a short helix that is oriented parallel to the plane of the
membrane, making contacts with carboxyl and amino
terminal ends of transmembrane helices M3 and M4,
respectively. The M3 helices cross relative to each other

M3-S2 linker, and the S2 lobe (highlighted in magenta). Positions high-
lighted in yellow are conserved across all mammalian glutamate receptor
subunits, including the most highly conserved sequence SYTANLAAF.
Also indicated is the border for the M3 segment defined from hydropathy
plots (M3 hydrophobic border). Black triangles indicate positions that are
located in proximity to each other in the structure of the closed state (red
representation in A) and presumably reflect the activation gate. Positions
below the dashed line (z6 = 0) show voltage-dependent reactivity to
cysteine-reactive reagents, whereas those above do not (Sobolevsky et al.,
2003). The Lurcher (Lc) position is highlighted (Zuo et al., 1997; Kohda et
al., 2000). Mutations of positions highlighted red have been identified to
increase leak current or potentiate glutamate-activated current when
modified by cysteine-reactive reagents (Sobolevsky et al., 2003), suggest-
ing that they alter gating. The approximate location of the QRN site is
indicated, because this region is disordered in the crystal structure (see
sections IL.F and VIII.A) (Sobolevsky et al., 2009). NMDA receptors
subunits GluN1 and GluN2A (right). Arrangement is the same as in A
except that triangles refer to positions that when mutated to cysteine
formed cross-linked dimers (black triangle) or did not form dimers (white
triangle). Based on these results, the GluN1 subunits are presumed to
adopt the A/C conformation and the GluN2 subunits to adopt the B/D
conformation (Sobolevsky et al., 2009). Mutations of positions highlighted
red either alter leak currents or potentiate glutamate-activated currents
when modified by cysteine-reactive reagents (Beck et al., 1999; Jones et
al., 2002; Sobolevsky et al., 2002ab, 2007; Yuan et al., 2005), show
increases in leak current with single amino acid substitutions (Yuan et
al., 2005; Chang and Kuo, 2008), alter channel block (Kashiwagi et al.,
2002), and/or alter proton sensitivity (Low et al., 2003). The DRPEER
motif in the GluN1 subunit that affects Ca®>" permeability (Watanabe et
al., 2002) is highlighted blue, as are corresponding negative charges in
the GluN2A subunit that do not affect Ca®>" permeability. Data in A are
from Sobolevsky et al. (2009).
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at this level along the permeation path for the antago-
nist-bound closed GluA2 structure, raising the intrigu-
ing possibility that this pre-M1 helix may restrain M3
mobility in the closed state, yet with domain closure,
promote channel opening in the ligand-bound state
(Sobolevsky et al., 2009). If this structural feature were
shared by NMDA receptors, and four pre-M1 helices
were to move independently in the agonist-bound recep-
tor, one might imagine these conformational changes
could constitute rate limiting and kinetically distinct
steps that precede concerted channel opening involving
simultaneous rearrangement of all four M3 helices. Sin-
gle channel studies of agonist-bound NMDA receptors
have identified multiple kinetically distinguishable
steps that precede channel opening via a concerted pore
dilation involving all or no repositioning of M3 trans-
membrane helices (Banke and Traynelis, 2003; Popescu
and Auerbach, 2003; Auerbach and Zhou, 2005; Erreger
et al., 2005a; Schorge et al., 2005; Dravid et al., 2008).
These rate-limiting and kinetically distinct steps must
reflect rate limiting conformational changes that occur
before rapid pore dilation (Schorge et al., 2005). It is
noteworthy that the role for the pre-M1 linker proposed
by Sobolevsky et al. (2009) provides an example of a
potential structural rearrangement that could occur in a
subunit-dependent fashion (Banke and Traynelis, 2003)
and necessarily precede simultaneous rearrangement of
all four M3 helices as the pore opens. Moreover, the
mechanisms underlying multiple conductance levels for
AMPA receptors and gating to the subconductance and
main conductance states for NMDA receptors could lie
in how this pre-M1 region interacts with the each M3
helix that contributes to the gate. Perhaps M3 rear-
rangement within individual subunits is permitted for

457

AMPA receptors, giving rise to as many as four detect-
able conductance levels (Rosenmund et al., 1998; Banke
et al., 2000; Smith and Howe, 2000; Jin et al., 2003;
Prieto and Wollmuth, 2010), in contrast to GluN2A/B-
containing NMDA receptors, for which all four M3 heli-
ces might move at once, giving rise primarily to a single
conductance level (Table 17).

E. Molecular Determinants of Desensitization

All glutamate receptors undergo desensitization,
which by definition is a reduction in response in the
presence of a sustained stimulus. This process is fast in
AMPA and kainate receptors, occurring within 20 ms
and generating greater than 90% decrease in current
amplitudes at steady state (Table 16). However, the
onset of desensitization is slower and less extensive in
NMDA receptors and is virtually absent for GluN2C-
and GluN2D-containing NMDA receptors (Monyer et al.,
1994; Krupp et al., 1996; Wyllie et al., 1998; Dravid et
al., 2008). Our understanding of the structural mecha-
nisms underlying rapid desensitization, particularly for
AMPA and kainate receptors, has been dramatically
accelerated through a broad range of structural studies
on the isolated AMPA and kainate receptor LBDs in
combination with extensive functional studies on the
full-length receptor (Sun et al., 2002; Robert and Howe,
2003; Horning and Mayer, 2004; Klein and Howe, 2004;
Robert et al., 2005; Armstrong et al., 2006; Weston et al.,
2006a; Zhang et al., 2006a; Nayeem et al., 2009).

For GluA2, the initial step of desensitization is a re-
arrangement of the D1-D1 dimer interface between
LBDs of adjacent subunits (Sun et al., 2002; Horning
and Mayer, 2004). This idea was driven by LBD struc-
tures of wild type GluA2 and GluA2 containing a leucine-

TABLE 17
Single channel properties of AMPA, kainate, and NMDA receptors
Popen Open Time Conductance

ms pS
GluA1-flip 0.4-1.0*3 0.2-0.9* 8, 15,23, 31146
GluA2-flip Q7 0.61° 0.32, 1.47° 7,15, 24, 36910
GluA3-flip 0.821%:12
GluA4-flip 0.77%2 0.14, 3.3%3 9, 20, 31, 45314
GluK1 Q7 0.3, 0.6 5,9, 14%
GluK2 Q” 0.5-1.0%16 0.6, 2.3 8, 15, 25
GluK1 Q/GluK5 0.3 5,9,17%
GluK2 Q/GluK5 0.4,2.1%% 7,13, 20%°
GluN1/GluN2A 0.36-0.5017-18:19 0.06, 1.3, 3.62°22 51, 3822
GluN1/GluN2B 0.07-0.1717:19:23 0.6, 2-3.2% 51, 3922
GluN1/GluN2C 0.0** 0.6%2 36, 1922
GluN1/GluN2D 0.01-0.042%-25 0.1, 0.9, 2.6%° 35, 17%
GluN1/GluN2A/GluN2D 0.08-0.24%7 0.07, 1.25, 3.0%7 30, 40, 50*7
GluN1/GluN2B/GluN2D 0.02-0.03%%-29 2.4-2.8%8:29 18, 30, 41, 542822
GluN1/GluN3B 12, 37%°
GluN1/GluN2A/GluN3B 4.431 26, 4831
GluN1/GluN2A/GluN3A 0.1, 4.7%2 35, 7533/29, 4732

1Banke et al. (2000). 2Robert et al. (2001). *Popgy depends on PKA phosphorylation of Ser845. “Measurements in cell-attached patches were similar to those in outside-out
patches. ®Derkach et al. (1999). ®Prieto and Wollmuth (2010). “Edited receptors or mutant receptors have a Gln at the QRN site; editing to Arg decreases conductance (Howe,
1996; Swanson et al., 1996). ®Koike et al. (2000). °Jin et al. (2003). °Zhang et al. (2008a). 'Sekiguchi et al. (2002). *Predicted from simulations using rate constants;
GluA3-flop was predicted to have a Poppy value of 0.42. 13Swanson et al. (1997b). “Tomita et al. (2005a). **Swanson et al. (1996). 16Traynelis and Wahl (1997). 1"Chen et
al. (1999b). *®Popescu et al. (2004). 1°Erreger et al. (2005a). 2°Wyllie et al. (1998). 2'Popescu and Auerbach (2003). 22Stern et al. (1992, 1994). 2*Banke and Traynelis (2003).
24Dravid et al. (2008). Z°Yuan et al. (2009a). ZWyllie et al. (1996). 2’Cheffings and Colquhoun (2000). 22Jones and Gibb (2005). 2°Brickley et al. (2003). 3°Chatterton et al.

(2002). 3'Sasaki et al. (2002). *?Perez-Otano et al. (2001). >*Das et al. (1998).
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to-tyrosine substitution GluA2(1.483Y), a mutation that in
the intact receptor blocks desensitization (Stern-Bach et
al., 1998), and structures of GluA2 bound to cyclothiazide,
an inhibitor of AMPA receptor desensitization (Partin et
al., 1995; Sun et al., 2002). Ultracentrifugation studies,
which showed that both the mutation and cyclothiazide
increased dimer stability (Sun et al., 2002), suggested a
role for the dimer interface in desensitization (see sec-
tion VI.A). The mutation GluA2(1.483Y) or cyclothiazide
stabilized the dimer formation, further suggesting that
stabilization of the LBD dimer interface in full-length
functional AMPA receptors can reduce desensitization
(Sun et al., 2002). On the atomic level, Leu483 is located
in the dimer interface, and mutation to tyrosine pro-
motes formation of additional interactions with residues
located on the opposite LBD (Fig. 10A).

The rate at which cysteine residues introduced at the
GluA2 dimer interface are modified by (2-sulfonatoeth-
ylDmethane thiosulfonate (MTSES) depends on whether
the receptor is resting, active or desensitized (Armstrong
et al., 2006). The mutation GluA2(E486C) displays pro-
nounced state-dependent modification by (2-sulfonato-
ethyl)methane thiosulfonate, being more accessible in
the desensitized state than in the resting or active
states. Crystallographic data show that GluA2 Glu486
participates in interactions at the dimer interface and is
largely inaccessible to solvent when the receptor is in
the active state. However, in the desensitized state,
Glu486 becomes solvent accessible, providing direct ev-
idence that desensitization in full-length AMPA recep-
tors is accompanied by a rearrangement at the dimer
interface (Armstrong et al., 2006). The same study also
used variable length cross-linkers as molecular rulers to
restrict motion at the dimer interface and thus report on
the magnitude of the rearrangement. The structure of
an additional cross-linked mutant, GluA2(S729C), pos-
sessed a conformation with the dimer interface sepa-
rated by distances that agreed well with those estimated
from cross-linking experiments at different residues.
These data suggest that the structure of cross-linked
GluA2(S729C) reveals a conformation similar to full-
length desensitized AMPA receptors (Armstrong et al.,
2006). Furthermore, imaging studies suggest that the
separation of the dimer interface in the desensitized
state is not accompanied by significant changes in the
degree of domain closure in the isolated LBD (Du et al.,
2005). Thus, during receptor desensitization, the sepa-
ration of the dimer interface enables the linkers that
replace the transmembrane segments to move closer
together by 10 A relative to the agonist-bound nonde-
sensitized conformation, thereby preventing opening of
the ion channel (Fig. 3).

Mutations in the AMPA receptor binding pocket that
reduce steric collision between the agonist and the LBD
can increase agonist efficacy and desensitization (Mad-
den et al., 2004; Holm et al., 2005). Furthermore, there
is a direct correlation between the degree of domain
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closure with full and partial AMPA receptor agonists
and the degree of desensitization produced by those ago-
nists (Jin and Gouaux, 2003; Jin et al., 2003; Frandsen
et al., 2005). Thus, the degree of agonist-induced LBD
closure seems to be the primary determinant of tension
at the LBD dimer interface and thus governs transition
into both the open and desensitized state.

Using the LBD crystal structure of the nondesensitizing
GluA2(1.483Y) as a guide, Weston et al. (2006b) introduced
cysteine residues in kainate receptor subunits at positions
where cross-linking should stabilize the dimer interface.
This yielded nondesensitizing GluK1, GluK2, and GluK3
responses. The AMPA receptor subunit GluA2 was ren-
dered nondesensitizing when cross-linked at homologous
positions, thereby establishing that the dimer interface
rearrangement is necessary for kainate receptor desensi-
tization (Weston et al., 2006b). However, not all interac-
tions predicted on the basis of AMPA receptor studies are
necessary for kainate receptor desensitization (Fleck et al.,
2003; Nanao et al., 2005).

Desensitization of NMDA receptors has been studied
extensively (reviewed by Dingledine et al., 1999) and
involves a number of pathways, including glycine-de-
pendent desensitization (Mayer et al., 1989; Benveniste
et al., 1990; Lester et al., 1993; Nahum-Levy et al., 2001;
Regalado et al., 2001), Ca®"-dependent inactivation
(Clark et al., 1990; Legendre et al., 1993, Vyklicky, 1993;
Rosenmund and Westbrook, 1993; Medina et al., 1995;
Vissel et al., 2002), Zn?"-dependent desensitization (see
section VI), and glycine/Ca®*-independent desensitiza-
tion (Chen et al., 2004; Hu and Zheng, 2005; Sessoms-
Sikes et al., 2005). The molecular mechanisms for these
forms of desensitization are poorly understood.

VIII. Molecular Determinants of Ion Permeation
and Block

A. Nature of the Ion Permeation Pathway

The ion channel associated with all glutamate recep-
tors consists of a water-filled pore divided into external
and internal cavities separated by a narrow constriction
at which the pore reaches its smallest dimension (see
section II). The residues lining the pore, including those
positioned at the external and internal entrances, form
the permeation pathway and are the primary determi-
nants of ion selectivity and unitary conductance. With
only rare exceptions, the conduction pathway is cation-
selective. Glutamate receptors show a wide range of
single channel conductances that vary from <1 to ~30
pS for AMPA and kainate receptors and from 20 to 60 pS
for NMDA receptors (Table 17). AMPA receptors show
up to four different conductance levels, the presence of
which has been explained by their mechanism of activa-
tion (see section VII). NMDA receptors show a pair of
conductance states, the amplitude and relative fre-
quency of which depends on the GluN2 subunit present
and ionic conditions.
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The pore of the glutamate receptor family is formed by
three transmembrane helices and a reentrant loop, ar-
ranged with striking similarity to an inverted potassium
channel (Doyle et al., 1998; Sobolevsky et al., 2009); this
similarity had been predicted to exist on the basis of
sequence similarity and from shared functional proper-
ties of a bacterial glutamate receptor and potassium
channels (Wo and Oswald, 1995; Wood et al., 1995; Chen
et al., 1999a; Panchenko et al., 2001; Kuner et al., 2003).
Functional and biophysical experiments corroborate the
available structure. For example, studies examining the
channel block of NMDA receptors by organic cations and
Mg?* (Villarroel et al., 1995; Zarei and Dani, 1995;
Antonov and Johnson, 1999), and the voltage-depen-
dence of the reactivity rate for substituted cysteines
(Sobolevsky et al., 2002a, 2003) suggested that the nar-
row constriction is located approximately halfway across
the transmembrane electric field. Scanning mutagenesis
studies correctly predicted that the re-entrant M2 pore
loop lines the inner cavity with the QRN site located at
the tip of this loop (Kuner et al., 1996, 2001; Wollmuth et
al., 1996).

Immediately external to the tip of the reentrant pore
loop lies a central cavity (Fig. 14A) (Sobolevsky et al.,
2009), similar to that of potassium channels, lined pri-
marily by M3 (Beck et al., 1999; Kashiwagi et al., 2002;
Sobolevsky et al., 2003). All glutamate receptor subtypes
share a common transmembrane arrangement, but
there are differences in permeation and block properties
between subtypes. These differences imply some degree
of molecular heterogeneity within the pore, most likely
involving the narrowest constriction that sets the max-
imum rate of ion permeation either through steric or
electrostatic effects.
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A key determinant of the conductance and permeation
properties of all glutamate receptors is the identity of
the residue occupying a functionally critical position at
the apex of the M2 loop, the QRN site. This site harbors
either Gln (Q, unedited) or Arg (R, edited) in AMPA and
kainate receptors (Hume et al., 1991; Verdoorn et al.,
1991), Asn (N) in GluN1 and GluN2 receptors (Burna-
shev et al., 1992b; Mori et al., 1992), Gly (G) in GIuN3
subunits, and Gln (Q) in GluD2 subunits. Not surpris-
ingly, the key structural positioning of the QRN site
allows this residue to influence single-channel conduc-
tance (Swanson et al., 1996, 1997b; Traynelis and Wahl,
1997), Ca?" permeability (Burnashev et al., 1992a,b;
Egebjerg and Heinemann, 1993), channel block by poly-
amines (Bowie and Mayer, 1995; Kamboj et al., 1995;
Washburn et al., 1997), Mg?" sensitivity (Burnashev et
al., 1992b; Dingledine et al., 1992; Mori et al., 1992),
channel block by organic compounds (Kashiwagi et al.,
2002; Chen and Lipton, 2005), and assembly into het-
eromeric complexes (Greger et al., 2003). In addition,
homomeric edited R-forms of kainate receptor channels
are no longer purely cation-selective, but are also per-
meable to C1~ (Burnashev et al., 1996) (Table 18). Re-
placement of the QRN Asn with Gln in GIuN1 or
GluN2B yields channels with multiple conductance lev-
els (Premkumar et al., 1997; Schneggenburger and As-
cher, 1997). The functional effects of TARPs on AMPA
receptors (Korber et al., 2007) and of membrane lipids on
kainate receptors (Wilding et al., 2005) are influenced by
editing at the QRN site. It is noteworthy that Sobolevsky
et al. (2009) observed gaps between the transmembrane
helices, which they predict may be filled by residues
projecting from TARPs (see section II.H). This potential
association with the pore could provide a means by

TABLE 18
Pore properties of AMPA, kainate, and NMDA receptors

The relative permeability of Ca®>" to monovalent ions (P¢,/Px) and the fractional Ca®* current (Py) values shown are not necessarily those given in the original manuscript
but rather have been standardized to common parameters for direct comparison. The values shown are not corrected for activities. Pore dimensions are derived from the
permeability of differently sized organic cations. Only values derived from recombinant channels are shown; see Dingledine et al. (1999) for more details and examples of
native channels. P, /Px values are derived from the Lewis equation (see Jatzke et al., 2002) based on changes in reversal potentials given in articles typically measured under
bionic conditions where a reference solution (X, usually Cs™ or Na™) is replaced with a solution containing high Ca?" (typically ~100 mM). P¢,/Px (from Py) is derived from
Py measurements using the GHK equation (Burnashev et al., 1995). Fractional Ca?* currents (Py) are the percentage of the total current carried by Ca?* and are measured
using whole-cell currents and high concentrations of fura-2 to ensure that all incoming Ca" is captured by dye. P; values are concentration- and voltage-dependent with the
magnitude of these effects dependent on specific subtypes (Burnashev et al., 1995; Jatzke et al., 2002). The values shown were either recorded at —60 mV and 1.8 mM Ca**

or adjusted to these conditions assuming GHK (see Jatzke et al., 2002).

Subunit Combination Pore Diameter Pc./Px Pq./Px (from Py Py Pa/Pcs
nm %

GluA1®? 0.78° 1.6 ~0.7 3.2-3.6
GluA2 (Arg) 0.14
GluA1/GluA2 (Arg) 0.7 0.03 0.11 0.54 ~0
GluA4 3.9
GluK2 (Gln)»>< 0.75¢ 0.14-0.17 0.30-0.48 1.55-2.4 ~0
GluK2 (Arg)»>< 0.76 <0.04 <0.2 0.74
GluK?2 (GIn)/GluK2 (Arg) “<¢ 0.74 0.58 ~0
GluN1-GluN2A®?/8 0.55" 2.8-4.5 3.0-3.6 11.0-15.9
GluN1-GluN2B" 3.6 3.6 15.9
GluN1-GluN2C® 1.8 1.73 8.2
GluN1-GluN3A/ 0.6
GluD2'* 2.6"

“Burnashev et al. (1995). ®Jatzke et al. (2002). “Burnashev et al. (1996). “The kainate receptor GluK2 is edited in three different locations: two in M1 (Ile, Tyr fully
unedited and Val, Cys fully edited) and one in M2 (GIn in unedited, Arg in edited). All values shown are for receptors that are fully edited in M1. “Sharma and Stevens (1996).
’Schneggenburger (1996). #Schneggenburger (1998). "Villarroel et al. (1995). ‘Wollmuth et al. (1996). /Perez-Otano et al. (2001). *GluD2™ is a constitutively active form

(Lurcher) of the GluD2 subunit. “Wollmuth et al. (2000).
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which TARPs influence ion permeation, conductance,
and polyamine block.

NMDA receptors are obligate heteromultimers likely
composed of 2 GluN1 and 2 GluN2 subunits in a 1-2-1-2
arrangement (Sobolevsky et al., 2009). The narrow con-
striction in NMDA receptors is formed by, at minimum,
the QRN site asparagine of GluN1 and an asparagine
adjacent to the QRN site (i.e., QRN + 1 site) in GluN2
(Fig. 14A) (Wollmuth et al., 1996). It is noteworthy that
there is also a functional asymmetry between QRN Asn
residues in the various NMDA receptor subunits: sub-
stitutions at the GluN1 QRN site have strong effects on
Ca?"* permeability but only weak effects on Mg?* block,
and equivalent substitutions of the QRN site in GluN2
produce opposite effects (Burnashev et al., 1992b). This
functional and presumed structural asymmetry between
subunits most likely reflects modest differences at the
atomic scale. A highly conserved GluN2B tryptophan
residue in the M2 loop also has been proposed to con-
tribute to the narrow constriction (Williams et al., 1998),
and the homologous tryptophan in GIuN1 can influence
channel block (e.g., Jin et al., 2007).

B. Mechanisms of Ion Permeation

A major determinant of ion selectivity arises from the
physical or electrical interactions of permeating ions
with the pore wall within the narrow region of a channel
in which ions and side chains or main-chain atoms of
residues come close enough to create a permeation bar-
rier. The dimensions of the smallest diameters of vari-
ous glutamate receptor channels have been estimated
from the permeability of differently sized organic cations
(Table 18). The finding that channels containing one or
more arginine residues at the QRN site have roughly the
same dimension as channels containing the smaller glu-
tamine residues suggests that the side chain of the QRN
site does not define the dimensions of the narrow con-
striction and that its effect on permeation may be influ-
enced by electrostatics (Kuner et al., 2001).

All mammalian glutamate receptor subunits are cat-
ion-selective and lack the highly conserved TVGYG se-
quence that defines selectivity in K* channels. The pro-
karyotic GluRO does have the TVGYG sequence and is
K" -selective (Chen et al., 1999a), but introduction of this
sequence into mammalian glutamate receptor subunits
does not confer K" selectivity (Hoffmann et al., 2006a),
probably because of different interactions of this region
within the mammalian glutamate receptor compared
with K* channels. Indeed, in the membrane-spanning
GluA2 structure, the extended region in the M2 loop is
disordered, and this may reflect the absence of TVGYG
and stabilizing interactions that underlie K" selectivity
in K* channels. Moreover, under certain nonphysiologi-
cal conditions, edited (R) forms of homomeric GluA2 and
GluK2 subunits are permeable to C1™ ions (Table 18).
The central location of the QRN site and the fact that
these homomeric receptor channels show mixed cation/
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anion permeability suggests other structural elements
such as M2 loop dipole, carbonyl side chains in M2,
and/or elements in the outer cavity may contribute to
cation selectivity. Indeed, in K* channels, the pore loop
dipole alters the environment in the inner cavity (corre-
sponding to the outer cavity in glutamate receptors) to
allow a high flux while maintaining ion selectivity (Morais-
Cabral et al., 2001). It is noteworthy that the GluA2 struc-
ture reveals various charged residues positioned near the
apex of the M3 segment that could influence conductance.
Consistent with this idea, mutations of homologous posi-
tions in GluN1 M3 reduce single channel conductance and
Ca®" permeability (Watanabe et al., 2002).

Selectivity, unitary conductance, and channel block
can all be influenced by the number of ions that reside in
the pore at any one time. Potassium channels can ac-
commodate multiple permeating ions, and this is a key
component of their high selectivity and transport rates
(Doyle et al., 1998; Morais-Cabral et al., 2001; Zhou et
al., 2001). Studies of NMDA receptors suggest that the
pore contains only a single permeating ion (Zarei and
Dani, 1994; Schneggenburger, 1996; Iino et al., 1997),
which may reflect the nonselective nature of the pore. In
K* channels as well as in other highly selective chan-
nels, the interaction between the narrow constriction
and permeating ions is tight and this reduces their free
energy in this region. Allowing multiple permeating ions
creates ion-ion interactions that are critical to facilitat-
ing high conductance rates (Morais-Cabral et al., 2001).
In contrast, in the larger glutamate receptor channel,
the interaction between the pore walls and permeating
ions may be weaker (i.e., fewer waters of hydration are
removed), which could prevent occupancy by multiple
ions. The pore of NMDA receptors can energetically ac-
commodate a blocking particle such as Mg?* and addi-
tional permeant ions (Antonov et al., 1998; Antonov and
Johnson, 1999), and these additional permeant ion-bind-
ing sites may make a significant contribution to ion
selectivity and conductance in addition to effects on
channel block.

Glutamate receptors show limited selectivity for al-
kali metal cations, which for GluN1/GluN2A is Cs* >
Rb* ~K" >Na" >Li", for GluAlis K" = Rb" > Cs* >
Na* ~ Li", and for GluK2(Q) is K™ =~ Cs* ~ Rb" >
Na®' ~ Li* (Tsuzuki et al., 1994; Jatzke et al., 2002). In
terms of Eisenman sequences (Hille, 2001), NMDA re-
ceptors display type I weak-field-strength sites, whereas
non-NMDA receptors display type IV sites. In terms of
selectivity at a synapse (K" versus Na™), the differences
are minimal (Pg/Py, =~ 1.14 for NMDA receptors and
Py/Py, =~ 1.25 for AMPA and kainate receptors). Thus,
the current carried through most glutamate receptor
channels is a mixture of monovalent cations (K* and
Na™®) plus Ca%?* (MacDermott et al., 1986; Mayer and
Westbrook, 1987). Receptors containing the edited form
of GluA2, GluK1, or GluK2 (Hume et al., 1991; Burna-
shev et al., 1992a), however, are impermeable to Ca%™*
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(Table 18). The flux of Ca®?* through NMDA and Ca?"-
permeable AMPA receptor channels is a key factor con-
tributing to various forms of synaptic plasticity (Gu et
al., 1996; Bloodgood and Sabatini, 2007; Citri and
Malenka, 2008) (sections IV and IX), gene regulation
(section III), neuropathology (Choi, 1995; Kalia et al.,
2008) (section X), and fast transmitter release (see sec-
tion IX) (Chavez et al., 2006).

Three general approaches have been used to study the
magnitude and mechanism of Ca2?" permeation in glu-
tamate receptors, and include measurement of 1) rela-
tive Ca?" permeability (Pc./Pyonovalent), 2) channel
block by Ca®", and 3) fractional Ca®" currents (Py),
which are determined from whole-cell currents recorded
in the presence of high concentrations of intracellular
Fura-2 (Burnashev et al., 1995; Premkumar and Auer-
bach, 1996; Schneggenburger, 1996; Sharma and Stevens,
1996). The use of fractional Ca®"* currents is advantageous
over the other methods for channels with a mixed Ca®*
and monovalent permeability because it has fewer as-
sumptions about flux properties, directly quantifies the
Ca®" flux under physiological conditions, and allows the
fraction of the total current carried by Ca®" to be quanti-
fied over a wide voltage range (Neher, 1995).

NMDA receptors are approximately 3 to 4 times more
permeable to Ca?" than unedited Ca®*-permeable
AMPA or kainate receptors (Table 18). For NMDA re-
ceptors, there are subunit-specific differences, dictated
by the GluN2 and GluN3 subunits, with receptors con-
taining GluN2A/GluN2B showing the highest Ca®" per-
meability, GluN2C showing a somewhat reduced Ca®*
permeability, and GluN3 showing the lowest permeabil-
ity. Ca®*-permeable AMPA receptors show a slightly
greater Ca®" permeability than kainate receptors. Mu-
tant Lurcher GluD2 channels are Ca®*-permeable (Ta-
ble 18). The magnitude of Ca®* influx through at least
NMDA receptors can be regulated by phosphorylation
(Skeberdis et al., 2006) and synaptic activity (Sobczyk
and Svoboda, 2007).

It is noteworthy that NMDA receptors are highly per-
meable to Ca®" yet show the peculiar property of being
blocked by external Ca®" in a largely voltage-indepen-
dent manner (Ascher and Nowak, 1988; Premkumar and
Auerbach, 1996; Sharma and Stevens, 1996), which
manifests as a reduction in single channel conductance
(Gibb and Colquhoun, 1991; Stern et al., 1994; Premku-
mar and Auerbach, 1996). These results lead to the
suggestion of multiple Ca®" binding sites within the
pore (Premkumar and Auerbach, 1996; Sharma and
Stevens, 1996), including the QRN site as well as an
external site for Ca®*. Moreover, NMDA receptors show
an interaction between Ca®?* and monovalent ions in the
pore, concentration-dependent Pc./Pyonovalent (WOIl-
muth and Sakmann, 1998), and block by Ca®". However,
the Pc./Prionovalent Value for NMDA receptors derived
from the Goldman-Hodgkin-Katz equation, which as-
sumes no ion-ion interactions in the pore (Hille, 2001),
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describes fractional Ca®* currents over a wide voltage
and concentration range (Burnashev et al., 1995;
Schneggenburger, 1996, 1998; Jatzke et al., 2002).
These differences could be reconciled if the pore, which
is occupied by a single ion, largely existed in two states,
both of which individually follow Goldman-Hodgkin-
Katz, one with the pore occupied by Ca®" and the other
occupied by a monovalent ion. In this model, a competi-
tion for the pore occurs between Ca®" and monovalent
cations (Schneggenburger, 1998).

The process of Ca?” influx in Ca®?"-permeable AMPA
receptors might be less complex than that in NMDA
receptors, because Ca®*-permeable AMPA receptors do
not select for or against divalent cations. Pc./Pyionovalent
in Ca®"-permeable AMPA receptors is approximately
unity (not taking into account ion activities; Table 18).
Ca®*-permeable AMPA receptors are not blocked by
Ca?*, and the predicted fractional Ca?" current at —60
mV in ~150 mM monovalent ions and 1.8 mM Ca®" is
~4%, in agreement with a channel that is nonselective
for Ca®" (Pq./Prionovalent = 1; Table 18; see Jatzke et al.,
2002).

Ca?* permeability is influenced by residues occupying
the QRN site residing at the channel’s narrow constric-
tion (see section VIII.A). NMDA receptors in which the
QRN site asparagine is mutated to various other resi-
dues, including the glutamine found in AMPA receptors,
show reduced Ca®?" permeability (Burnashev et al.,
1992b) (Table 18). In addition to residues at or near the
QRN sites within the narrow constriction, other ele-
ments in the inner cavity may also influence Ca2" per-
meability, either directly or by altering the structure of
the M2 loop (Ferrer-Montiel et al., 1996). One such res-
idue is a negatively charged Glu in the M2 loop, located
five positions C-terminal to the QRN site in GluN1.
Mutation of this Glu to the positively charged Lys re-
duces Ca®" permeability (Schneggenburger, 1998). In
addition, in the GluN2A subunit, an adjacent position is
occupied by the polar glutamine, and replacing it with a
Glu (as in GluN2C subunits that have reduced Ca®*
permeability; Table 18) yields channels that show a re-
duced Ca®" permeability (Vissel et al., 2002), suggesting
that this position may underlie GluN2 subunit-specific
differences in Ca®" permeability. Nevertheless, it is un-
clear whether Ca2" directly interacts with the side chain
at this position or whether mutations at this position
alter the structure of the QRN site, because this position
is not water accessible (Kuner et al., 1996).

The high Ca®* influx in NMDA receptors has been
proposed to be due, at least in part, to an external Ca®"
binding site (Premkumar and Auerbach, 1996; Sharma
and Stevens, 1996). The most likely determinant of this
Ca®" binding site is a cluster of charged residues, the
DRPEER motif (Fig. 14), located C-terminal to the M3
segment in GluN1 but absent in all GIuN2, GluA, GluD,
and GluK subunits (Watanabe et al., 2002). This unique
motif is positioned at the external entrance to the chan-
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nel (Beck et al., 1999), and possesses a net negative
charge, predicted from the three potentially (depending
on local pK, values) negative and one positive water-
accessible residues. In mutant channels with the nega-
tive charges in DRPEER neutralized (ARPAAR), P, val-
ues are reduced by approximately half at —60 mV
(Watanabe et al., 2002), suggesting that the negatively
charged side chains represent an important determi-
nant of high fractional Ca%* currents in NMDA recep-
tors. It is noteworthy that the GluN2A subunit has a net
negative charge at positions homologous to the DRPEER
motif, but mutation of these residues has no effect on
Ca?" permeability (Watanabe et al., 2002). One poten-
tial explanation that is consistent with structural data
placing elements of the GluN1 M3-S2 linker (tetramer
A/C subunits) in the vicinity of each other (Sobolevsky et
al., 2009) is that the DRPEER motif lies closer to the
permeation pathway than homologous positions in
GluN2 (tetramer B/D subunits). It is noteworthy that
substituting an Asn at the QRN site of AMPA receptors,
which should make the narrow constriction more NMDA
receptor-like, results in only a modest increase in frac-
tional Ca®* current from 4% to 5% (Wollmuth and Sak-
mann, 1998). Part of the difference in Ca®* permeability
between AMPA and NMDA receptors may reflect the
absence of the DRPEER motif in non-NMDA receptors
(Fig. 14; Jatzke et al., 2003).

For NMDA receptors, coexpression of GluN3 subunits
(which contain a Gly at the QRN site) with GIuN1 or
GluN1/GluN2 results in channels with reduced single
channel conductance, decreased Ca®?* permeability, and
reduced Mg?" block (Perez-Otano et al., 2001; Matsuda
et al., 2003) (Table 18), suggesting that GluN3 directly
influences the structure of the permeation path. Addi-
tional evidence for this idea was provided by Wada et al.
(2006), who showed that cysteine-substitutions in the
M3 segment of GIuN3A were modified by extracellular
cysteine-reactive reagents and suggested that some res-
idues lining the pore may differ from GluN1 and GluN2
subunits. Nevertheless, molecular mechanisms regulat-
ing conductance and permeability in GluN3-containing
receptors are poorly understood.

C. Voltage-Dependent Channel Block by
Endogenous Ions

A number of endogenous ions can regulate glutamate
receptor function, including protons, Zn?", Mg®*, and
polyamines (see section VI). Of these, the multivalent
ions Zn%?*, Mg?*, and polyamines have voltage-depen-
dent block mechanisms that have important implica-
tions for neuronal function independent of the dynamic
regulation of their concentrations. We will consider the
mechanism and implications of block of the pore by
Mg?* and polyamines, both of which endow receptors
with the ability to detect previous neuronal activity, and
thus have roles in short- and long-term plasticity. Al-
though channel block by Zn?" may be important in some
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situations (Vogt et al., 2000), Zn?* channel block is
relatively low affinity, rapidly reversing, and will not be
considered further.

Mg?* block represents perhaps the most distinctive
feature of the NMDA receptor and was first described in
a now-classic series of studies from multiple laboratories
(Mayer et al., 1984; Nowak et al., 1984; Ascher et al.,
1988; Dingledine et al., 1999). Because of the strong
voltage-dependence of block, NMDA receptors act as
coincident detectors, sensing postsynaptic depolariza-
tion at the same time as or shortly after release of
glutamate or other excitatory amino acids. This block
allows NMDA receptors to mediate cellular mechanisms
of learning and memory (see section IX). The most prom-
inent biophysical feature of extracellular Mg®* block is
its strong voltage-dependence. Indeed, the major block-
ing site for Mg2™" is at or near the narrow constriction
(for review, see Dingledine et al., 1999), located approx-
imately 50% across the channel. Part of the additional
voltage-dependence is due to the presence of permeant
ion-binding sites in the external and internal cavities
(Antonov and dJohnson, 1999; Zhu and Auerbach,
2001a,b; Qian et al., 2002). Occupancy of these ion bind-
ing sites by Na™ or K* alters the association and disso-
ciation rates of Mg?* from its blocking site. The nature
of these permeant ion-binding sites differs between
GluN2 subunits (Qian and Johnson, 2006) and hence
may underlie some GluN2-specific effects on Mg®* block
(Monyer et al., 1994; Kuner and Schoepfer, 1996).

An advance in our mechanistic understanding of ex-
tracellular Mg?" block has come from studies of the rate
of Mg?" block and unblock, which provides a physiolog-
ical view of the actions of Mg2". As a first approxima-
tion, the block and unblock by extracellular Mg?" was
considered instantaneous; however, this simplifying as-
sumption would limit the role of NMDA receptors in den-
dritic integration. A variety of studies show that the rate of
unblock and reblock of the channel is not instantaneous,
showing both fast and slow components (Nowak et al.,
1984; Vargas-Caballero and Robinson, 2003, 2004; Kampa
et al., 2004; Clarke and Johnson, 2006) with rates depend-
ing on the GluN2 subunit (Clarke and Johnson, 2006). For
GluN2B, the slow component of Mg?" unblock arises from
inherent voltage dependence of NMDA receptor gating
(Clarke and Johnson, 2008).

These rates for Mg2?" unblock and reblock at the syn-
apse will alter the response time and can lengthen the
window of opportunity for back-propagating action po-
tentials and local synaptic activity to modulate current
flux (including Ca®") through NMDA receptors. It
is noteworthy that receptors containing GluN2C or
GluN2D unblock more rapidly—almost instantaneo-
usly—than those containing GluN2A or GluN2B, the
latter of which shows the slowest unblock (Clarke and
Johnson, 2006). Given the possible regulation of Mg?"
block by membrane lipids (Parnas et al., 2009), pertur-
bations in ion concentrations during activity, and GluN2
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subunit-specific differences in rates of unblock and re-
block, mechanisms regulating NMDA receptor block by
Mg?* at a synapse are likely to be diverse.

Regulation of NMDA receptor activity by extracellular
Mg?* is well known for its contribution to synaptic plas-
ticity and associative learning. Less well known is the
potential role in short-term synaptic plasticity played by
the block of Ca®"-permeable non-NMDA receptors by
internal polyamines such as spermine, spermidine, and
putrescine. Polyamine block of AMPA and kainate re-
ceptors is dependent on membrane potential, which may
reflect interaction in the pore between monovalent ions
and polyamines, rather than membrane voltage itself
(Bowie et al., 1998). Polyamines interact with the pore at
various sites in the M2 loop including the QRN site and
a negatively charged residue (Asp in AMPA receptors
and Glu in kainate receptors) located C-terminal to the
QRN site (for review, see Dingledine et al., 1999; Pan-
chenko et al., 1999). Polyamines can dissociate from
open channels to either the internal or external solution
and thus permeate the channel (Biahring et al., 1997).
Under physiological conditions, unedited AMPA and
kainate receptors have doubly rectifying current-voltage
relations reflecting block by internal polyamines at
depolarized membrane potentials and permeation of in-
ternal polyamines at even more positive membrane po-
tentials. Surprisingly, polyamine block is also state-de-
pendent. The affinity for polyamines is higher in closed
than in open channels, but the kinetics of polyamine
block are slower in closed channels (Bowie et al., 1998;
Rozov et al., 1998). As a result, synaptic Ca®*-permeable
AMPA receptors can be blocked by polyamines in resting
synapses. Synaptic activity partially relieves this poly-
amine block, and block recovers slowly, so that the re-
sponse to subsequent synaptic events can be potentiated
(Rozov and Burnashev, 1999; Shin et al., 2005). The
degree of potentiation depends on the frequency of syn-
aptic events. If the frequency is too low, block of closed
channels returns to its equilibrium level between the
first and second synaptic events, and no potentiation
occurs. Alternatively, if the frequency is sufficiently
high, block does not re-equilibrate during the brief in-
terval between synaptic events, and the response to the
second synaptic event is potentiated. Thus, state-depen-
dent polyamine block of postsynaptic AMPA receptors
could act as a high-pass filter for synaptic activity and
may be an important component of circuit function in
which information is encoded by synaptic timing (Abbott
and Regehr, 2004).

IX. Role in Synaptic Function and Plasticity

A. Synaptic a-Amino-3-hydroxy-5-methyl-4-
isoxazolepropionic Acid Receptors
Within the mammalian CNS, the vast majority of fast

excitatory synaptic transmission is mediated by hetero-
meric AMPA receptors assembled from differing combi-
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nations of the four subunits, GluAl to GluA4. Expres-
sion of all subunits is developmentally regulated, region
and cell-type specific, and activity-dependent (Ashby et
al., 2008). Within adult forebrain principal neurons, in-
cluding hippocampus and cortex, the predominant GluA
subtype comprises GluAl and GluA2 with a secondary
minor role played by GluA2/3 receptors (Lu et al., 2009).
By virtue of its edited QRN site, the presence or absence
of GluA2 is a critical determinant of GluA function and
dictates the single channel conductance and Ca?"-per-
meability of the native AMPA receptor (see section
VIIL.B). An absence of GluA2 also renders the channel
pore sensitive to extra- and intracellular polyamine
block, endowing GluA receptors with an inwardly recti-
fying current-voltage relationship and a novel postsyn-
aptic mechanism of short-term plasticity involving the
use-dependent unblock of polyamines (Isaac et al., 2007)
(see section VIII.C). In many neurons, GluA2 expression
is developmentally regulated, with low early postnatal
expression levels, which, coupled with the transient high
expression of GluA4, renders many neonatal forebrain
receptors Ca®*-permeable (Pickard et al., 2000; Zhu et
al., 2000). This Ca®*-permeability may play a role in
synapse maturation and circuit development (Aizenman
et al., 2002; Kumar et al., 2002; Eybalin et al., 2004; Ho
et al., 2007; Migues et al., 2007). In the forebrain, as
GluA2 expression increases throughout the early post-
natal period, GluA4 is down-regulated. In adult, GluA4
expression remains highly enriched primarily in cerebel-
lar tissue, where it exists as heteromeric GluA2/GluA4
in granule cells and in non-neuronal Bergmann glia as
homomeric GluA4 (Petralia and Wenthold, 1992; Martin
et al., 1993).

At a prototypical synapse, binding of glutamate to
synaptic AMPA receptors triggers a brief, rapidly rising
conductance that decays rapidly (1-2 ms; Fig. 12) as a
result of the deactivation of the agonist-receptor com-
plex. The kinetics and amplitude of the excitatory syn-
aptic response are determined by the biophysical prop-
erties of the receptor subunit combination (Table 17; Fig.
12; see section VII.A) and the density of receptor expres-
sion, convolved with the time course of glutamate re-
lease and uptake. Receptor subunit composition and the
kinetics of the synaptic response are tailored to the role
played by the synapse and cell type in the circuit in
which they are embedded. For example, many cortical
local circuit inhibitory interneurons express AMPA re-
ceptors that comprise homomeric GluAl (Isaac et al.,
2007). These receptors have rapid kinetics such that the
overall synaptic conductance time course is complete in
less than a millisecond. The subsequent excitatory
postsynaptic potential (EPSP) is large, rises and decays
rapidly, and is capable of triggering action potentials
within a narrow temporal window (Geiger et al., 1997).
Such receptor assemblies are typical in cells involved in
the timing of oscillatory activity (Lawrence and McBain,
2003; Jonas et al., 2004; Isaac et al., 2007).
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Although the subunit composition is a major determi-
nant of synaptic conductance kinetics, synapses typi-
cally are distributed across often elaborate dendritic
trees. The resulting EPSP can be subject to extensive
cable attenuation as it travels from its source (e.g.,
spines or smooth portions of narrow dendrites) to the
site of action potential initiation. Consequently, in many
neurons, synaptic potentials are often capable of trigger-
ing appreciable intrinsic voltage-dependent sodium, cal-
cium, and/or potassium conductances that can normal-
ize the impact of dendritic location or alter the temporal
voltage window initiated by the synaptic conductance
(Bloodgood and Sabatini, 2008).

Systematic mRNA and immunohistochemical profil-
ing of GluA subunit expression in individual neurons
has provided a detailed picture showing how receptor
types are linked to the functional properties of the cell.
However, such profiling is complicated by the observa-
tion that single neurons often manufacture AMPA re-
ceptors of different subunit compositions and target
them to different synaptic inputs across the somatoden-
dritic axis (T6th and McBain, 2000). How individual
neurons differentially target such receptor assemblies to
often overlapping afferent inputs remains to be deter-
mined. However, in neurons of the lateral geniculate
nucleus, Ras and Rap2 drive bidirectional trafficking of
GluA1l between the deliverable and synaptic pools at
retinogeniculate synapses (GluAl dominant) but not at
corticogeniculate synapses (GluA4 dominant), despite
the existence of intracellular pools of GluAl at both
synapses (Kielland et al., 2009). This suggests that in-
trinsic activity within the vision-dependent pathway
preferentially drives GluAl between deliverable and
synaptic pools at retinogeniculate synapses. Further-
more, in cortical principal cells, where the dominant
AMPA receptor configuration is composed of GluA1l and
GluA2, significant intracellular pools of GluA2-lacking
CaZ?*-permeable receptors exist that can reach the sur-
face under certain conditions (Ju et al., 2004; Clem and
Barth, 2006; Plant et al., 2006; Sutton et al., 2006),
suggesting that AMPA receptor expression is a dynamic
and highly regulated process.

B. Synaptic Kainate Receptors

Since the binding studies of Monaghan and Cotman
(1982), it has been clear that high-affinity kainate re-
ceptor binding sites are prevalent throughout the CNS.
Translating early binding studies into a function for all
kainate receptor subunits in synaptic transmission has
proved harder than would have been expected. In recom-
binant systems, GluK1 to GluK3 form functional homo-
meric receptors, whereas GluK4 and GluK5 do not.
These latter two subunits are believed to play a support-
ing role by modifying both the pharmacological and bio-
physical receptor properties (Contractor and Swanson,
2008). Unlike AMPA and NMDA receptors (although
exceptions exist), kainate receptors can play prominent
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roles at both pre- and postsynaptic sites. The rules of
subunit assembly and combination remain unclear, and
kainate receptors show strong developmental and re-
gional regulation (Contractor and Swanson, 2008). Dur-
ing development, synaptic transmission at thalamocor-
tical synapses is initially mediated by slow kainate
receptors but switches during the first postnatal week to
AMPA-receptor mediated transmission, representing a
novel developmental form of LTP (Kidd and Isaac, 1999).
This switch from kainate receptor to AMPA receptor
subunits as the primary mediators of synaptic transmis-
sion shortens the window for coincidence detection and
output timing in this circuit (Bannister et al., 2005; Daw
et al., 2006). A similar activity-dependent switch from
kainate to AMPA receptor-mediated transmission also
has been observed at synapses onto perirhinal cortex
Layer I/Il neurons (Park et al., 2006).

Unlike currents through recombinant kainate recep-
tors (see section VII.A), synaptic kainate receptors often
possess a slower time course (decay time constants often
>100 ms) and typically are activated only after short
bursts of presynaptic activity (Contractor and Swanson,
2008). The best studied site of kainate receptor-medi-
ated synaptic transmission is at the mossy fiber-CA3
pyramidal cell synapse. There, heterotetramers formed
by GluK2 and GluK5 are found postsynaptically, whereas
receptors formed from combinations of GluK1 to GluK3
are located presynaptically. At mossy fiber synapses,
kainate receptors act in a concerted manner to amplify
synaptic integration and frequency-dependent spike
transmission (but see Kwon and Castillo, 2008; Sa-
chidhanandam et al., 2009). Long-term depression of the
kainate receptor component of the mossy fiber EPSC
was traced to internalization of kainate receptors, me-
diated by a protein interacting with C kinase/synapto-
some-associated protein 25/PKC complex (Selak et al.,
2009). In contrast, kainate receptors are absent at asso-
ciational/commissural synapses also made onto CA3 py-
ramidal cells, indicating another example of target-spe-
cific localization of glutamate receptors (Toth and
McBain, 2000). Elsewhere in cortical circuits, GluK2 is
widely expressed at synapses on local circuit inhibitory
interneurons (Cossart et al., 1998, 2002; Frerking et al.,
1998; Mulle et al., 2000), where they have been impli-
cated in the generation of 6 and vy oscillatory activity
(Fisahn et al., 2004; Goldin et al., 2007). GluK1-con-
taining receptors have been described on inhibitory
axons presynaptic to principal cells and inhibitory
interneurons, where they function to set the inhibi-
tory tone of the hippocampal network (Cossart et al.,
1998; Semyanov and Kullmann, 2001; Fisahn et al.,
2004).

In addition to their role as ionotropic receptors, kainate
receptors also signal via G-protein-coupled second-messen-
ger cascades to downstream effectors (Rodriguez-Moreno
and Lerma, 1998). By triggering a PKC-signaling cascade,
GluK2-containing receptors modulate the slow- and
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medium-duration afterhyperpolarization conductance in
CA1 and CA3 pyramidal cells (Melyan et al., 2002; Fisahn
et al., 2005). Moreover, different subunits within the re-
ceptor complex have been proposed to independently con-
trol the ionotropic (GluK2) and metabotropic (GluK5) ac-
tions of kainate (Ruiz et al., 2005). However, knockout of
GluK4 and GluK5 eliminated kainate-mediated EPSCs at
mossy fiber-CA3 synapses but failed to eliminate the kain-
ate-mediated modulation of the slow afterhyperpolariza-
tion, demonstrating that GluK4 and GluK5 are essential
for normal ionotropic function but are not linked to the
proposed metabotropic function of native kainate receptors
(Fernandes et al., 2009).

C. Synaptic and Extrasynaptic
N-Methyl-D-aspartate Receptors

At virtually all central synapses, NMDA receptors
colocalize with AMPA receptors to form the functional
synaptic unit, such that presynaptically released gluta-
mate typically coactivates both NMDA and AMPA re-
ceptors (Petralia and Wenthold, 2008). The ratio of
AMPA receptor- to NMDA receptor-mediated synaptic
current varies across a wide range. Synaptic NMDA
receptors are thought to be heterotetramers comprising
two GluN1 subunits and two GlulN2 or GluN3 subunits
(Wenthold et al., 2003); evidence also exists for native
triheteromeric receptors composed of GluN1/GluN2A/
GluN2B, GluN1/GluN2A/GluN2C, and GluN1/GluN2B/
GIluN2D (see section II.B). Like AMPA receptor sub-
units, GluN subunit expression is under developmental
and regional control during the early postnatal life. Be-
cause GluN1 is an obligate receptor subunit for channel
function, development is targeted primarily toward
GluN2 and GluN3 expression. The best example of this
developmental expression is the switch from GluN1/
GluN2B receptors in cortex, hippocampus, and cerebel-
lum, which predominate in the first weeks of postnatal
life, to GluN1/GluN2A-containing receptors (van
Zundert et al., 2004). GluN1/GluN2B receptors are im-
portant for circuit formation and development, and this
switch to GluN1/GluN2A results in NMDA receptor-
mediated EPSCs with a more rapid decay. In hippocam-
pal principal cells, this subunit switch is triggered by
agonist binding (Barria and Malinow, 2002) and can be
driven by stimulus protocols that produce long-lasting
potentiation (Bellone and Nicoll, 2007). Likewise, sen-
sory experience drives this subunit switch at thalamo-
cortical synapses in primary sensory neocortex (Quin-
lan et al., 1999; Barth and Malenka, 2001; Lu et al.,
2001). In mossy fiber-cerebellar granule cell synapses, a
further subunit switch to GluN1/GluN2C is observed
around P40 and is accompanied by a slowing of current
kinetics and a reduction in Mg?" sensitivity (Cathala et
al., 2000). NMDA receptors containing GluN2D are most
common in early postnatal life in neurons of the dien-
cephalon, brainstem, and cerebellum; mRNA expression
levels persist in subpopulations of interneurons in, for
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example, the hippocampus (Monyer et al., 1994). The
signaling mechanism(s) underlying these regulatory
steps are unknown. GIuN3A is expressed primarily in
early postnatal life, whereas GIuN3B is found in adult
brainstem and spinal cord (Petralia and Wenthold,
2008). GluN3A expression seems to be a critical step in
synaptogenesis and spine formation, and it maintains
receptors in an immature state (Pérez-Otano et al.,
2006), perhaps with enhanced neuroprotection (Nakan-
ishi et al.,, 2009). Subsequent down-regulation of
GluN3A expression is important for synapse maturation
and the emergence of a competent state for synaptic
plasticity (Roberts et al., 2009). The potential roles for
the myriad of glutamate receptor compositions have
been discussed elsewhere (Petralia and Wenthold,
2008). Although exceptions exist, GluN2B-, GluN2D-,
and GluN3A-containing receptors generally predomi-
nate early in postnatal life, whereas GluN2A- and
GluN2C-containing receptors become more abundant in
adult brain (Watanabe et al., 1992, 1993, 1994a,b,c).

At some synapses, there may be a correlation between
the types of AMPA- and NMDA-receptors expressed.
Synapses between mossy fiber axons of the dentate gy-
rus granule cells and stratum lucidum interneurons
are composed of two AMPA receptor types. At GluA2-
lacking AMPA receptor synapses, the NMDA to AMPA
receptor ratio is low compared with that observed at
GluA2-containing AMPA receptor synapses (Lei and
McBain, 2002). At GluA2-lacking AMPA receptor syn-
apses, NMDA receptors comprise GluN2B subunits that
have a low open probability and contribute currents of
small amplitude and long duration. By contrast, syn-
apses with GluA2-containing AMPA receptors typically
use GluN2A-containing NMDA receptors (Bischofberger
and Jonas, 2002; Lei and McBain, 2002). This coregula-
tion may reflect gene expression, receptor assembly, or
trafficking (Barria and Malinow, 2002). Like AMPA re-
ceptor subunits, examples exist of cells targeting NMDA
receptors of distinct subunit composition to different
locations across their somatodendritic axis (K6éhr, 2006).
Thus, NMDA receptor subunit composition and location
are major determinants of glutamatergic postsynaptic
properties. Moreover, NMDA receptors spatially inter-
act with voltage-dependent conductances in spines or
dendrites to shape the synaptic signal (Bloodgood and
Sabatini, 2008) (see section VIII.C).

Although the synaptic composition of NMDA recep-
tors varies throughout the brain, most mature cortical
synapses contain GluN2A, whereas GluN2B-containing
receptors are often extrasynaptic. Although there is phar-
macological evidence that extrasynaptic receptors com-
posed of GIuN2B can participate in the induction of long-
term depression, data suggesting synaptically located
receptors comprising GluN2A can induce long-lasting po-
tentiation (Liu et al., 2004b; Massey et al., 2004) have been
compromised by poor selectivity of the competitive an-
tagonist NVP-AAMO77 (see section V.D). Moreover,
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GluN2A-containing subunits also have been observed
extrasynaptically (Rumbaugh and Vicini, 1999; Thomas
et al., 2006), in addition to evidence for GluN2B at adult
synapses (Petralia et al., 2005). Recent studies suggest
that astrocytic release of glutamate can influence non-
synaptic NMDA receptors, which can alter function of
postsynaptic NMDA receptors (Lee et al., 2007a; Her-
mann et al., 2009).

D. Synaptic Plasticity

1. N-Methyl-D-aspartate Receptors. The enormous
volume of work exploring mechanisms for postsynaptic
expression of NMDA-dependent LTP and LTD brought
an unexpected bonus. The combination of electrophysi-
ological, biochemical, and cell biological approaches used
to dissect potential presynaptic and postsynaptic mech-
anisms involved in LTP and LTD also advanced our
understanding of receptor assembly and trafficking, pro-
viding the basis for a careful dissection of the myriad
proteins that interact with AMPA and NMDA receptors
(see section II.G). Several excellent reviews on these
protein-protein interactions exist (Collingridge et al.,
2004; Malenka and Bear, 2004; Shepherd and Huganir,
2007; Ashby et al., 2008; Pelkey and McBain, 2008).

Within the hippocampus, a brief high-frequency train
of stimuli delivered to the Schaffer collateral input to
CA1 pyramidal cells initiates a long-lasting strengthen-
ing of synaptic transmission. Induction of this form of
LTP is unambiguously NMDA receptor-dependent at
most synapses onto principal neurons. When NMDA
receptors embedded in the postsynaptic grid are acti-
vated, the subsequent increase in intracellular Ca?" (see
section VIII.B) triggers a long-lasting change in AMPA
receptor-mediated synaptic transmission. This plasticity
has been the most widely studied form of LTP and has
been posited as a cellular correlate underlying learning
and memory (Kessels and Malinow, 2009). NMDA recep-
tors, by virtue of their voltage-dependent Mg?* block,
function as coincidence detectors whose participation
satisfies the requirement for synapse specificity, asso-
ciativity, and cooperativity. Within hippocampal CA1l
pyramidal cells, NMDA receptors are assemblies of
GluN1 in combination with GIluN2A or GluN2B, with
GluN2A-containing receptors being predominant in the
adult. Overexpression of GluN2B enhances LTP and
shifts the frequency-dependence of induction to lower
frequencies, consistent with the longer synaptic conduc-
tance time course mediated by GIluN2B (Tang et al.,
1999; Erreger et al., 2005a).

Downstream of the NMDA receptor-associated in-
crease in intracellular Ca%*, a number of effector mech-
anisms, such as CaMKII, PKC, and PKA are thought to
be involved in LTP induction. CaMKII is the principal
resident of the postsynaptic density, optimally posi-
tioned to sense the transient Ca®* elevation. PKA seems
to be a key mediator of LTP induction in young animals,
whereas CaMKII is necessary and sufficient for early-
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phase NMDA receptor-dependent LTP in older animals.
Roles for the atypical PKC isoform PKM({, the nonrecep-
tor tyrosine kinase src, and nitric-oxide synthase have
been described previously (Pelkey and McBain, 2008).

The original observation of “silent” synapses (i.e., syn-
apses that contain functional NMDA receptors but lack
functional AMPA receptors) paved the way for the sub-
sequent deluge of studies that demonstrated AMPA re-
ceptor delivery and retrieval as a mechanism underlying
long-lasting plasticity (Kerchner and Nicoll, 2008). In
the original studies (Isaac et al., 1995; Liao et al., 1995),
silent synapses were subjected to an LTP-induction pro-
tocol, which then triggered the appearance of AMPA
receptor-mediated currents with no change in NMDA
receptor-mediated events. This emergence of AMPA re-
ceptor-mediated currents suggested that the Ca®* entry
after NMDA receptor activation triggered an insertion of
nascent AMPA receptors into the postsynaptic density, a
hypothesis that has received strong experimental sup-
port (Collingridge et al., 2004; Ashby et al., 2008; Pelkey
and McBain, 2008). To summarize, this model suggests
that LTP arises from the interplay between the traffick-
ing of two distinct AMPA receptor species in hippocam-
pal principal neurons. GluA1/GluA2 heteromers are typ-
ically excluded from synaptic sites in the absence of
appropriate LTP conditioning stimuli. After LTP induc-
tion, GluA1/GluA2 receptors are rapidly incorporated
into either silent or active synapses. In the original
model, GluA2/GluA3 receptors, which were active in
constitutive cycling, then replaced GluA1/GluA2 recep-
tors at recently potentiated or unsilenced synapses.
However, emerging evidence suggests only a minor role
for GluA2/GluA3 receptors at these synapses (Lu et al.,
2009). The original evidence that GluA1l/GluA2 were
inserted was based on the observation that the vast
majority of AMPA receptors in pyramidal cells contain
GluA2. However, homomeric GluA1l receptors are pref-
erentially incorporated into synapses after LTP induc-
tion protocols or by active CaMKII (Shi et al., 2001). In
addition, principal neurons contain substantial reserve
pools of GluA2-lacking AMPA receptors, and evidence
suggests that GluA2-lacking Ca®*-permeable AMPA re-
ceptors, presumably GluA1l homomers, are inserted im-
mediately after LTP induction, only to be replaced by
GluA2-containing receptors 20 min after induction
(Plant et al., 2006; but see Adesnik and Nicoll, 2007).
The role for GluAl in LTP is strengthened by the ob-
served defects of conventional high frequency-induced
NMDA receptor-dependent LTP in adult mice lacking
the GluA1l subunit; however, a slowly developing form of
0 burst-induced LTP remains (Zamanillo et al., 1999;
Mack et al., 2001). In contrast, LTP is enhanced in
GluA2 and GluA2/GluA3 knockout mice, which may re-
flect the increased Ca®" influx through the remaining
Ca?*-permeable AMPA receptors (Jia et al., 1996; Meng
et al., 2003).
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2. a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic
Acid Receptors. Native GluA1l subunits undergo regu-
lated phosphorylation at two sites (Ser831 and Ser845)
in their C-terminal tails (see section IV.A). Ser831 is a
substrate for both CaMKII- and PKC-dependent phos-
phorylation, whereas Ser845 is a substrate for PKA
phosphorylation (Roche et al., 1996; Mammen et al.,
1997). LTP is markedly diminished in adult mice bear-
ing a GluAl knock-in phosphomutant that lacks both
serine residues (Lee et al., 2003). However, the incom-
plete block of LTP, especially at the earliest time points
after induction, argues against a role for either of these
sites in high-frequency stimulation-induced NMDA re-
ceptor-dependent LTP. Moreover, recombinant mutant
GluA1(S831A) receptors are still driven into synapses
after an LTP induction protocol or active CaMKII treat-
ment (Esteban et al., 2003). In contrast, the mutant
GluA1(S845A) cannot be driven into synapses by consti-
tutively active CaMKII. In addition, PKA phosphoryla-
tion of Ser845 is insufficient to drive GluA1l homomers
into synapses, suggesting that the Ser845 site may be
important for anchoring newly inserted receptors before
their turnover to the stable population (Lee et al., 2003).
Given that neither of these sites is a substrate for
CaMKII-mediated receptor insertion suggests that other
signaling cascades are also subject to CaMKII phosphor-
ylation, such as the Ras family of GTPases and mitogen-
activated protein kinases (Pelkey and McBain, 2008).

CaMKII- and PKA-dependent phosphorylation of re-
combinant GluAl Ser831 and Ser845 also increases
channel open probability and single-channel conduc-
tance (see section IV.A). Although evidence for a change
in open probability after LTP is lacking, evidence sup-
ports an increase in AMPA receptor conductance as a
mechanism for LTP expression (Benke et al., 1998;
Liuthi et al., 2004; Palmer et al., 2004). CaMKII can still
phosphorylate GluAl Ser831 in recombinant GluAl/
GluA2, but this does not increase the single-channel
conductance, as observed in homomeric GluAl, unless a
TARP such as stargazin is coexpressed (Oh and
Derkach, 2005; Jenkins et al., 2010). Moreover, the po-
tential insertion of GluA2-lacking receptors (which pos-
sess a higher conductance than GluA2-containing recep-
tors) into the synapse after LTP could account in part for
the conductance change (Plant et al., 2006). It is clear
that more work is needed to untangle the overlapping
roles of CaMKII and PKA phosphorylation.

A second mechanism of plasticity comes from the
emerging role of TARPs in AMPA receptor trafficking
(Tomita et al., 2005a,b). The original observation that
overexpression of y-2 could rescue AMPA receptor-
mediated transmission in the stargazer mutant mouse
suggested a role for TARPs in the biosynthetic and traf-
ficking pathway of the AMPA receptors (Chen et al.,
2000, 2003). Indeed, TARP association in the endoplas-
mic reticulum is essential for export to the Golgi appa-
ratus and ultimate surface expression. An absence of
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TARP association renders receptors unstable and ulti-
mately targets them for degradation (Tomita et al.,
2003). TARP-associated AMPA receptors are inserted
into the plasma membrane at extrasynaptic sites and
subsequently incorporated at synapses via an interac-
tion of the TARP C-terminal tail and PSD-95. This syn-
aptic incorporation requires CaMKII/PKC-dependent
serine phosphorylation of the TARP C-terminal tail, and
this active incorporation differs from the constitutive
insertion of AMPA receptors at extrasynaptic sites (Mil-
stein and Nicoll, 2009). A critical role for TARP C-ter-
minal phosphorylation in synaptic incorporation, but
not delivery to the plasma membrane, was demon-
strated using a truncated form of y-2 in which substan-
tial extrasynaptic receptors accumulated in the absence
of significant synaptic incorporation. In this model,
AMPA receptors ready for delivery to the plasma mem-
brane are held in an extrasynaptic pool before being
incorporated into synapses in an activity-dependent
manner (Chetkovich et al., 2002; Bats et al., 2007). The
relative simplicity of the TARP two-step model of AMPA
receptor incorporation into synapses is an attractive hy-
pothesis to explain many features of synaptic plasticity.

X. Therapeutic Potential

A. Glutamate Receptor Antagonists and the Prevention
of Acute Neuronal Death

Cerebrovascular accident is projected to become the
fourth most prevalent cause of disability by 2020
(Michaud et al., 2001) and remains a leading cause of
death, which continues to fuel investigation of gluta-
mate receptor ligands for therapeutic use in preventing
acute neuronal death caused by cerebral ischemia and
traumatic brain injury (TBI) (Kalia et al., 2008). The
NMDA receptor is strongly implicated in this acute neu-
rotoxicity, and NMDA receptor antagonists targeted at
the glutamate binding site, the glycine binding site, the
channel pore, and an allosteric site on the GIluN2B sub-
unit are all neuroprotective in multiple preclinical mod-
els (Green, 2002; Parsons et al., 2002; Lo et al., 2003;
Hoyte et al., 2004; Small and Tauskela, 2005; Wang and
Shuaib, 2005; Muir, 2006). These data supported the
clinical investigation for utility in preventing death and
long term disability after stroke and TBI in man. Sev-
eral large clinical trials have been undertaken (Dyker et
al., 1999; Lees et al., 2000; Albers et al., 2001; Sacco et
al., 2001; Yurkewicz et al., 2005). Unfortunately, all
clinical tests of glutamate antagonists for neuroprotec-
tion have failed.

The reasons for the failure of the NMDA antagonists
in stroke and TBI trials have been extensively discussed
(Dawson et al., 2001; Danysz and Parsons, 2002; Glad-
stone et al., 2002; Muir and Lees, 2003; Doppenberg et
al., 2004; Hoyte et al., 2004; Small and Tauskela, 2005;
Muir, 2006). In some cases, failure is attributable to
class-specific factors. For the channel blockers and the
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glutamate site antagonists, the levels of occupancy
needed for neuroprotection can also alter cardiovascular
function and disrupt cognition, leading to psychotomi-
metic effects (Small and Tauskela, 2005; Muir, 2006).
For the channel blocker aptiganel (Cerestat; CNS 1102),
these side effects limited plasma concentrations tested
in phase III trials to the minimum predicted for neuro-
protection, thereby limiting chances for efficacy (Dyker
et al., 1999; Albers et al., 2001). In contrast, the glycine
site antagonist gavestinel (GV150526) was well toler-
ated and administered to plasma concentration and du-
ration significantly above those predicted to be neuro-
protective, yet gavestinel also failed to improve outcome
in stroke (Lees et al., 2000; Sacco et al., 2001). In this
case, the relative lack of CNS side effects raised the
question of whether adequate brain exposure was
achieved. The uniform clinical failures of the NMDA
antagonists must also call into question the hypothesis
that blockade of NMDA receptors alone is sufficient to
yield improved clinical outcome. Stroke and TBI trigger
a number of potentially neurotoxic cascades in addition
to NMDA receptor-mediated toxicity (Lo et al., 2003,
2005; Rogalewski et al., 2006; Doyle et al., 2008; Green,
2008). In addition to neuron loss, white matter damage
may be particularly significant to outcome in humans
(Dewar et al., 1999). Unique NMDA receptors have been
identified on oligodendrocytes (Karadéttir et al., 2005;
Salter and Fern, 2005; Micu et al., 2006; Stys and Lip-
ton, 2007), and it is unclear whether inhibition of these
receptors is sufficient to prevent ischemia-induced white
matter loss (Baltan et al., 2008; Baltan, 2009). There is
also strong evidence indicating that NMDA receptor in-
hibition can impede recovery of function of neurons dam-
aged but not killed during ischemia (Yu et al., 2001;
Ikonomidou and Turski, 2002). Thus, the duration of
NMDA receptor inhibition in relation to the phase of
injury may be a critical variable (Ikonomidou and Tur-
ski, 2002). Another aspect of this dual role is that NMDA
receptors in different subcellular compartments may
mediate beneficial or deleterious effects (Hardingham,
2006; Papadia and Hardingham, 2007; Léveillé et al.,
2008). In particular, deleterious effects can be mediated
by extrasynaptic receptors containing GluN2B subunits
(Tu et al., 2010). However, the GluN2B-selective antag-
onist CP-101,606 was apparently insufficient to achieve
efficacy in severe TBI (Yurkewicz et al., 2005).

Many of the issues raised above are perhaps sur-
mountable with different pharmacologies, pharmaceu-
tics, and durations of treatment. However, a factor not
easily addressed is the time between onset of brain in-
jury and initiation of drug treatment. The preclinical
literature indicates that efficacy with NMDA receptor
antagonists can be realized with treatment initiated up
to ~2 h after injury (Dirnagl et al., 1999), although the
optimal timing may be shorter (Hoyte et al., 2004). How-
ever, a 2-h time window is challenging in typical critical
care units. Thus, out of necessity, treatment windows in
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previous clinical trials were extended to hours after the
onset of injury, reducing potential neuroprotective ef-
fects of NMDA receptor antagonists. Despite the ex-
tended window, patients still were enrolled before the
extent of injury was characterized, exacerbating heter-
ogeneity in sampled populations. In sum, the narrow
treatment window meant that trials had to capture
small effects from a highly variable patient sample. This
was probably a significant, if not principal, factor in the
across-the-board failure of the NMDA antagonists as
neuroprotectants. Nevertheless, NMDA receptor antag-
onists remain an attractive target for treatment of acute
brain injury, and clinical trials such as the FAST-MAG
trial have demonstrated the feasibility of initiating treat-
ment within 2 h of the onset of injury (Saver et al., 2004),
which should allow a more rigorous evaluation of the neu-
roprotective potential of NMDA receptor antagonists.

An alternative to preventing glutamate-induced neu-
rotoxicity is to target overactivation of AMPA and kai-
nate receptors. Interest in this mechanism arose from
the neuroprotective efficacy of NBQX and analogs
(Sheardown et al., 1990; Catarzi et al., 2007), as well as
protective effects of AMPA receptor antagonists on
white matter injury (McDonald et al., 1998; Follett et al.,
2000, 2004). These compounds are competitive AMPA
receptor antagonists that also inhibit NMDA and kai-
nate receptors to varying degrees (Bleakman and Lodge,
1998). The efficacy of these compounds in a variety of
preclinical models of neuronal injury is more robust
than that of the NMDA receptor antagonists (Gill, 1994),
perhaps with a longer therapeutic window (Xue et al.,
1994; Hoyte et al., 2004). These compounds also protect
against ischemia-induced white matter damage (Follett
et al., 2000). However, the poor solubility of NBQX and
another early clinical candidate [6-(1H-imidazol-1-yl)-7-
nitro-2,3(1H,4H)-quinoxalinedione] prevented success-
ful development (Akins and Atkinson, 2002). A second
generation compound, (1,2,3,4-tetrahydro-7-morpholi-
nyl-2,3-dioxo-6-(trifluoromethyl)quinoxalin-1-yl)meth-
ylphosphonate (ZK200775) (Turski et al., 1998), had im-
proved pharmaceutical properties, but development was
halted in phase II trials because of CNS depression and
a resultant transient worsening in National Institutes of
Health stroke scale score during treatment (Walters et
al., 2005). Results of phase II trials with another second
generation compound, [2,3-dioxo-7-(1H-imidazol-1-yl)-6-
nitro-1,2,3,4-tetrahydroquinoxalin-1-yl]-acetic acid mo-
nohydrate (YM872) (Takahashi et al., 2002), in ischemic
stroke are not yet available.

The CNS-depressant effects of AMPA receptor antag-
onists that led to the halting of the ZK20075 trial are not
unexpected, given that AMPA receptors mediate fast
excitatory synaptic transmission. However, it is unclear
whether the remarkable neuroprotective efficacy of the
quinoxalinediones in preclinical models actually re-
quires AMPA receptor inhibition. Two findings prompt
this question. First, a series of decahydroisoquinoline
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competitive antagonists that varied in specificity for
AMPA and kainate receptors were evaluated in a global
ischemia model and found to differ in neuroprotective
efficacy (O’Neill et al., 1998). Significantly, efficacy was
not correlated with either AMPA or kainate receptor
inhibition. Second, the quinazolinone CP-465,022, a
noncompetitive antagonist highly specific for AMPA re-
ceptors (Lazzaro et al., 2002; Balannik et al., 2005),
failed to demonstrate efficacy in ischemia models under
conditions identical to those in which NBQX was highly
efficacious (Menniti et al., 2003). These findings chal-
lenge whether AMPA receptor inhibition per se can ac-
count for the efficacy of NBQX and related molecules.
This line of inquiry may help identify new glutamate
receptor targets to prevent neuronal death, perhaps
while circumventing the CNS-depressant liability of
AMPA receptor inhibition. There are a wealth of struc-
turally diverse non-NMDA receptor antagonists that
could be explored (Gill, 1994; Bleakman and Lodge,
1998; O’Neill et al., 1998; Elger et al., 2006; Catarzi
et al., 2007).

Clinical study over the last decade has brought the
future of glutamate receptor antagonists as neuropro-
tectants to an impasse. The Stroke Therapy Academic
Industry Roundtable (STAIR) initiative continues to
lead an effort to integrate preclinical and clinical re-
search in stroke to guide development of new neuropro-
tective stroke therapies. Particularly relevant is the idea
of a multimodal neuroprotective approach (Rogalewski
et al., 2006; Fisher et al., 2007), which may include
glutamate receptor antagonists. Extension of the treat-
ment initiation time window also is a relevant concept
(Saver et al., 2009). Success in these efforts, together
with clinical strategies to administer treatment within
two hours (Saver et al., 2004), may reinvigorate the
study of glutamate receptor antagonists for acute brain
injury.

B. The Next Generation a-Amino-3-hydroxy-5-methyl-4-
isoxazolepropionic Acid and Kainate
Receptor Antagonists

There are two AMPA receptor antagonists in late
stage clinical development (Swanson, 2009). Talam-
panel (GYKI 53773, LY300164; Howes and Bell, 2007)
and perampanel (E2007) are noncompetitive antago-
nists that are highly selective for AMPA over other
glutamate receptors. Talampanel demonstrated efficacy
in phase II trials in patients with refractory partial
seizures (Chappell et al., 2002), and perampanel is un-
der study. There remains an interest in AMPA receptor
inhibition as a neuroprotective strategy, and talampanel
is currently in a phase II clinical trial for amyotrophic
lateral sclerosis (Duncan, 2009). It has also been re-
ported that parampanel had efficacy against neuro-
pathic pain (Swanson, 2009).

Although kainate receptors are widely expressed in
the brain, much less is known about their physiological
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function compared with AMPA and NMDA receptors.
This is due in large part to the slow development of
specific pharmacological tools (reviewed by Jane et al.,
2009). To date, the most advanced of these are a series of
decahydroisoquinolines that are competitive inhibitors
of GluK1, with varying degrees of selectivity for compet-
itive inhibition of AMPA receptors (Bortolotto et al.,
1999; Bleakman et al., 2002). Localization of GluK1 to
dorsal root ganglion neurons and the results of studies
in preclinical models of neuropathic pain suggested that
inhibitors of GluK1 may have therapeutic analgesic ac-
tivity. This hypothesis received preliminary support in
humans with the activity of LY293558 (tezampanel, pro-
drug NGX424) in a clinical model of dental pain (Gilron
et al., 2000). The results of preclinical studies also sug-
gest a utility in migraine, and again this hypothesis
received preliminary support in a small study with this
same compound in patients suffering acute migraine
(Sang et al., 2004). Preclinical data suggest additional
indications for GluK1 inhibitors, including in epilepsy
and neuropsychiatric conditions (Jane et al., 2009).

C. The Next Generation N-methyl-D-aspartate
Receptor Antagonists

The side effect liabilities of NMDA antagonists, al-
though potentially manageable in life-threatening situ-
ations, pose significant problems in less acute neuropsy-
chiatric conditions. However, the complex nature of
NMDA receptor modulation and block offers the oppor-
tunity for pharmacological manipulations that may
nonetheless provide an advantageous therapeutic bene-
fit-to-side effect ratio. For example, the NMDA receptor
antagonist memantine has achieved approval for treat-
ment of moderate to severe Alzheimer’s disease (Reis-
berg et al., 2003; Tariot, 2006; Winblad et al., 2007).
Memantine also benefits patients with moderate to se-
vere vascular dementia (Mobius and Stoffler, 2003) and
the dementia of Parkinson’s disease (Aarsland et al.,
2009), although it is not yet approved for such use.
Memantine primarily improves activities of daily living
and reduces caregiver burden in these severely impaired
patients (Doody et al., 2004). Significantly, memantine
is well tolerated at clinically used doses in healthy per-
sons and in patients with dementia.

The tolerability profile of memantine seems paradox-
ical, given the cognitive disruption and poor tolerability
of other NMDA receptor channel blockers such as ket-
amine, phencyclidine, and MK-801 (Schmitt, 2005;
Muir, 2006; Wolff and Winstock, 2006). However, me-
mantine differs mechanistically from potent first gener-
ation channel blockers in its lower affinity, faster disso-
ciation kinetics, the distinct mechanism by which it
becomes trapped in the channel (Parsons et al., 1999;
Danysz et al., 2000; Chen and Lipton, 2006; Koterman-
ski et al., 2009; Kotermanski and Johnson, 2009) (see
section V.F), and its potent blocking action of «a7-nico-
tinic receptors (Aracava et al., 2005). These properties
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may allow memantine to effectively re-establish activi-
ty-dependent NMDA receptor channel block disrupted
by the pathological conditions of the Alzheimer brain
(Danysz et al., 2000). It has been suggested that the
affinity, kinetics, and mechanism of memantine block at
the NMDA channel are such that the compound prefer-
entially blocks aberrantly activated NMDA receptors
that contribute to pathology but spares physiological
levels of activity essential for tolerability (Chen and
Lipton, 2006). Memantine may preferentially inhibit ex-
trasynaptic NMDA receptors involved in triggering toxic
signaling cascades (Léveillé et al., 2008). Emerging lit-
erature suggests NMDA receptor inhibition paradoxi-
cally augments the activity of glutamatergic pyramidal
neurons through inhibition of GABAergic interneurons
(Krystal et al., 2002). Whereas this “hyperglutamater-
gic” state results in cognitive and behavioral disruption
in healthy persons who are administered high-affinity
channel blockers, it possible that such an effect is ben-
eficial in boosting the activity of underactive circuitry in
mid- to late-stage Alzheimer’s disease. It remains to be
established whether memantine has longer-term effects
on the neurodegenerative process (Chen and Lipton,
2006).

Memantine demonstrates that clinical success can be
achieved with NMDA antagonists of unique pharmaco-
logical characteristics. Another class of compounds that
has gained attention as having such potential is the
GluN2B subunit-selective NMDA receptor antagonists
(Chazot, 2004; Gogas, 2006; Mony et al., 2009), for which
a rich pharmacology exists (Chenard and Menniti, 1999;
Nikam and Meltzer, 2002; McCauley, 2005; Layton et
al., 2006). By blocking only one NMDA receptor subtype,
these compounds could have therapeutic benefits but
minimize on-target side effects. GluN2B-selective antag-
onists act as negative modulators, and a small degree
(~10%) of receptor function remains even at saturating
concentrations, which may also limit undesirable ef-
fects. GluN2B-selective antagonists have efficacy in a
wide variety of preclinical models (Chizh et al., 2001;
Chazot, 2004; Gogas, 2006; Mony et al., 2009; Wu and
Zhuo, 2009). It is noteworthy that GluN2B antagonists
do not cause behavioral disruption in preclinical species,
suggesting that specifically targeting the GluN2B sub-
unit may capture the efficacy afforded by pan-NMDA
receptor inhibition and retain good tolerability. Clinical
data in support of this hypothesis has emerged from
recent studies with CP-101,606 (see section X.D). Al-
though the clinical study of CP-101,606 has ended, sev-
eral new GluN2B antagonists, including MK-0657 and
radiprodil, are under consideration for clinical develop-
ment.

D. N-Methyl-D-aspartate Antagonists

1. Neuropathic Pain. Extensive preclinical literature
indicates that NMDA receptor inhibition reduces or pre-
vents the development of neuropathic pain (Petrenko et
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al., 2003). These data suggest that hyperalgesic states
arise from NMDA receptor-dependent maladaptive plas-
ticity in neuronal pain pathways (Woolf and Thompson,
1991; Woolf and Salter, 2000). Clinical support for this
hypothesis is most clearly demonstrated for the channel
blocker ketamine in short-term treatment of pain result-
ing from surgery, cancer, peripheral nerve disease, and
spinal cord injury (Hocking and Cousins, 2003; Visser
and Schug, 2006; Bell, 2009). However, psychotomimetic
effects and a relatively short half-life relegate ketamine
to second- or third-tier treatment (Hocking and Cousins,
2003). Cardiovascular side effects also have impeded the
development of a newer high-affinity channel blocker,
N-(2-chloro-5-(methylmercapto)phenyl)-N'-methylgua-
nidine monohydrochloride (CNS 5161) (Forst et al.,
2007). In search of better tolerability, lower affinity
channel blockers have been investigated but with mixed
results. Clinical studies of dextromethorphan, which is
metabolized to the more potent antagonist dextrorphan
(Wong et al., 1988), suggest efficacy for short-term treat-
ment of postoperative pain, phantom limb pain, and
diabetic neuropathy but not postherpetic neuralgia
(Ben-Abraham and Weinbroum, 2000; Weinbroum et al.,
2000, 2001, 2002, 2003, 2004; Sang et al., 2002; Ben
Abraham et al., 2003; Siu and Drachtman, 2007). Me-
mantine has modest or no efficacy for diabetic neuropa-
thy and postherpetic neuralgia (Sang et al., 2002), pain
after surgery (Nikolajsen et al., 2000), and phantom
limb pain (Maier et al., 2003). Although positive results
have been reported for complex regional pain syndrome
(Sinis et al., 2007), more studies are needed (Rogers et
al., 2009). Taken together, these clinical data suggest
that NMDA receptor channel block may provide efficacy
for the short-term treatment of neuropathic pain and
reduce the development of hyperalgesic states, although
higher affinity channel block seems to correlate with
clinical efficacy, and treatments with channel blockers
may be limited by side effects.

Preclinical pharmacological (Taniguchi et al., 1997,
Boyce et al., 1999; Suetake-Koga et al., 2006) and ge-
netic (Wei et al., 2001; Tan et al., 2005) studies indicate
that GluN2B subunit-containing NMDA receptors may
be specifically targeted to treat neuropathic pain
(Chizh et al., 2001; Wu and Zhuo, 2009). Prompted by
these data, the analgesic efficacy of a single dose of
CP-101,606 was tested in a small number of patients
suffering from pain due to spinal cord injury and
monoradiculopathy, and a clinically meaningful reduc-
tion in reported pain was observed (Sang et al., 2003).
CP-101,606 infusion was associated with cognitive ad-
verse events, although these were insufficiently severe
to halt infusions. Further study of dose response rela-
tionships for GluN2B antagonists in a variety of neuro-
pathic pain conditions is needed to determine whether
an acceptable therapeutic index can be achieved.

There also has been long-standing interest in the use
of NMDA antagonists to modify the analgesic response
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to opiates and to block tolerance (Wiesenfeld-Hallin,
1998; Mao, 1999; Ko et al., 2008). Clinical support for
such effects was evident in a meta-analysis of 40 small
clinical trials (McCartney et al., 2004). Large scale clin-
ical study of this concept has been conducted around
Morphidex, a combination of morphine and dextro-
methorphan (Caruso and Goldblum, 2000). However,
this combination did not prove to be advantageous over
morphine in a series of late-stage clinical trials (Galer et
al., 2005). Further work is needed to realize the benefit
in this concept.

2. Major Depression. Major depression is the most
prevalent neuropsychiatric disorder and a major cause
of disability (Kessler et al., 2003). Multiple classes of
compounds are used to treat this disorder (Hansen et al.,
2005b; Gartlehner et al., 2008; Cipriani et al., 2009).
However, all treatments show poor efficacy in as many as
half of the patients (Insel, 2006; Trivedi et al., 2006), and
require multiple weeks of treatment before a substantial
benefit is realized (Anderson et al., 2000; Mitchell, 2006).
Recent clinical data suggest that short-term NMDA recep-
tor inhibition may address these shortcomings.

Skolnick and coworkers (Paul and Skolnick, 2003;
Skolnick et al., 2009) first suggested that NMDA antag-
onists may have antidepressant effects. Clinical proof-
of-concept was established by Berman et al. (2000) in a
small study using ketamine. Forty-minute infusion of
ketamine produced clear antidepressant efficacy within
2 h, and this effect was maintained for 3 days. A similar
effect was reported in treatment-resistant patients
(Zarate et al., 2006a; Mathew et al., 2009). Furthermore,
the prolonged antidepressant effect of brief ketamine
infusion was sustained with repeated dosing when the
drug was administered every 2 days over a 12-day period
(aan het Rot et al., 2010). In these studies, ketamine
infusion was accompanied by psychotomimetic effects.
However, these were confined to the infusion period, in
contrast to the antidepressant effects, which endured for
days. By contrast, memantine failed to demonstrate an-
tidepressant activity when administered at the well tol-
erated doses used to treat Alzheimer’s disease (Zarate et
al., 2006b).

More recently, the antidepressant effects of CP-101,606
were investigated in treatment-resistant patients (Pres-
korn et al., 2008). In that trial, a small number of pa-
tients received a high dose of drug, and several suffered
dissociative effects. When the dose was reduced, so were
the incidence and severity of dissociative effects. Analy-
sis of the combined dose groups indicated an antidepres-
sant effect that was maintained in some patients for as
long as 30 days. It is noteworthy that approximately half
of the patients that responded to treatment experienced
no dissociative episodes during drug infusion.

These clinical studies suggest that NMDA antagonists
may provide antidepressant efficacy that is robust and of
rapid onset in treatment-resistant patients. On the basis
of the Preskorn et al. (2008) study with CP-101,606, it
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seems that antidepressant effects can be realized in the
absence of significant psychotomimetic effects, at least
with GluN2B antagonists. These results also indicate
that episodic dosing is sufficient to provide long-lasting
efficacy, which in some ways mirrors effects of electro-
convulsive shock therapy (Fink and Taylor, 2007) and
sleep deprivation (Giedke and Schwirzler, 2002). This
raises the interesting possibility that the antidepressant
effects observed with these latter treatments may stem
from brief inhibition of NMDA receptors. Clinical trials in
depression with the glycine-site partial agonists and the
mixed GIuN2A and GluN2B antagonists are ongoing.

3. Parkinson’s Disease. The glutamatergic system
has long been considered a target for the treatment of
Parkinson’s disease (Greenamyre and O’Brien, 1991).
NMDA receptor antagonists have multiple advanta-
geous effects in animal models of Parkinson’s disease,
including on primary parkinsonian symptoms and on
dopamine agonist-induced side effects (Hallett and
Standaert, 2004). However, the clinical translation of
these findings has been mixed. The low-affinity NMDA
antagonist amantadine (Table 15) has been used as an
adjunct to L-DOPA therapy, producing a modest poten-
tiation of the antiparkinsonian effects and reducing dys-
kinesias (Crosby et al., 2003a,b). Memantine seems to
have similar effects against primary symptoms but not
for dyskinesias (Rabey et al., 1992). However, a meta-
analysis found insufficient clinical data to definitively
establish the therapeutic value of either compound
(Lang and Lees, 2002). Remacemide, another low-affin-
ity channel blocker (Table 15), demonstrated a trend
toward improvement in primary motor symptoms in pa-
tients treated with L-DOPA in a 279 patient phase II
trial (Shoulson et al., 2001). However, the results were
insufficiently robust to underwrite further development.
Recent phase II studies of GluN2B antagonists also pro-
vide mixed results. MK-0657, administered as a single
dose in the absence of a dopamine agonist, failed to
improve primary motor symptoms in Parkinson’s pa-
tients (Addy et al., 2009). Infusion of CP-101,606 alone
at two different rates (before initiating a coinfusion with
L-DOPA) provided no effect on primary motor symptoms
(Nutt et al., 2008), but was associated with a decrease in
L-DOPA-induced dyskinesias. It is noteworthy that al-
though both infusion rates had equivalent efficacy
against dyskinesias, there was a clear dose response
with regard to dissociative effects, suggesting that it
may be possible to separate efficacy from side effects.

E. a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic
Acid and Kainate Receptor Potentiation

Considerable therapeutic potential is associated with
augmentation of synaptic AMPA receptor activity
(Lynch and Gall, 2006; Lynch, 2006), and a diverse class
of compounds that modulate AMPA receptor deactiva-
tion and desensitization have been discovered (see sec-
tion VI.A). Extensive preclinical work with these com-
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pounds suggests that therapeutic benefit may be derived
from effects on synaptic network dysfunction, synaptic
plasticity, and activity-dependent production of the neu-
rotrophin BDNF (Lynch and Gall, 2006). All of these
functional effects may influence learning and memory
(Lynch, 2002; O’Neill and Dix, 2007). In addition, the
potential up-regulation of BDNF suggests utility in the
treatment of depression, Parkinson’s disease, Hunting-
ton’s disease (O’Neill and Witkin, 2007; Simmons et al.,
2009), and possibly neurodegenerative conditions (Des-
tot-Wong et al., 2009).

The compound for which there is the most clinical
data is CX516 (Danysz, 2002; Lynch, 2006), a low-affin-
ity AMPA receptor modulator that primarily slows re-
ceptor deactivation (see section VI). Initial clinical stud-
ies in aged healthy volunteers found CX516 facilitates
recognition memory performance (Ingvar et al., 1997,
Lynch et al., 1997). This compound also facilitated at-
tention and reduced memory deficits in schizophrenic
patients taking clozapine (Goff et al., 2001), although it
was without dramatic effect when used as sole treat-
ment (Marenco et al., 2002). Unfortunately, the results
of larger studies of patients with schizophrenia showed
no effect of CX516 on cognitive dysfunction (Goff et al.,
2008b). CX516 was without effect on cognitive dysfunc-
tion in patients with Fragile X syndrome (Berry-Kravis
et al., 2006). CX717 is a second generation AMPA recep-
tor potentiator with improved potency and pharmaceu-
tical properties. Nonhuman primate and human studies
suggest a beneficial effect on decreased vigilance and
cognitive function caused by sleep deprivation. The com-
pound failed to have an effect in a phase II study simu-
lating shift work (Wesensten et al., 2007). Another
AMPA potentiator of the same class, farampator,
showed acute effects on short term memory in a prelim-
inary study in aged healthy human volunteers (Wezen-
berg et al., 2007).

Another class of AMPA receptor modulators is repre-
sented by LLY451395 (Chappell et al., 2007), which slows
both desensitization and deactivation and has the poten-
tial to more robustly potentiate AMPA receptor re-
sponses. To date, LY451395 has been tested in a phase II
trial for efficacy in patients with mild to moderate Alz-
heimer’s disease but failed to improve cognitive function
assessed by ADAS-Cog (Chappell et al., 2007). S18986
(Desos et al., 1996) represents a class of compounds
with impact on AMPA receptor function intermediate be-
tween that of CX516 and LY451395. S18986, and
N-((3R,4S)-3-(4-(5-cyanothiophen-2-yl)phenyl)-tetrahydro-
2H-pyran-4-yl)propane-2-sulfonamide (PF-4778574) are
all under consideration for clinical development.

F. N-Methyl-D-aspartate Receptor Potentiation

The majority of pharmaceutical development related
to NMDA receptors has focused on antagonists. How-
ever, there is substantial therapeutic potential in aug-
mentation of NMDA receptor activity (Lisman et al.,
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2008). Indeed, overexpression of some NMDA receptor
subunits (GluN2B) can enhance learning and memory in
model systems (Tang et al., 1999, 2001; Cao et al., 2007).
As with antagonists, the complexity of these receptors
offers opportunities for pharmacological manipulation
in ways that may provide a therapeutic benefit-to-side
effect ratio. The recognition that NMDA inhibitor-in-
duced behavioral effects closely mimic the symptoms of
schizophrenia (Luby et al., 1959; Javitt and Zukin, 1991)
engendered the hypothesis that NMDA receptor dys-
function may be a causative factor in the disease (Olney
et al., 1999; Krystal et al., 2002; Tsai and Coyle, 2002;
Yamada et al., 2005; Javitt, 2007; Morita et al., 2007).
This hypothesis directly led to the idea that NMDA
receptor potentiation may have therapeutic benefit
(Heresco-Levy, 2000), a strategy explored in clinical tri-
als of agonists at the glycine site on the NMDA receptor
(Coyle and Tsai, 2004; Shim et al., 2008; Labrie and
Roder, 2010). A meta-analysis of seven small studies of
glycine and D-serine as adjuncts to first-line therapy
antipsychotics found evidence for a moderate reduction
of negative symptoms and a trend toward a decrease in
cognitive symptoms but no evidence for a beneficial ef-
fect on positive symptoms (Tuominen et al., 2005). A
recent clinical trial indicated a beneficial effect of the
glycine site agonist D-alanine on positive and negative
symptoms (Tsai et al., 2006). The effect of glycine was
examined in a larger patient population in the CON-
SIST trial (Buchanan et al., 2007). Surprisingly, there
was no efficacy against any symptom domain. The ma-
jority of patients enrolled in CONSIST were taking sec-
ond-generation antipsychotic medications, and this may
account for the failure to replicate the earlier positive
findings.

D-Cycloserine, an antibiotic and glycine site ligand,
was the first synthetic compound examined for augmen-
tation of primary antipsychotic therapy. This compound
is a partial agonist at the glycine site and may prefer-
entially activate NMDA receptors containing the
GluN2C subunit (Sheinin et al., 2001; Dravid et al.,
2010) expressed on interneurons and cerebellar granule
cells (Monyer et al., 1994). Initial clinical studies of
D-cycloserine indicated a beneficial effect on negative
symptoms over a narrow dose range (Goff et al., 1999).
However, in meta-analysis of five trials, evidence of ben-
efit was not supported (Tuominen et al., 2005). D-Cy-
closerine was also examined in the CONSIST trial, and
no evidence of efficacy was found (Buchanan et al.,
2007). However, the preclinical data suggest the possi-
bility of tachyphylaxis to glycine site ligands, leading to
examination of the effects of D-cycloserine intermittently
dosed, which improved negative symptoms compared
with placebo in patients suffering schizophrenia (Goff et
al., 2008a).

D-Cycloserine has been studied as an adjunct to be-
havioral therapy to promote the extinction of maladap-
tive associations. This therapy is based on the hypothe-
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sis that D-cycloserine will augment therapy-directed
learning through potentiation of NMDA receptor-depen-
dent learning. In clinical trials, D-cycloserine increased
the efficacy of behavioral therapy in patients suffering
acrophobia (Ressler et al., 2004), social anxiety disorder
(Hofmann et al., 2006b), and obsessive compulsive disorder
(Kushner et al., 2007; Wilhelm et al., 2008). In a meta-
analysis of the preclinical and clinical data, Norberg et al.
(2008) stress that the timing of D-cycloserine treatment
relative to the period of learning consolidation is a key
factor in attaining efficacy, in terms of both promoting
learning consolidation and avoiding tachyphylaxis.

The work summarized above evidences both consider-
able progress and remaining hurdles in developing the
therapeutic potential of NMDA receptor augmentation.
The first and most obvious hurdle is the need for im-
proved pharmaceutical agents. Problems inherent in the
use of glycine, including the very high dose (60 g/day),
poor brain penetration, and poor tolerability, make it
difficult to use for detailed hypothesis testing. D-Serine
and D-alanine suffer the same issues, albeit to a lesser
degree. Fortunately, there are two new molecular tar-
gets being pursued that offer unique pharmacology and
the promise of more attractive small molecules. The
more advanced target is the inhibition of glycine re-
uptake by GlyT1 in the perisynaptic region (Javitt, 2008,
2009). Preclinical studies indicate GlyT1 inhibitors aug-
ment NMDA receptor-dependent processes in vitro and
in vivo (Sur and Kinney, 2007; Bridges et al., 2008; Yang
and Svensson, 2008). Clinical proof of concept has been
obtained with sarcosine, a naturally occurring interme-
diate in glycine metabolism that is a low-affinity GlyT1
inhibitor (Zhang et al., 2009a,b). Sarcosine improves
positive and negative symptoms in schizophrenic pa-
tients stabilized on antipsychotic medication (Tsai et al.,
2004, see also Lane et al., 2006) or those suffering an
acute exacerbation of symptoms (Lane et al., 2005), al-
though it is only weakly efficacious in the absence of
antipsychotic medication (Lane et al., 2008). There are
now several synthetic GlyT1 inhibitors in early clinical
development, including N-methyl-N-(6-methoxy-1-phe-
nyl-1,2,3,4-tetrahydronaphthalen-2-ylmethyl)aminom
ethylcarboxylic acid (SCH 900435 or Org 25935), and
1-methyl-1H-imidazole-4-carboxylic acid (3-chloro-4-
fluoro-benzyl)-(3-methyl-3-aza-bicyclo[3.1.0]hex-6-yl
methyl)-amide (PF-03463275). A second new approach to
augmenting NMDA receptor activity targets D-serine me-
tabolism. In the last decade, D-serine has been recognized
as a principal physiological coagonist at the glycine bind-
ing site of the NMDA receptor (Mothet et al., 2000; Wolo-
sker, 2007). In brain, D-serine is degraded by D-amino acid
oxidase (DAAO) (Mothet et al., 2000; Wang and Zhu,
2003), and there is genetic evidence for an involvement of
DAAO in schizophrenia (Chumakov et al., 2002, but see
Williams, 2009). DAAO inhibitors may increase levels of
endogenous D-amino acids or block the metabolism of ex-
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ogenously administered compounds (Horio et al., 2009;
Smith et al., 2009).

Despite the positive findings noted above, the fact
remains that efficacy with glycine and related analogs in
schizophrenia has been modest and primarily confined
to negative symptoms. This is in contrast to the dra-
matic efficacy by which NMDA antagonists recapitulate
positive, negative, and cognitive symptom domains. Im-
proved efficacy may come with better pharmaceutical
tools and better understanding of optimal dosing inter-
vals. Nonetheless, the clinical data may also be read to
suggest limited efficacy through targeting the glycine
site. The physiological underpinnings of this limit may
stem from the relative affinities of different GluN2-con-
taining receptors for glycine. Specifically, the potency for
glycine is higher for GluN2B-, GIuN2C-, and GluN2D-
compared with the GluN2A-containing receptors (see
section V). Thus, if GIluN2A were a key target, glycine
therapy might be expected to yield only modest results.
It is noteworthy that the clinical finding that the
GluN2B selective antagonist CP-101,606 produces dis-
sociative effects, at least at high doses, suggests that
GluN2B subunit-containing receptors could be an im-
portant target. Several preclinical studies of mice over-
expressing the GluN2B subunit suggest that GluN2B-
selective potentiators may indeed have procognitive
efficacy (Tang et al., 2001; Cao et al., 2007). More data
on GluN2-selective potentiation could provide needed
clarity on the therapeutic potential for NMDA receptor
augmentation in schizophrenia.

XI. Conclusions

Without question, the field of glutamate receptors has
entered a new, structural era. Crystallographic data sets
have created new opportunities to design functional
studies from a perspective that previously was largely
conjecture. Such studies promise to achieve a new level
of understanding on how glutamate receptors link ago-
nist binding to channel gating and will aide in defining
how channel activation is controlled by receptor sub-
types, stoichiometry, post-translational modifications,
and protein-protein/protein-lipid interactions. These
studies are essential because the gating machinery at all
glutamate receptors represents a promising target for
modulating neuronal and glial function for therapeutic
gain in an unusually wide range of neurological dis-
eases. Emerging clarity in how cells regulate synaptic
glutamate receptor function and control localization pro-
vide further understanding that aids in elucidating the
role of glutamate receptors in normal functions such as
learning and memory as well as in disease. Progress
toward the initial promise of new glutamate receptor-
based clinical agents is being made despite early set-
backs. This progress is accompanied by the very real
prospect of breakthrough medicines that expand treat-
ment options for many patients. Indeed, rather than
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winding down as newer topics compete for investigator
interest, glutamate receptor biology is instead poised for
an increase in interest and activity in the coming de-
cade, driven by emerging structural concepts.
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