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Synopsis Aging affects a myriad of genetic, biochemical, and metabolic processes, and efforts to understand the under-

lying molecular basis of aging are often thwarted by the complexity of the aging process. By taking a systems biology

approach, network analysis is well-suited to study the decline in function with age. Network analysis has already been

utilized in describing other complex processes such as development, evolution, and robustness. Networks of gene ex-

pression and protein–protein interaction have provided valuable insight into the loss of connectivity and network

structure throughout lifespan. Here, we advocate the use of metabolic networks to expand the work from genomics

and proteomics. As metabolism is the final fingerprint of functionality and has been implicated in multiple theories of

aging, metabolomic methods combined with metabolite network analyses should pave the way to investigate how rela-

tionships of metabolites change with age and how these interactions affect phenotype and function of the aging indi-

vidual. The metabolomic network approaches highlighted in this review are fundamental for an understanding of

systematic declines and of failure to function with age.

Introduction

Since the 1950s, much work has been dedicated to

understanding the aging process and what affects it

(Medawar 1946, 1952; Orgel 1963, 1970, 1973;

Medvedev 1990). Although oversimplified, aging

can be envisioned as a shift from fully functional

to failing-to-function. In youth, organisms operate

at their peak performance. Over time, life as a

whole begins to lose coordination between the

parts, and the systems begin to fail. Reductionist

approaches have tested these ideas mechanistically

through the failure of genetic replication [e.g., telo-

mere shortening (Oeseburg et al. 2010)], mitochon-

drial dysfunction (Van Remmen and Jones 2009),

accumulation of oxidative stress (Jones 2006),

uncontrolled inflammation (Chung et al. 2008),

and hormone dysregulation (Panowski and Dillin

2009)) as potential theories of aging. However, the

system-wide deterioration that we observe as organ-

isms age likely involves a combination of some or all

of these mechanisms working together to create the

complex phenomenon that we call aging.

To better understand the complexity of aging,

researchers have begun to advocate a systems biology

approach, in which we would study

both causes and consequences of aging at genome-

wide, transcriptome-wide, proteome-wide, and

metabolome-wide levels (Barabasi and Oltvai 2004;

Hood et al. 2004). Based upon the characteristics

of life, there are four general ways ‘systems’ could

decline in function with age: (1) decline in the cap-

ture and utilization of energy and in the efficiency

with which it is extracted; (2) decline in structural or

metabolic organization; (3) decline in barrier func-

tions (i.e., delineation from the environment); and

(4) decline in the fidelity of storage and transfer of

information (i.e., fidelity of DNA during reproduc-

tion). Proteomics can be used to investigate the first

three characteristics while genomics and gene-

expression methods can be used to investigate the

fourth characteristic (Fig. 1). In this view, genomics

cannot give us a complete picture of aging because it

accounts for only reproduction and for DNA

encoded in the nucleus and perhaps also for

Integrative and Comparative Biology, volume 50, number 5, pp. 844–854

doi:10.1093/icb/icq094

Advanced Access publication July 12, 2010

� The Author 2010. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

For permissions please email: journals.permissions@oxfordjournals.org.



mitochondria. However, the metabolome is the fur-

thest down the line from gene to function and is

most characteristic of the entire organismal state

and phenotype. Therefore, changes in the metabo-

lome provide the best representation of the charac-

teristic declines in function with age.

Systems biology teaches us not only that pheno-

types are influenced by many important genetic and

environmental factors, but also that we need to un-

derstand the extremely complex interactions between

these components. Interactions between the parts, as

well as influences from the environment, give rise to

new features, such as network behavior (Alm and

Arkin 2003), which are absent in the isolated com-

ponents. As we become more aware of the roles of

the network and its components, we can begin to

decode the aging process by connecting the molecu-

lar components to discrete or multiple signaling

pathways. Here, we argue that network analysis of

metabolomic data can help to determine how the

failure of networks to maintain stability and homeo-

stasis within living systems can lead to aging.

Network approaches

Systems biologists have made great progress in char-

acterizing the structure and function of molecular

networks. For example, gene network structure and

function can be used to predict formation of patterns

during early development (von Dassow et al. 2000;

Salazar-Ciudad and Jernvall 2002; Albert and Othmer

2003), and to explain why networks are resistant to

damage (Albert et al. 2000; Wagner 2000; Bergman

and Siegal 2003).

To use and understand network analysis in re-

search on aging, we first need a brief explanation

of the components and structure of networks.

A network is a collection of units potentially inter-

acting as a system, and each network is comprised of

a finite set of nodes and edges; nodes are the indi-

vidual elements (e.g., genes, proteins, and metabo-

lites) within the network, and the edges are the

connections (e.g., correlations and enzymatic reac-

tions) that relate the nodes. Edges can be either di-

rected, whereby one node acts upon another (as in

gene regulatory networks), or undirected (as in pro-

tein–protein interaction [PPI] networks). A node’s

connectivity, k, is the number of edges that connect

the focal node to other nodes, and nodes with high

connectivity are considered hubs. In most biological

networks, k is distributed among nodes according to

a power-law function P(k)¼�(��)k��, where P(k) is

the probability that a selected node has exactly k

connections (degrees) with other nodes (e.g., pro-

teins), � is the degree exponent, a characteristic

value for a given network which determines many

properties of the system, and �(��), Riemann’s

zeta function, is a normalizing constant. The smaller

the � value, the more important is the role of hubs

in the network (Barabasi and Oltvai 2004). Mark

Newman (2003) provides a thorough review of net-

work structure and function. There are numerous

software packages that allow one to draw networks

and evaluate network structure, including specific

network programs (e.g., Pajek, UCINET, etc.), as

well as components of general statistical packages

(e.g., BioConductor in R).

The shape of the power law distribution tells us

much about networks, but it cannot reveal the un-

derlying hierarchical structure that characterizes

many networks. For example, many network analyses

have used hierarchical clustering to identify

co-regulated groups or modules within the larger

network. This concept of modularity assumes that

the function of the network can be better understood

if we partition the network into a collection of mod-

ules. Each module is a discrete entity of several com-

ponents, which act together to perform a unique

function (Hartwell et al. 1999; Lauffenburger 2000;

Hasty et al. 2001; Holter et al. 2001; Rao and Arkin

2001; Shen-Orr et al. 2002). This notion of modu-

larity is especially important in biological networks.

As Bruce Alberts (1998) noted, we can think of a cell

as a collection of machines. Since each machine is

made up of interacting molecules, we can imagine

that each machine forms a discrete module within

the larger network acting within a cell.

In a highly cited article on the topic, Girvan and

Newman (2002) refer to this aspect of networks as

their ‘‘community structure’’. The community struc-

ture of the network (that is, the modules that

Fig. 1 The central dogma of life studied with ‘‘-omics’’ technol-

ogies provide a global perspective on how systems begin to fail

with age.
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underlie the network) can be identified through hi-

erarchical clustering algorithms (Girvan and

Newman 2002). More recently, a variety of other

approaches have been used, from independent com-

ponent analysis (e.g., Gong et al. 2007) to iterative

machine learning approaches (Segal et al. 2003) to

approaches derived from graph theory (Newman’s

(2007) eigenvector analysis and Stone & Ayroles’

(2009) Modulated Modularity Clustering).

Implementations for many of these methods are

available either as packages in R (R Foundation for

Statistical Computing, Vienna, Austria), or as stan-

dalone software or websites (e.g., Stone and Ayroles

2009). Importantly, to our knowledge, no systematic

review has yet been done to determine relative

power, speed, biological relevance, and degree of

overlap (or lack thereof) in the modules identified

by these different statistical methods.

Researchers have used structural analysis of bio-

logical networks to better understand a broad range

of traits. Studies have found, for example, that the

most highly connected nodes are more likely to be

essential for organismal function (Jeong et al. 2001),

tend to evolve more slowly (Fraser et al. 2002; Hahn

et al. 2004; Wuchty 2004), are less likely to be lost

over evolutionary time (Krylov et al. 2003), and have

a higher probability of being associated with senes-

cence (Promislow 2004; Ferrarini et al. 2005;

Budovsky et al. 2007). Results from both theoretical

(Albert and Othmer 2003) and empirical (Promislow

2005) studies have shown that network structure is

an important predictor of patterns of gene expres-

sion. Thus, network studies can provide a unique

perspective on the cross-talk between biological

modules, identify the most susceptible nodes for

loss in communication, and model how changes in

these interactions are associated with phenotypes of

aging.

Networks and aging

From the above, one can anticipate that highly con-

nected nodes in biological networks would be impor-

tant in aging. Indeed, proteins associated with aging

in yeast have significantly higher connectivity than

expected by chance (Promislow 2004), suggesting

that a loss in these links would have much greater

effects on the entire network than loss of less con-

nected proteins (Albert et al. 2000).

This review focuses on the way in which the struc-

ture and function of an organism’s underlying mo-

lecular networks can affect its phenotype. In the case

of aging, though, we can also reverse the causal

arrow, asking instead how aging affects network

structure and function. If aging is the gradual failure

not simply of individual biological components but

rather of complex networks, studies of the structure

and function of networks can provide a useful frame-

work to understand both the causes and conse-

quences of aging. Thus, as we turn to a systems

biology approach to the study of aging, we shift

our focus from studies of network function to stud-

ies of network failure.

Ferrarini et al. (2005) developed a theoretical

model of network failure, asking in particular what

role highly connected nodes, or hubs, play in main-

taining network function. Assuming a power-law dis-

tribution of network connectivity, their theoretical

model showed that restoration of hubs rescued

35% of the lost function, while restoration of

weakly connected nodes led to very little improve-

ment in network function. Interestingly, in an anal-

ysis of genes that were both highly connected and

associated with aging, they found a disproportionate

number associated with metabolism—a topic to

which we will turn our focus later in this article.

In marked contrast with the results of Ferrarini

et al. (2005), Csermely and Soti (2006) suggested

that the failure of weak links, leading to increased

noise and loss of overall network integrity, may ac-

count for senescence.

In the previous section, we discussed the commu-

nity structure of networks. Network approaches have

also been used to identify subcomponents of net-

works associated with aging. As an example of the

use of modularity in aging studies, Xue et al. (2007)

looked for genes whose expression levels are signifi-

cantly correlated across age, either positively or neg-

atively. Using expression data from studies of human

brains and of whole fruit flies, they were able to

identify large modules of co-regulated, age-associated

genes. They were further able to show that these

modules tended to be associated with particular bi-

ological processes, and that expression levels in some

genes (such as those associated with cell prolifera-

tion) tended to increase with age, while others

(such as those associated with differentiation) de-

creased with age.

Furthermore, Xue et al. (2007) looked at the effect

of dietary restriction on network structure. Dietary

restriction is the most widely accepted method of

extending lifespan in a range of laboratory organ-

isms, from yeast, worms, and flies to mice and

rats. Xue et al. (2007) found that dietary restriction

altered the structure of the gene co-expression net-

work in Drosophila.

In silico modeling, based on gene arrays or PPIs

that have already been established, can also be used
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to identify components of a network that are asso-

ciated with lifespan. For example, to construct a

‘‘longevity network’’ via analysis of PPI, Budovsky

et al. (2007) used the human orthologs of ‘‘longevity

assurance genes’’ that have been established in model

organisms (e.g., Saccharomyces cerevisae,

Caenorhabditis elegans, and Drosophila melanogaster)

in combination with a list of longevity-associated

genes to determine whether the encoded proteins

could be organized into a network. A core longevity

network was constructed that contained 153 of the

211 longevity-associated proteins (LAPs) identified.

The core network was characterized by the presence

of highly interconnecting nodes (i.e., hubs), in which

15 of the 17 hubs were LAPs. Interestingly, 33 pro-

teins ‘‘not’’ associated with longevity (‘‘non-LAPs’’)

had connections with several LAPs, such that an ex-

tended network including these proteins revealed an

additional 40 LAPs that did not appear in the core

network (Budovsky et al. 2007).

At this point, we see an urgent need to understand

how senescence affects the structural and functional

interactions that underlie complex networks. A

recent study of age-related changes in gene expres-

sion in mice (Southworth et al. 2009) points the way

forward. Southworth et al.’s study relied on

the ‘AGEMAP’ dataset (Zahn et al. 2007), which

measured genome-wide levels of gene expression at

four different ages in 16 different tissues in C57BL/6

mice. Using these data, Southworth et al. (2009)

constructed gene co-regulatory networks in

16-month-old and 24-month-old mice. They found

that the integrity of these networks, measured as the

number of connections between genes, declined from

16 to 24 months. In particular, a differential

co-expression network analysis from 13 different tis-

sues revealed that 24-month-old mice had 26% fewer

total edges than did 16-month-old mice, and large

interconnected gene groups were lost with age in a

non-uniform fashion. Those genes that tended to

lose correlations were associated with specific tran-

scriptional factors and tended to be clustered in spe-

cific regions of the chromosome. The clusters of

genes that lost correlation with age included genes

involved in steroid production, memory, and mito-

chondrial function while DNA-damaged genes

became more correlated with other genes in older

mice (Southworth et al. 2009).

Overall, the literature reviewed thus far on

genome and proteome network modules demon-

strates that aging is associated with (1) failure of

hubs; (2) failure of weak links; and (3) redistribution

of node structure. The challenge that we now face is

to determine what kinds of network components, in

terms of both structure and function, are most likely

to lose integrity with age.

Metabolic networks and aging

In this section, we will first describe the history of

metabolomics and why this particular ‘‘-omic’’ tech-

nology has special advantages in the study of aging.

Second, we will discuss ways of identifying

age-related changes in the structure of any molecular

networks (including genomic and proteomic as well

as metabolomic networks). Last, we discuss, in par-

ticular, the study of senescence in metabolomic

networks.

History of metabolomics

Beginning in 1998, the first published study of meta-

bolomic technology emerged as a method to detect

hundreds of small molecules, including antioxidants,

oxidative stress markers, purines, and indoles, in

rat-liver mitochondria (Kristal et al. 1998). Since

then, the technology has flourished, increasing the

number of publications on the topic from one in

1998 to hundreds by 2003 (Kell 2004), and almost

1000 in 2009 alone. In the early years of metabolo-

mics research, no clear definition of the ‘‘meta-

bolome’’ had yet been claimed. Oliver et al. (1998)

made the first attempt by suggesting that the meta-

bolome is a comprehensive measure of low-

molecular-weight molecules present in cells in a par-

ticular physiological or developmental state. The def-

inition has now evolved into a more generalized

term including all small molecules characterizing a

biological system (Boccard et al. 2010). In any case,

the small molecules detected while measuring the

metabolome consist of those generated in vivo, in-

cluding those affected by diet, drugs, pesticides, and

other environmental exposures.

Ideally, a metabolic profile would detect and

quantify all small molecules present in a biological

system at a given time (i.e., a snapshot of cellular

metabolism or of components in circulating blood).

However, this is not possible with current technolo-

gy. As discussed below, the techniques for separation

and detection currently in use are unable to identify

all in vivo metabolites due to inadequate extraction,

chemical diversity, and the dynamic range of the

metabolome (Goodacre et al. 2004). These complica-

tions have limited our knowledge with respect to

known metabolites, but in just 2 years, the number

of metabolites identified in humans has more than

tripled, from 2180 to almost 7000 by 2009 (Wishart

et al. 2009). This number does not include the ad-

ditional thousands of metabolites from drugs,

Metabolic networks and aging 847



common toxins or pollutants, and food additives.

Thus, it is obvious that we have much to learn

about the metabolome.

The progress made thus far in our ability to char-

acterize the metabolome has been made possible by

advances in the technology platforms in analytical

chemistry. The primary analytical platforms include

nuclear magnetic resonance (NMR), mass spectro-

metry (MS), and a number of separation techniques,

such as capillary electrophoresis (CE), gas chroma-

tography (GC), and high performance liquid chro-

matography (HPLC). Chemical separation by GC or

HPLC increases the resolution and sensitivity of MS

while enabling selectivity of species based on their

chemical properties (Goodacre et al. 2004). In addi-

tion, the availability of a variety of columns for

HPLC has made the detection of comprehensive

metabolic profiles more feasible. NMR spectroscopy

has been developed as a valuable resource for meta-

bolomics due its reproducibility and its ability to

provide structural information. However, NMR has

low sensitivity and low throughput [there are excep-

tions (Soininen et al. 2009)], which limits our ability

to detect the maximum number of metabolites in a

short period of time. Mass spectrometry is a more

promising technique to generate high-throughput

metabolomic data because it overcomes the weak-

nesses of NMR with higher sensitivity in a relatively

shorter time required for analysis. For example, the

Fourier transform-MS (FTMS) has a high resolving

power and sub-parts-per-million mass accuracy that

facilitates identification with less dependence upon

chromatography. Further, the measurement of accu-

rate mass by the FTMS has proved useful for char-

acterization of unknown metabolites by the

unambiguous assignment of elemental formulas

(Aharoni et al. 2002). Thus, the performance char-

acteristics of MS, particularly FTMS, are ideal for the

complex mixtures encountered in high-throughput-

metabolomics applications.

Metabolomics platforms include both ‘‘top–down’’

versus ‘‘bottom–up’’ approaches. In a bottom–up

model, the method is targeted to detect specific mol-

ecules or pathways in a hypothesis-driven manner.

Instrumentation and bioinformatics are not restric-

tive for bottom–up models since a finite number of

metabolites are targeted and less-sensitive instrumen-

tation is needed. On the other hand, a top–down

approach is untargeted and more reliant on sensitiv-

ity and robustness of the instrument in order to gen-

erate extensive metabolic profiles. Complex

bioinformatics are then needed to mine the resultant

data and to generate hypotheses. Although both

approaches have drawbacks, in systems biology,

bottom–up metabolomics is most limiting, as the

focus on a few selected metabolites can lead the re-

searcher to ignore critically important interactions

with other molecules (Forster et al. 2003). Top–

down metabolomic approaches are more useful for

drawing general conclusions regarding aging, or any

multi-system effect, because they take a global snap-

shot of the organism’s metabolic state.

The composition of samples selected for metabo-

lomic analysis can also limit and complicate inter-

pretations. Samples of tissues and cells often require

rigorous protocols for handling and extraction in

order to isolate metabolites; these methods can

result in inconsistent and more targeted metabolic

profiles. In such a case, one must be careful when

drawing conclusions in systems biology studies, since

the modeling is not comprehensive and will be

biased toward the metabolites that were extracted

(Goodacre et al. 2004). On the other hand, biofluids

are perhaps the ideal type of sample to be analyzed

because they are easily obtained and can be analyzed

by MS and NMR with little preparation of the

sample (Brindle et al. 2002; Lindon et al. 2003;

Nicholson and Wilson 2003). Biofluids, specifically

plasma and serum, can provide a clear representation

of a global metabolic profile because these fluids

have contact with organ systems throughout the

body.

Although the identities of the individual compo-

nents of the metabolome are less well understood

than that of the transcriptome and proteome, meta-

bolomics offers distinct advantages as a means of

studying the molecular state of an organism. In par-

ticular, theoretical (Fell 1996; Kell and Mendes 2000)

and experimental (Raamsdonk et al. 2001) studies of

metabolic control reveal that changes in the quanti-

ties of individual enzymes have significant effects on

the concentrations of numerous individual metabo-

lites. In addition, there are countless chemical alter-

ations and regulatory mechanisms that occur

downstream of the genome. As a result, the metabo-

lome is effectively an integration not only of cellular

activities at a functional level, but also of extrinsic,

environmental factors (Fig. 2). Because the metabo-

lome is essentially the ‘‘end of the line’’ in terms of

biological processes, changes in the metabolome may

provide a better mirror of the consequences of ge-

notypic and phenotypic changes than do changes of

the actual transcriptome or proteome. To summa-

rize, the metabolome is the final fingerprint of ge-

netic regulation and enzymatic activity, and the

resulting global metabolic profile can best be mea-

sured by metabolomics.

848 Q. A. Soltow et al.



Recent advances in metabolomics have provided

insights into certain aspects of aging, and many

trends of metabolites during aging are emerging.

Using 1H NMR, urine samples from aging rats,

dogs, and humans were analyzed, which showed

that resonances associated with creatinine, amino

acids, and fatty acids increase with age while

glucose/myoinositol (Williams et al. 2005), glycopro-

teins (Wang et al. 2007), succinate, and other Krebs-

cycle intermediates decrease with age (Schnackenberg

et al. 2007; Gu et al. 2009). These results demon-

strate the utility of NMR to find variability in mac-

romolecules with age, and HPLC–MS studies of

aging expand on these results by detecting more

than 11,000 ions in a biological sample (Williams

et al. 2006). HPLC–MS analysis of urine from

aging Sprague Dawley rats not only confirms 1H

NMR results of declining Krebs-cycle intermediates

but also identifies increased levels of oxidized anti-

oxidants in older rats (Schnackenberg et al. 2007).

HPLC–MS mass chromatograms detect significantly

more ions in urine from 4-week-old Wistar-derived

rats than from 20-week-old rats (Williams et al.

2005). Ions identified as carnitine, ascorbic acid,

and urate increase in ion intensity with age, but

the large majority of age-associated ions remain uni-

dentified. Another study of aging using HPLC–MS to

perform metabolomic characterization in the serum

of 4, 10, 18, and 24-month-old rats found that levels

of carnosine, cholesterol, and various fatty acids

among other unidentified metabolites were associat-

ed with age (Yan et al. 2009). These studies demon-

strate that HPLC–MS-based metabolomics can

provide a wealth of information (e.g., thousands of

metabolites detected), although much is to be

learned concerning the identity of the ions. One

way to attack the problem of unknown molecules

is to construct a network connecting metabolites

that change with age. The relationships between the

known and unknown metabolites may assist in elu-

cidation of pathways and in identification of previ-

ously unrecognized ions.

Metabolic networks

While most studies of biological networks and aging

have focused on protein–protein or gene regulatory

interactions, we suggest here that metabolic networks

may prove particularly valuable in furthering our

understanding of the biological and phenotypic

changes that occur as organisms age. Metabolites

are the final fingerprint of genetic regulation and

enzymatic reactions, and provide a clear picture of

phenotype. The potential value of studying metabolic

networks is further supported by the fact that the

most widely tested intervention to prolong lifespan,

dietary restriction, has obvious effects on energy me-

tabolism (Masoro 2001), as demonstrated by a life-

long metabolomics study of caloric restriction in

dogs (Wang et al. 2007).

There are a variety of ways to construct metabolic

networks (e.g., Batagelj and Mrvar 1998; Stone and

Ayroles 2009). Ravasz et al. (2002) reconstructed a

network by using the information about the E. coli

enzymes for all metabolic reactions available in the

ERGO database. This network includes a few highly

connected molecules, such as ATP, that tell us little

about the biological functions of the specific nodes

and pathways with which they interact. Thus, Ravasz

et al. (2002) developed an algorithm that would

remove these ‘redundant’ edges, and also simplified

the connections between substrates.

Ravasz et al. (2002) suggested that in reconstruct-

ing these networks, we need to recognize not only

the global patterns of the network (i.e., the number

of nodes to which each node is connected), but also

the underlying modular substructure. One way that

we can measure overall modularity in a network is

by estimating a network’s clustering coefficient, C(k).

The clustering coefficient measures the degree to

which groups of nodes in a network tend to cluster

together to form tightly connected neighborhoods.

For example, in a network with a high clustering

coefficient, if nodes A and B are both connected to

node C, there is a high probability that nodes A and

B are connected with one another. In a study of

metabolic networks in 43 different organisms,

Ravasz et al. (2002) found that the clustering coeffi-

cient was about an order of magnitude larger than

one would expect in a network in which the number

of connections is distributed according to a power

law, but at random with respect to modularity. This

Fig. 2 Metabolic profiles integrate the effects of diet, environ-

ment, and genetics for mechanistic studies of aging.
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result suggests that metabolic networks are character-

ized by high intrinsic modularity.

After construction of a network, we can glean im-

portant information from analysis of its structure

and function. Like gene and protein networks, the

most connected modules in metabolic networks

play a critical role in overall network size (Jeong

et al. 2000; Wagner and Fell 2001) and structure

(Wagner and Fell 2001). The diameter of metabolic

networks, defined as the average shortest distance

between any two nodes in the network, does not

change across organisms even with the increasing

number of substrates that occur with increasing or-

ganismal complexity (Jeong et al. 2000).

In the following section, we describe our current

work on the analysis of steady-state metabolic net-

works. While studies of complex flux-sum (Chung

and Lee 2009) or kinetic processes (Coquin et al.

2008) are clearly of interest, a recent study of an

in silico metabolic network model by Çakir et al.

(2009) found that metabolic variation observed at

steady-state, with no perturbation, can reveal con-

nectivity of the underlying metabolic network. Our

own work, discussed below, shows how one might

use such steady-state comparisons across individuals

to assess the effect of aging on metabolomic network

structure.

Metabolic network and aging in the common

marmoset

We are interested in top–down metabolic networks

and how they change with age. Until now, most re-

search on metabolism and aging has been focused on

the relationship of dietary restriction to longevity

and on mechanisms of age-related metabolic disease.

Studies on metabolic mechanisms of aging have fo-

cused on a variety of physiological traits, including

mitochondrial function, oxidative stress/redox bal-

ance and its downstream effects on lipids, proteins,

and DNA; signaling in the insulin and insulin-like

growth factor (IIS) and TOR pathways; glucocorti-

coid signaling; and inflammation. However, the

overall process of aging likely involves all of these

components, so a systems approach using metabolic

networking can provide a more comprehensive in-

sight into the interactions between these

components.

As we have outlined above, a network approach

should help us understand key metabolomic differ-

ences in longevity among species, and among indi-

viduals within species. In particular, our goal is to

identify specific components of the underlying meta-

bolomic network that are most likely to fail with age.

Previous progress in metabolic network reconstruc-

tion depended critically on the functional annotation

of the genes that encode proteins with unknown

functions and focused mostly on specific pathways

such as fatty acid synthesis or aspartate metabolism

(Chen et al. 2009; Curien et al. 2009). However, with

the recent advances in metabolomics technologies,

we can begin to construct metabolomic networks

without relying on data extrapolated from

gene-expression assays or on in silico modeling.

Steady-state metabolomics can provide the necessary

information to elucidate age-related changes in net-

work connectivity and structure.

We have used a top–down metabolic profiling

technique to compare the steady-state metabolic net-

work of a set (n¼ 60) of young (56 years of age)

and old (46 years of age) common marmosets

(Callithrix jacchus). The common marmoset has

recently emerged as the premiere primate model

for studies of aging. Because of their short lifespan

(6–15 years) and small size (�400 g), marmosets are

easy to handle, require little space, and make long-

term studies of aging more feasible. Using

our HPLC–FTMS-based metabolomics platform

(Johnson et al. 2008), partnered with a metabolite

peak extraction method (Yu et al. 2009), we can

identify over 2500 metabolites in a single drop of

blood. These metabolites cover the entire profile of

the organism, including ‘‘dead-end’’ or inactive ones,

as well as metabolites that have yet to be identified.

In our preliminary analyses of metabolomic networks

in marmosets varying between 2 and 13 years of age,

we find that connectivity of metabolites decreases

with age (Fig. 3), and that the abundance of numer-

ous metabolites significantly changes with age

(Fig. 4). By using these types of analyses (i.e.,

global metabolic profiling combined with network

analysis), well-designed models of aging may reveal

biomarkers that correlate with age-related phenotype

and disease.

To carry out metabolic network analyses of aging,

we can use both cross-sectional studies and longitu-

dinal approaches. Cross-sectional approaches can be

used to determine how metabolomic networks vary

in response to differences in environment, genotype,

sex, age, behavior, and so forth. Second, with respect

to aging, longitudinal studies, where we track single

individuals over time, are particularly valuable, as we

can fully control for differences among individuals in

genotype or rearing environment. This approach is

also a powerful way to monitor effects of experimen-

tal manipulations, such as genetic knockdowns or

dietary changes, on the metabolome.
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Although this review highlights the progress that

has been made thus far in using metabolomics data

to generate biological networks, there are still key

challenges in the field. The field of metabolomics

has yet to adopt a set of standardized methods,

which involve sampling, sample separation,

MS-platform selection, and data extraction. At this

point, perhaps the greatest challenge is that curated

metabolomic databases are incomplete. Using

LC-FTMS, we can obtain estimates of the quantities

of thousands of metabolites, each with a unique

mass:charge (m/z) and retention time, from a

sample of just a few microliters. But without a sub-

stantial effort, we would not have detailed under-

standing of the chemical identities of all of these

molecules. Furthermore, methods for quantification

of metabolites have yet to be verified.

Relative to work on gene-regulatory and PPI net-

works, relatively few researchers are working on the

construction of metabolomic networks, and on tying

together metabolomic network structure and func-

tion with physiological traits and environmental per-

turbations. Fortunately, this gap is likely to be filled

in the coming years through research to define the

human exposome (Wild 2005). In a recent National

Academy of Sciences Workshop sponsored by the

National Institute of Environment and Health

Sciences, the possibility of creating a ‘‘Human

Exposome Project’’ was discussed. This projected

could mimic the Human Genome Project to deter-

mine how environmental exposures—including diet,

physical activity, stress, and drug use—contribute to

human phenotype, aging, and disease. The field of

metabolomics and network analysis are likely to play

a key role in such a project.

We are still in the very early stages of applying

metabolomic network analysis to the study of

aging. While we know little, the potential for con-

ceptual advances is substantial. We have described a

study of aging in primates; we are likely to also reap

significant benefits by applying these approaches to

short-lived model organisms, such as fruit flies and

nematode worms—the stalwarts of research on the

biology of aging. Using model systems, we have iden-

tified a large number of genes that can extend lon-

gevity (reviewed in Kennedy 2008; Shimokawa et al.

2008; Ni and Lee 2010). In humans, however, our

current best bet for extending both the quality and

quantity of our lives is diet and exercise. As a recent

Fig. 4 Frequency distribution of correlation coefficients between

quantity of metabolites and age of the marmoset, using extrac-

tions from an anion exchange column (results from a C18 column

were comparable). Grey bars indicate correlation coefficients that

were significantly different from zero (P50.01). Note that for

females, a disproportionate number of metabolites decline with

age (t-test of average slope across all metabolites, P510�7),

while on average, males are not significantly different from zero.

Fig. 3 Percent of correlated metabolites as a function of

extraction column and sex. We calculated correlation coefficients

between all possible pairs of metabolites among individuals for

both the AE column (n¼ 765 metabolites) and the C18 column

(n¼ 714 metabolites), for groups of young or old marmosets

separately. In each case, there was a total of n(n�1) possible

pairwise correlations. We determined the percent of all

correlations that was highly significant (P510�7). For both

columns, and for both sexes, we see more significant correlations

among young individuals than among old individuals. In all four

comparisons, the difference between old and young groups is

highly significant (P510�13).
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study demonstrates (Lewis et al. 2010), metabolomics

may help us to understand just why such environ-

mental interventions work.

The strength of connections between genes, pro-

teins, or metabolites is an important system-wide

property of a network that can be used to compare

two or more states. Here, we compared young and

old marmosets, but this approach can be used to

compare many other states such as healthy versus

diseased individuals, or wild-type versus mutant

strains. Differential network analysis could potential-

ly be used to compare network structure among spe-

cies. In a study of wing polymorphism in ants,

Abouheif and Wray (2002) were able to show that

the loss of function in wing development was due to

the failure of different network components in dif-

ferent species. As organisms age, do networks fail in

similar ways from species to species, and from geno-

type to genotype, or is each individual unique? With

apologies to Tolstoy, is it the case that all young,

healthy individuals are alike, but every senescent in-

dividual is senescent in its own way? Network anal-

ysis should help us to answer this question.
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