Table 3.
Benchmark | Method | PPI Network | #Predicted complexes | #Matched prediction | Precision | #Derivable benchmarks | #Derived benchmarks | Recall |
---|---|---|---|---|---|---|---|---|
Wodak | MCL | G+K | 242 | 55 | 0.226 | 182 | 62 | 0.338 |
ICD(G+K) | 136 | 68 | 0.500 | 153 | 76 | 0.497 | ||
FSW(G+K) | 120 | 69 | 0.575 | 153 | 78 | 0.510 | ||
Consol3.19 | 116 | 70 | 0.603 | 145 | 79 | 0.545 | ||
Boot0.094 | 203 | 76 | 0.374 | 172 | 85 | 0.494 | ||
MCL-CAw | G+K | 310 | 77 | 0.248 | 182 | 77 | 0.423 | |
ICD(G+K) | 129 | 80 | 0.620 | 153 | 80 | 0.523 | ||
FSW(G+K) | 117 | 72 | 0.615 | 153 | 83 | 0.542 | ||
Consol3.19 | 122 | 82 | 0.672 | 145 | 82 | 0.566 | ||
Boot0.094 | 199 | 79 | 0.397 | 172 | 88 | 0.512 | ||
MIPS | MCL | G+K | 242 | 35 | 0.143 | 177 | 40 | 0.226 |
ICD(G+K) | 136 | 47 | 0.346 | 151 | 60 | 0.397 | ||
FSW(G+K) | 120 | 46 | 0.383 | 151 | 61 | 0.404 | ||
Consol3.19 | 116 | 48 | 0.414 | 157 | 63 | 0.401 | ||
Boot0.094 | 203 | 44 | 0.271 | 168 | 56 | 0.333 | ||
MCL-CAw | G+K | 310 | 53 | 0.171 | 177 | 53 | 0.300 | |
ICD(G+K) | 129 | 63 | 0.488 | 151 | 63 | 0.417 | ||
FSW(G+K) | 117 | 48 | 0.410 | 151 | 66 | 0.437 | ||
Consol3.19 | 122 | 68 | 0.557 | 157 | 68 | 0.433 | ||
Boot0.094 | 199 | 47 | 0.236 | 168 | 59 | 0.351 | ||
Aloy | MCL | G+K | 242 | 43 | 0.179 | 76 | 42 | 0.556 |
ICD(G+K) | 136 | 58 | 0.426 | 75 | 56 | 0.747 | ||
FSW(G+K) | 120 | 57 | 0.475 | 75 | 57 | 0.760 | ||
Consol3.19 | 116 | 54 | 0.466 | 76 | 55 | 0.724 | ||
Boot0.094 | 203 | 56 | 0.276 | 76 | 55 | 0.724 | ||
MCL-CAw | G+K | 310 | 52 | 0.168 | 76 | 52 | 0.684 | |
ICD(G+K) | 129 | 59 | 0.457 | 75 | 59 | 0.787 | ||
FSW(G+K) | 117 | 60 | 0.513 | 75 | 60 | 0.800 | ||
Consol3.19 | 122 | 57 | 0.467 | 76 | 57 | 0.750 | ||
Boot0.094 | 199 | 57 | 0.286 | 76 | 58 | 0.763 |
Affinity scoring of PPI networks improved the performance of MCL and MCL-CAw. Affinity scoring followed by CA refinement had a compounded effect in improving the performance of MCL.