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ABSTRACT
The autocatalytic group Il intron ai5y from
Saccharomyces cerevisiae self-splices under

high-salt conditions in vitro, but requires the assist-
ance of the DEAD-box protein Mss116 in vivo and
under near-physiological conditions in vitro. Here,
we show that Mss116 influences the folding mech-
anism in several ways. By comparing intron precur-
sor RNAs with long (~300nt) and short (~20nt)
exons, we observe that long exon sequences are a
major obstacle for self-splicing in vitro. Kinetic
analysis indicates that Mss116 not only mitigates
the inhibitory effects of long exons, but also
assists folding of the intron core. Moreover, a
mutation in conserved Motif Il that impairs unwind-
ing activity (SAT — AAA) only affects the construct
with long exons, suggesting helicase unwinding
during exon unfolding, but not in intron folding.
Strong parallels between Mss116 and the related
protein Cyt-19 from Neurospora crassa suggest
that these proteins form a subclass of DEAD-box
proteins that possess a versatile repertoire of
diverse activities for resolving the folding problems
of large RNAs.

INTRODUCTION

DEAD-box proteins are members of a protein family
(Helicase superfamily 2, or SF2) that participates in
diverse processes such as ribosome assembly, transcrip-
tion, translation and RNA processing. A common
feature of these proteins is that they bind nucleic acids
and hydrolyze ATP. Some members of the DEAD-box
subgroup have been shown to display helicase activity.
However, not all of these proteins behave as motor
enzymes; some exhibit additional activities like strand

annealing (1) or protein displacement activities (2,3), and
one family member, eIF4-Alll, acts as an anchor for the
exon junction complex (4).

Mssl16, a DEAD-box protein from Saccharomyces
cerevisiae, was identified in a genetic screen as affecting
mitochondrial function (5). It is involved in mRNA trans-
lation, RNA end-processing and, notably, splicing of
mitochondrial group I and group II introns (6). All of
these functions can be rescued by overexpression of a
related DEAD-box protein from Neurospora crassa,
Cyt-19 (6). Indeed, either protein is necessary and suffi-
cient for splicing of a variety of group I and group II
introns in vitro under near-physiological conditions
(7-9). The specific mechanism of action by Mssl116 and
Cyt-19 remains unclear. DEAD-box proteins are often
implicated in nucleic acid remodeling, and they may facili-
tate proper RNA folding. However, given the diverse obs-
tacles that can be encountered during folding, Mss116
may stimulate remodeling and splicing in several ways:
for example, there are formidable electrostatic barriers
to RNA collapse, and many of these can be alleviated
by basic proteins. RNA molecules also have a strong
tendency to adopt stable, incorrect structures that can be
slow to resolve (they often form kinetically trapped
species). Compounding these issues, large RNAs must
sample a large amount of conformational space in order
to form correct long-range interactions, potentially
increasing the time for folding [they have a high contact
order (10,11)]. Many of these barriers to proper folding
can be overcome in vitro by employing conditions of
elevated temperature and ionic strength. RNA folding
in vivo, however, is generally assisted by proteins that
promote RNA collapse, resolve kinetic traps [chaperones
(12)], stabilize folding intermediates or stabilize the native
RNA structure (13,14).

To investigate these issues, we have employed an in vitro
splicing system using intron ai5y, a group II intron in the
COXlI-gene of S. cerevisiae, together with its natural
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splicing factor, Mss116 (8,9). Intron aiSy has been exten-
sively characterized structurally, biophysically and
enzymatically (15). It adopts the typical secondary struc-
ture of group IIB introns and self-splices efficiently under
high-salt conditions via two parallel pathways, forming a
lariat or a linear free intron (16) (Supplementary
Figure S1). Despite its size (0.9 kb) and complexity, the
ai5y intron appears to have a relatively simple folding
pathway. Under conditions of high magnesium ion con-
centration, the intron folds slowly to the native state via a
series of on-pathway intermediates (17-21).

While the ai5y intron is capable of efficient self-splicing
in vitro under conditions of high magnesium ion concen-
tration (~100 mM) and high temperature (42°C), efficient
splicing in vivo and in vitro requires the presence of Mss116
and ATP. Given that there are few systems in which a
DEAD-box protein can be studied in the context of its
natural substrate, it has been of great interest to determine
the molecular mechanism by which Mssl16 stimulates
ai5y splicing.

Some insights into the molecular mechanisms of
DEAD-box proteins have been provided by genetic and
biochemical studies of protein mutants (6,22). For
example, an ATPase and helicase-deficient mutant of
Mss116 (the ‘SAT-mutant’, in which the conserved SAT
sequence in helicase Motif IIT has been mutated to AAA)
displays only minor defects in splicing efficiency both
in vitro and in vivo (8,23). This finding led to the suggestion
that Mss116, which is a highly basic protein, might facili-
tate splicing without unwinding misfolded structures that
constitute kinetic traps. Rather, Mss116 may facilitate the
productive formation of native intermediates or structures
(8,24). However, studies by Del Campo et al. (25) have
shown that the Mss116 SAT mutant is still capable of
unwinding very short, unstable duplexes. Based on these
findings, together with the contention that helices in nat-
urally occurring RNAs are often short, it was suggested
that Mss116 might be required for unwinding a kinetic
trap along the aiSy folding pathway (25). Thus, there are
different interpretations for the likely mechanistic role of
Mss116 during splicing.

Although the folding pathway of ai5y has been studied
extensively and shown to be direct, previous studies were
conducted on constructs that lack exons. In contrast,
previous work on Mssll6- and Cyt-19-facilitated
splicing was conducted on ai5y constructs that contain
very long 5 and 3’ exons (~300nt). These long exons
may form stable secondary structures within themselves
or with the intron, potentially resulting in misfolded struc-
tures that are not observed when monitoring folding of the
intron alone. To differentiate between a role for
DEAD-box proteins during intron folding and exon reso-
lution, we examined the effect of proteins Mssl16 and
CYT-19 on splicing of ai5y precursors with long (LE)
and short (SE) exons. It was previously shown that the
self-splicing kinetics of LE in vitro is biphasic, indicating a
slow and a fast population of precursor molecules (16).
Interestingly, if the 5-exon is shortened, splicing
becomes monophasic, suggesting that long exons interfere
with splicing (26). Here, we show that a group II intron
with  shortened exons readily self-splices under
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near-physiological conditions. However, the splicing
reaction can be further enhanced by adding the proteins
Mss116, CYT-19 or their SAT/AAA mutant forms. These
results indicate that DEAD-box proteins have more than
one mechanistically distinct role in splicing: while they
may resolve kinetic traps that obstruct utilization of
long exons in vitro, they also accelerate the direct folding
pathway of the intron.

MATERIALS AND METHODS
Plasmids and RNA transcription

LE (the ai5y intron flanked by a 293nt 5-exon and a
321nt 3-exon) was transcribed from plasmid pJD20
(16,34). SE (the ai5y intron flanked by a 28 nt 5-exon
and a 15nt 3’-exon) was transcribed from pASI10, a
plasmid derived by PCR amplification of the region of
interest from pJD20. The precursor RNAs were internally
labeled with [¢-**P]-UTP (Perkin-Elmer). The transcripts
were purified on a 5% denaturing polyacrylamide gel and
stored in a buffer of 10 mM MOPS pH 6.0, I mM EDTA.

Protein purification

Mss116, the Mss116 SAT/AAA mutant and Cyt-19 were
purified as described (8). The Cyt-19 SAT/AAA mutant
was created by site directed mutagenesis and purified in
the same manner as the wild-type protein. Before diluting
the proteins to working concentrations, they were briefly
incubated with RNase Inhibitor (Protector, Roche) to in-
activate RNases.

Splicing reactions

The full-length, body-labeled ai5y precursor RNA was
incubated in 40mM MOPS, pH 7.5 at 90°C for 1min
and incubated at 30°C for 3min. For Mssl116 reactions,
the reaction mixture contained the indicated amount of
protein, 40mM MOPS-KOH, pH 7.5, 100mM KClI,
11mM MgCl, and 2mM ATP (9mM free Mg”"), while
Cyt-19 reactions contained 100nM protein, 40 mM
MOPS-KOH, pH 7.5, 70mM KCl, 13mM MgCl, and
5mM ATP (8mM free Mg>"). After incubation for
Smin at 30°C, the splicing reaction was initiated with
the addition of the RNA to the reaction mixture at
1 nM final concentration. Reactions were quenched and
resolved by PAGE (16). Self-splicing reactions in the
absence of protein under high salt and temperature con-
ditions were performed as previously described (16).

Data fitting

The precursor and product bands were quantified using a
phosphorimager and the program ImageQuant TL. The
relative fractions of precursor RNA, lariat and linear
intron were calculated after correcting for the
uridine-content of each species. The timecourse data
were fit using the program KaleidaGraph 3.5 (Synergy
Software). In order to quantify the length of the lag, the
kobs, and the amplitude, we fit the data to the equation
A- e(—kops (t—tae)) + y, with A: amplitude, #,,: length of
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the lag, y: endpoint. The reported values are averages of at
least three independent timecourses.

RESULTS

Long exons interfere with aiSy self-splicing under
high-salt conditions

In order to understand how DEAD-box proteins influence
ai5y splicing, we designed a SE precursor RNA (SE, 28 nt
5-exon and 15nt 3’-exon). This construct is advantageous
in that it preserves the IBS-EBS interactions, it contains a
naturally occurring G for T7 transcription, and the exons
are long enough to resolve the precursor from the linear
spliced intron on a gel. SE spliced efficiently under
high-salt self-splicing conditions (100mM Mg**, 500 mM
monovalent cation, 42°C; Figure 1A). Like the thoroughly
characterized pJD20 transcript (LE precursor RNA; 16),
it reacted predominantly through the hydrolytic pathway
in KCl, and the lariat pathway in (NHy4),SO4. Consistent
with a previous report on a similar short exon precursor
(26), shortening the exons changed the kinetic behavior
of intron splicing; while LE shows marked biphasic
behavior indicating a fast and a slow population, SE
reacts as a single, fast population (Figure 1B) with a
rate constant that is comparable to the rate constant of
the fast LE population [0.065 + 0.015min~' versus
0.028 + 0.0031 min~' (16)]. The exons may interfere
directly with intron folding or form secondary structures

that obstruct proper exon function (27,28). Alternatively,
the length of the exons could create a steric or topological
problem during exon docking.

The aiSy core can self-splice under near-physiological
conditions without the influence of a protein

We then investigated SE self-splicing under the
near-physiological conditions that have been used previ-
ously for studies of protein-facilitated splicing (100 mM
KCI, 9mM free MgCl,, pH 7.5, 30°C; 8,9). Although
LE shows little to no reaction under these conditions
(Figure 1C), SE readily self-splices (Figure 1D). This re-
inforces the observation made under high salt conditions
that shortening the exons promotes formation of a
reactive species. It is also the first observation of robust
aiSy self-splicing under near-physiological conditions
without the help of a protein or a polyamine (7,16,29).
The data demonstrate that ai5y is able to fold to its
native conformation, dock the exons and self-splice effi-
ciently if surrounded by appropriate sequences. However,
self-splicing under near-physiological conditions is signifi-
cantly slower (0.0061 + 0.0016min~") than under
high-salt conditions and 62 + 6% of the molecules either
do not react at all or react very slowly (Figure 1E). This
could be an effect of the remaining SEs or it may reflect an
intron-specific barrier to splicing that is alleviated under
high-salt conditions.
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Figure 1. Self-splicing of SE. (A) SE self-splicing under high-salt conditions. Reactions were performed in 40 mM MOPS, pH 7.5, 100 mM MgCl,,
500mM KCI or (NHy4),SO4 at 42°C. (B) Quantification of (A). The splicing reactions were fit to a single exponential, yielding a rate constant of
0.065 + 0.015min~" in KCl and 0.36 + 0.15min~" in (NH4),SO,. (C) LE self-splicing under near-physiological conditions. (D) SE self-splicing under
near-physiological conditions. (E) Quantification of (C and D). Inset: note the pronounced lag of ~10min for SE splicing. I-Lar, intron lariat, P,
precursor, I-Lin, a population containing linear and/or broken lariat intron RNA.



Mss116 stimulates both LE and SE splicing

Since Mss116 was shown to promote LE splicing under
near-physiological conditions (8,9), it was of interest to
monitor its effects on the self-splicing of SE. Prior to
initiating this comparative analysis, the reaction condi-
tions and protocols for initiating the self-splicing
reaction were extensively analyzed. For example, to
reduce the kinetic influence of protein binding effects, pre-
cursor RNA concentration was reduced from 20 to 1 nM,
resulting in pseudo-first order kinetics. In addition, previ-
ously reported rate constants for Mssl16-catalyzed ATP
hydrolysis (8,9) suggested that ATP concentration might
become limiting during long timecourses with high con-
centrations of protein. We therefore varied ATP concen-
tration from 1 to 10mM, finding that 2mM ATP is
optimal for the Mss116/ai5Sy-system under our experimen-
tal conditions. Finally, we varied the protein concentra-
tion in order to determine the optimal protein
concentration for the two different substrates.
Interestingly, Mss116 has a narrow range of optimal
protein concentrations (~10-20nM under these condi-
tions); higher protein concentrations are inhibitory to
splicing (Supplementary Figure S2A and B). This may
be an effect of protein aggregation at higher concentra-
tions. Alternatively, high concentrations of protein may
disrupt important structures throughout the intron either
by binding or unwinding the RNA.

As expected from previous experiments, Mss116 greatly
increases the rate constant for LE splicing under
optimized near-physiological conditions. However,
Mssl16 also enhances the splicing of SE RNA
(Figure 2). As previously shown for LE splicing,
protein-mediated SE  splicing is ATP-dependent
(Figure 2). Given that Mssl16 has a particularly strong
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Figure 2. Mssl16wt protein promotes splicing of both LE and SE in
an ATP-dependent manner. Representative datasets are shown. The
data were fit to a single exponential with lag and endpoint correction.
Rate constants obtained from at least three independent experiments
are 0.0083 + 0.0032min~" for LE self-splicing, 0.0061 = 0.0016 min~"
for SE self-splicing, 0.052 + 0.0059 min~' for Mssl16-mediated LE
splicing (15nM Mss116), 0.011 + 0.0024min~" for Mssl16-mediated
LE splicing without ATP, 0.016 + 0.0016 min~" for Mssl16-mediated
SE splicing (15n1M Mss116) and 0.0054 + 0.0008 min~"' for MssI16-
mediated SE splicing without ATP.
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effect on LE splicing, it seems likely that one role for the
protein (at least in vitro) is to mitigate the inhibitory effects
of long exons. However, the significant effects on SE
suggest that Mssl16 plays an additional role during
folding of the intron itself and/or docking the 5-exon
into the active site, a folding step that has been
demonstrated to stabilize the native state (21). Notably,
in all kinetic time courses, lariat formation is preceded by
a short lag, which is indicative of a sequential reaction.
The lag phase was accounted for during determination of
the rate constants (see ‘Materials and Methods’ section).
The presence of the lag phase is consistent with previous
observations indicating that splicing is preceded by forma-
tion of compact folding intermediates (21,24,30).

Protein-mediated splicing of LE is slightly (~3x), but
consistently, faster than SE and reaches a higher ampli-
tude (Figure 2). Thus, the same exon sequences that are
inhibitory to self-splicing seem to enhance protein-
facilitated splicing. Perhaps long exons provide a structure
that efficiently recruits Mss116 to a site within the intron
or they may enhance oligomerization of the protein.
Alternatively, the protein may promote different folding
pathways in LE and SE, thus giving rise to different rate
constants.

A clue to the role of Mss116 and ATP in the mechanism
of splicing is provided by the observation that Mss116
increases both the amplitude and the rate constant for
splicing of the LE and SE constructs. If Mss116 func-
tioned exclusively through a kinetic redistribution mech-
anism, whereby it simply decreased the population of
molecules caught in a kinetic trap, then one would
expect an influence on the amplitude, but not the rate
constant of reaction (31). The fact that marked increases
in rate constant are observed for the splicing of both con-
structs suggest that Mss116 and ATP alter the reaction
mechanism, most likely by stimulating formation of an
on-pathway folding intermediate.

The SAT mutant shows no significant splicing
defect on SE

Given that Mss116 appears to function differently during
the splicing of LE and SE constructs, we decided to dissect
these respective roles by employing the SAT mutant of
Mssl16 (Mssll6gat) and examining its effects on both
types of precursor RNA. When comparing activity of
the mutant on LE and SE, we observed that higher
protein concentrations are required to achieve maximal
kows (Supplementary Figure S2), particularly for the LE
construct. This is probably attributable to a higher K4 for
RNA binding by Mssl16gat (25). While 15nM protein
promotes efficient splicing in three of the four combin-
ations of intron precursors and Mssl16 variants
(Supplementary Figure S2A, B and D), we also
determined kinetic data for LE splicing with 40nM of
Mssl16gat in order to measure the maximal catalytic
activity of all variants (Figure 3A and Supplementary
Figure S2C). Notably, the maximum ks does not neces-
sarily represent v, since higher protein concentrations of
Mssl16gat on LE very quickly become inhibitory. The
actual catalytic activity may be even higher than reported.
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Time courses for protein-mediated LE-splicing showed
that the Mssl16gaT mutant stimulates LE splicing with a
rate constant that is 5- to 13-fold lower than wild-type
protein, depending on whether it is used at the optimal
Mssl16gat concentration or the same concentration as
wild-type (Figure 3A). While protein-mediated splicing
with wild type Mss116 reaches an amplitude of almost
100 % (97.8 £ 0.1 %), the reaction with Mssl16gat
proceeds to only 31.2£6.3 % (15nM protein) and
82.4+ 44 % (40nM protein), respectively. In striking
contrast, Mss116g41 behaves in a manner that is indistin-
guishable from wild-type protein during splicing of the SE
RNA (Figure 3B). Assuming that Mss116 performs two
functions, one on the exons and one on the intron core,
the Mss116gaT mutant appears to be specifically defective
in resolving problems associated with long exons.

Mss116 and Cyt-19 utilize similar mechanisms
during aiSy splicing

The N. crassa DEAD-box protein Cyt-19 can functionally
substitute for Mss116 during ai5y splicing in vivo (6) and
Cyt-19 can also promote ai5y splicing in vitro (7).
However, assays with different model substrates [e.g.
reverse branching and reverse splicing of the group II
intron bIl (9)] have suggested differences in specificity
and/or catalytic mechanism between these two proteins.
In order to investigate the functional similarity between
Mss116 and Cyt-19, we repeated the Mss116 experiments
described above with Cyt-19 and its Motif 111 SAT/AAA
mutant (Cyt-19ga7).

Initial splicing experiments with Cyt-19 indicated that
this protein has a narrower range of permissive reaction
conditions than Mss116. Extensive optimization experi-
ments varying ATP, potassium and protein concentrations
(Supplementary Figure S3) have identified an uncommon-
ly high sensitivity to monovalent salt concentrations.
Nonetheless, we were able to identify optimal reaction
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conditions for Cyt-19 (1nM precursor RNA, 100nM
protein, 40mM MOPS-KOH, pH 7.5, 70mM KCI,
13mM MgCl, and 5SmM ATP). Under these conditions,
wild type Cyt-19 mediates LE splicing almost as efficiently
as  Mssll6  (kops = 0.042 + 0.011 min~"; Figure 4).
Cyt-19gaT shows ~3-fold reduced activity
(0.016 + 0.006 min~"). Cyt-19 is also able to promote SE
splicing. Under the buffer conditions used for the Cyt-19
reaction, only ~20 % of the SE molecules self-splice in the
absence of protein, with a rate constant of
0.006 + 0.002min~'. Analogous to Mssl116, both wild
type Cyt-19 and Cyt-19g51 stimulate SE splicing to the
same degree (0.013 + 0.004min~" for wild-type Cyt-19,
0.011 + 0.004min"" for Cyt-19551) and raise the ampli-
tude of the splicing reaction from 20% to 80% (Figure 4).
Thus, the reactivity of Cyt-19 and Cyt-19g51 closely
parallel the behavior of Mssl16 and Mssl16gat under
their respective optimized reaction conditions.

DISCUSSION

Here, we have shown that the Mss116 protein, which is a
DEAD-box splicing factor, stimulates group II intron
self-splicing in vitro through two distinct mechanisms
that can be differentiated by varying the length of precur-
sor exons and examining the function of protein mutants.

Mss116 resolves a defect imposed by long exons

Mss116 clearly plays a role in overcoming the inhibitory
effects of the LE sequences that have historically been
employed in studies of aiSy splicing. The classical pJD20
construct that has been used in previous studies of
self-splicing and protein-assisted splicing contains exons
of 293 (5) and 321 (3’) nt. Several lines of evidence
provide clear indication of a strong exon effect in this
construct and they suggest that Mss116 serves to resolve
misfolded structures within one or both exons.
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Figure 3. Mss116 SAT mutant promotes splicing of both LE and SE. Timecourses with wild-type protein and without protein from Figure 2 are
included for comparison. (A) Splicing of LE. Rate constants obtained from at least three independent experiments are 0.0039 £ 0.0014min~"' for LE
splicing with 15nM Mss116 SAT/AAA mutant and 0.010 + 0.00062min~' for LE splicing with 40nM Mss116 SAT/AAA mutant. (B) Splicing of
SE. The rate constant from at least three independent experiments is 0.014 + 0.00086 min~' for SE splicing with 15nM Mssl116 SAT/AAA mutant.
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Figure 4. Cytl9-mediated splicing of SE and LE. All reactions are
analogous to the reactions shown in Figures 2 and 3, but they were
performed in Cyt-19 splicing buffer and with 100nM Cyt-19 or the
Cyt-19 SAT—AAA mutant, where indicated. Rate constants obtained
from at least three independent experiments are 0.006 + 0.002min "' for
SE self-splicing, 0.042 + 0.011 min~" for Cyt-19-mediated LE splicing,
and 0.009 + 0.002min"" for Cyt-19-mediated SE splicing. The Cyt-19
SAT—AAA mutant yields rate constants of 0.016 £ 0.006min~" for
LE splicing, and 0.009 + 0.001 min~" for SE splicing.

Early studies of aiSy self-splicing kinetics consistently
revealed biphasic kinetic behavior under high salt condi-
tions and it was well established that the precursor mol-
ecules existed in one of two populations (16), which exist
in about equal proportions: one population is fast
(0.028min~") and one is slow (0.0042min~"). It had
been hypothesized that the slow population represents a
kinetically trapped state of the precursor. That the
misfolded structure lies within one of the exons was sup-
ported by the findings of Nolte et al. (26), who showed
that ai5y self-splicing proceeds through fast, mono-
exponential kinetics when the exons are considerably
shortened. This construct (equivalent to our SE construct)
reacts uniformly as a single population with a rate
constant (0.19min~") that matches that of the fast state
for the LE construct (0.22min""). Here we have confirmed
the Nolte result, and extended it by performing a com-
parative analysis of SE and LE splicing at low salt. We
observe, as reported previously, that the LE construct is
incapable of splicing at low salt. However, the SE con-
struct readily self-splices under near-physiological condi-
tions. Thus, the long exons are inhibitory to the splicing
mechanism, and this effect becomes particularly
pronounced under low salt conditions.

The likely mechanistic effect of the LEs only becomes
apparent upon addition of the Mssl116 co-factor. While
Mss116 and ATP stimulate splicing by the SE construct,
the effect is more pronounced for the LE construct, as if
the protein alleviates multiple defects in the latter case.
Most importantly, the Motif III SAT mutant
(Mss116saT_.aaa), Which is defective in ATPase activity
(22) and RNA unwinding (8), has a greatly reduced ability
to stimulate LE splicing, while it affects the behavior
of the SE construct like WT Mssll6. Thus,
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Mssl16-stimulated splicing of SE clearly proceeds by a
different mechanism (see below). Taken together, these
results indicate that Mssl16 and ATP have a role in
mitigating problems imposed by the artificial long exons
that have been traditionally used in studies of aiSy
self-splicing, and it is likely that these problems involve
exon misfolding. Based on the experiments by Nolte et al.
(26), who observed that 3’-exons of any length did not
interfere with splicing, we expect the 5-exon to be
mainly responsible for the effect. Based on studies of
group I splicing constructs (27), a possible mechanism of
interference is the blocking of proper IBS/EBS pairing
through interactions between IBS sequences and the
upstream exon.

Mss116 assists folding of the aiSy intron during splicing

In addition to its influence on the exons, and distinct from
this function, we observe that Mss116 contributes to re-
activity of the intron itself. The results are consistent with
a role for Mssl16 in promoting the productive folding
pathway of the intron, by stabilizing the known series of
on-pathway folding intermediates (8,24). The data is not
consistent with a kinetic trap within the ai5y intron itself.
Several lines of evidence support this model.

Prior to this study, it was assumed that the ai5y intron
strictly required protein cofactors for splicing in vivo or for
splicing in vitro under conditions that approximate the
physiological environment. However, here we show that
the SE construct can readily splice under conditions of low
salt and physiological temperature. This indicates that the
intron is fully capable of adopting the native fold without
assistance from a chaperone, which is consistent with the
many biophysical studies that have recently been con-
ducted on the aiSy intron RNA.

A second piece of evidence is that the Mss1165aT_. aaA
mutant stimulates SE splicing to the same extent as that
observed for WT Mss116. Thus, whatever stimulatory role
that Mss116 plays during intron function, it is unlikely to
involve RNA unwinding or the resolution of kinetically
trapped species. This is also corroborated by a recent
study showing that ATP hydrolysis and Mssl16
turnover, but not robust unwinding, are required for the
splicing function of Mss116 in vivo (32).

Third, Mssl116 increases both the amplitude and the
rate constant for SE splicing. The fact that Mss116 in-
creases the rate constant is inconsistent with the
previously-proposed kinetic redistribution model for
chaperone resolution of kinetic traps (31). In other
words, if Mss116 simply served to increase the population
of misfolded molecules that are capable of reaction, we
would only observe an influence on amplitude. The fact
that Mss116 increases the rate constant suggests that it has
a positive influence on the actual splicing mechanism,
increasing the rate constant at which productive inter-
mediates actually form, as observed in studies of direct
folding.

Biological relevance of Mss116-stimulated splicing ir vitro

While the exon effect of Mss116 in vitro is significant, it is
unlikely to be biologically relevant. There are several
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reasons for this. First of all, splicing precursors in vivo are
not flanked by long, naked pieces of RNA. The exons
would normally be coated with proteins and their
behavior coordinated with splicing. The problem in this
case is compounded by the artificial exons of the pJD20
construct, which contain vector sequence at the distal ends
(24nt 5 and 33nt 3, Supplementary Figure 1) and are
unlikely to reflect the behavior of natural flanking exon
sequence. The misfolded ‘exon-effect’ that is typically
observed with denatured and subsequently refolded
RNA precursors (26) may never pose a problem for
RNA folding in the cell. Co-transcriptional folding and
ubiquitous single-stranded nucleic acid binding proteins
are likely to prevent exon sequences from interfering
with intron folding. Recent in vivo experiments with the
Tetrahymena group I intron corroborate this idea. They
suggest that after initial folding of the RNA, refolding of
kinetically trapped molecules does not happen to a large
extent and the misfolded RNAs are generally degraded
(33). If the same is true for aiSy, resolution of kinetic
traps is unlikely to be the major role of proteins like
Mssl16 or Cyt-19. Instead of unfolding misfolded
RNAs, they might just accelerate folding to increase the
amount of functional RNA.

Previous studies of Mssl116 mutant proteins and their
effect on aiSy self-splicing in vivo are not consistent with a
role in resolving misfolded exons. It has been clearly
shown that the Mssl16saT_,aaa mutant has minimal
effects on the apparent splicing activity or resultant yeast
Cox2p gene expression in vivo. Side-by-side analyses of
Mss116 and Mssl16gat_.aaa reveal Cox2p gene expres-
sion levels and splicing efficiencies that are indistinguish-
able from WT in the experimental data that is publicly
available (Figure 29 and 30 in ref. 23). The behavior of
Mss116sa1— aan i vivo therefore parallels the behavior of
Mss116sa1_aaa behavior during splicing of the SE con-
struct in vitro, in which exon effects are not operative and
a role in stabilization of folding intermediates is likely to
be predominant. This finding underscores the striking
utility of DEAD-box proteins and their mechanistic flexi-
bility, but it is most consistent with a direct and product-
ive role for Mss116 in the folding of the ai5y intron, as
suggested by direct biophysical analyses of the folding
pathway.

DEAD-box proteins are general folding factors

Comparison of the activities of the S. cerevisiae protein
Mss116 (the natural interaction partner of aiSy) and the
N. crassa protein CYT-19 showed that both proteins
catalyze RNA folding in a very similar manner. They
require different salt conditions and protein concentra-
tions for optimal activity, but under optimal conditions,
they behave similarly. Most notably, the Motif III
mutants of both proteins show a ~5-fold defect in LE
splicing, but are not significantly compromised relative
to wild-type protein in SE splicing. This indicates that
both proteins assist RNA folding in at least two different
ways. Importantly, these proteins increase the activity of
both group I and group II introns, suggesting that they
have not evolved to specifically interact with a single large

RNA or a single misfolded structure (6). Furthermore,
CYT-19 can also act on RNAs from completely different
organisms (6,7). Therefore, these proteins are versatile
enzymes that can stimulate RNA folding of many different
substrates. It is even possible, and perhaps likely, that
these proteins can perform roles in RNA folding in vitro
that are provided by other proteins in vivo.

We therefore propose that a group of DEAD-box
proteins (including Dedl, which was previously shown
to also facilitate aiSy splicing; 8,9) can act as RNA chap-
erones, but not exclusively by disrupting misfolded struc-
tures. Rather than improving their unwinding function,
they have evolved a diverse repertoire of different activities
such as strand annealing, conformational switching and
charge neutralization in order to facilitate collapse and
structural rearrangements in large RNAs.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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