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ABSTRACT

The recent discovery of genomic 5-hydroxy-
methylcytosine (hmC) and mutations affecting the
respective Tet hydroxylases in leukemia raises
fundamental questions about this epigenetic modi-
fication. We present a sensitive method for fast
quantification of genomic hmC based on specific
transfer of radiolabeled glucose to hmC by a
purified glucosyltransferase. We determined hmC
levels in various adult tissues and differentiating
embryonic stem cells and show a correlation with
differential expression of tet genes.

INTRODUCTION

DNA methylation plays a crucial role in the epigenetic
regulation of gene expression during development and
disease (1). The post-replicative addition of a methyl
group to the carbon-5 of cytosine has long been the only
known enzymatic modification to bases in mammalian
genomic DNA, and due to its crucial role as an epigenetic
mark it is often referred to as the fifth base. Recently, the
Ten-Eleven Translocation 1 gene (tet/) was shown to
encode a 2-ketoglutarate- and Fe(Il)-dependant
hydroxylase that converts genomic 5-methylcytosine
(mC) to 5-hydroxymethylcytosine (hmC) and on the
basis of sequence homology the closely related Tet2 and
3 proteins are expected to catalyze the same reaction (2,3).
To date hmC has been detected in genomic DNA isolated
from embryonic stem cells (ESCs) and some adult tissues
and it appears to be relatively abundant in the central
nervous system (2,4—6). The functional relevance of hmC
in these tissues is unknown and roles as an epigenectic
mark and/or an intermediate of oxidative demethylation
are intriguing possibilities (2,7). In  addition,

translocations as well as nonsense and missense mutations
of tet genes have been identified in myelodysplastic syn-
dromes including several forms of myeloid leukemia
(8-10), raising the possibility that aberrant genomic
hmC patterns may be involved in these pathologies.
These observations grant sustained efforts to define the
role(s) of hmC in mammalian genomes.

Quantification and selective detection of genomic hmC
is technically challenging due to the relatively low abun-
dance and similarity of hmC to the more abundant mC,
not only in structural terms but also with respect to lack of
deamination by bisulfite treatment (11-12). We sought to
exploit enzymes involved in hmC modification that
evolved as part of the struggle between prokaryotes and
their viruses.

The three methods used so far to quantify global hmC
content in mammalian genomes are designed to detect
hmC in hydrolyzed DNA globally (HPLC/esi-ms/ms) or
at subsets of CpG sites (2,4,5). As hmC may also occur at
non-CpG sites, the latter type of methods may underesti-
mate its abundance. In addition, none of these procedures
is easily applicable to large sample numbers. We therefore
sought to establish a highly sensitive and accurate method
to detect hmC independently of sequence context and with
higher throughput capacity. To this aim, we turned our
attention to glucosyltransferases of T-even bacteriophages
that transfer glucose from UDP-glucose donor to genomic
hmC. Notably, all cytosines in the T4 genome are replaced
by hmC residues that are invariably modified by o- and
B-glucosyltransferases (o- and B-gt; Figure 1A). We
reasoned that by using UDP-[*H]glucose the incorpor-
ation of radiolabeled glucose in DNA should reflect the
abundance of hmC. We focused on B-gt rather than a-gt,
as it was shown to glucosylate to completion all tested
hmC-containing  DNA substrates both in vivo and
in vitro, including the non-glucosylated T4 genome
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Figure 1. Elements of the hmC glucosylation assay. (A) Schematic representation of the hmC glucosylation reaction catalyzed by pB-gt.
(B) Coomassie blue stained gel showing the purified B-gt preparation. (C) Example of calibration curve using mixtures of hmC-containing and
unmodified reference fragment (equal total DNA amounts). Note the linear relationship between [*H]glucose incorporation and percentage of hmC.

(13,14). This indicates that B-gt can glucosylate hmC in-
dependently of DNA sequence and structural context and
therefore is ideally suited for this assay.

MATERIALS AND METHODS
Cell culture and differentiation of ESCs

Undifferentiated J1 and El14 ESCs were maintained on
gelatin-coated dishes in Dulbecco’s modified Eagle’s
medium containing 16% fetal bovine serum (PAA
Laboratories GmbH), 0.1mM  B-mercaptoethanol
(Invitrogen), 2mM L-glutamine, 1 x MEM Non-essential
Amino Acid Solution, 100U/ml penicillin, 100 pg/ml
streptomycin (PAA Laboratories GmbH) and 1000 U/ml
recombinant mouse LIF (Millipore). To induce embryoid
body (EB) formation, ESCs were resuspended in the
same medium as above but without LIF and cultured
in hanging drops (600cells/20ul drop) for 4 days.
Subsequently, EBs were cultured in bacterial culture
dishes and the medium was replaced every 4 days.

DNA and RNA isolation

All tissue samples were prepared from 6-week-old 129sv
mice. Genomic DNA and total RNA were isolated
from tissue samples using the NucleoSpin Triprep Kit
(Macherey-Nagel). Genomic DNA and total RNA were
isolated from ESCs and EBs using the Blood & Cell
culture DNA mini kit (QIAGEN) and TRIzol reagent

(Invitrogen), respectively. To avoid genomic DNA con-
tamination, isolated RNA was digested with recombinant
RNase-free DNase I (Roche) and further purified with the
QIAGEN RNeasy kit. Genomic DNA samples were
sheared to 500-1500bp fragments by sonication to
reduce the viscosity and improve homogeneity. The con-
centration of genomic DNA samples was measured by
fluorometry. Fifty microliters of diluted sample were
mixed with 50 pl of 2 x TNE (Tris 20 mM, pH 7.4; NaCl
400mM and EDTA 2mM) containing 200ng/pl of
Hoechst 33258. Fluorescence was measured in a
TECAN infinite M1000 plate reader (Ex: 350/10; Em:
455/10). Serial dilutions (20-2000 ng/ml) of the hmC con-
taining reference DNA fragment (see below) were used as
standard for quantification.

Protein expression and purification

The sequence encoding bacteriophage T4 p-gt was
synthesized at Mr. Gene GmbH (Regensburg) and cloned
into pET28b vector (Novagen). BL21(DE3) E. coli cells
carrying the expression construct were grown at 37°C
until Aggo = 0.6-0.7 and induced with I mM isopropyl
B-p-thiogalactopyranoside for 16 h at 20°C. Lysates were
prepared by sonication in 300mM NaCl, 50mM
Na,HPO,, 10mM imidazole, 1 mM [-mercaptoethanol,
cleared by centrifugation and applied to nickel-
nitrilotriacetic acid column (QIAGEN) pre-equilibrated
with lysis buffer. Washing and elution were performed
with lysis buffer containing 20 and 250 mM imidazole,
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respectively. Eluted proteins were applied to a Superdex
S-200 preparative gel filtration column (GE Healthcare)
in 150mM NaCl, 20mM Tris, pH 8.0, ImM DTT.
Fractions containing the p-gt peak were pooled and
applied to a ResourceQ anion exchange column (GE
Healthcare) in order to eliminate residual contaminants,
resulting in pure B-gt in the flowthrough.

Preparation of reference DNA fragments

Reference DNA fragments (1139 bp) containing 0 and
100% hmC were prepared by polymerase chain reaction
(PCR), using dCTP and 5-hydroxymethyl-dCTP (Bioline
GmbH), respectively. T4 phage DNA was used as
template with primers: 5-TGG AGA AGG AGA ATG
AAG AAT AAT-3 and 5-GTG AAG TAA GTA ATA
AAT GGA TTG-3, Phusion HF DNA Polymerase
(Finnzymes) and the following cycling profile: one cycle
of 98°C for 2min and 35 cycles of 98°C for 10s; 58°C for
10s; and 72°C for 30s. Primer sequences were selected
that do not contain cytosine residues. PCR products
were purified by gel electrophoresis followed by silica
column purification (Nucleospin, Macherey-Nagel).

Quantitative hmC glucosylation assay

Reactions contained 150 mM NaCl, 20 mM Tris, pH 8.0,
25mM CaCl,, ImM DTT, 2.8uM ‘cold’ UDP-glucose
(Sigma-Aldrich), 0.86nM UDP-[*H]glucose (glucose-
6-H; 60 Ci/mmol; Hartmann Analytic GmbH), 1pg of
DNA substrate and 36 nM recombinant B-gt in a total
volume of 50 pl. Reactions were incubated for 20 min at
room temperature and terminated by heating at 65°C for
10 min. Twenty microliters of each reaction were spotted
in duplicate on paper filters (Whatmann) and DNA was
precipitated by incubation in 5% TCA for 15min at room
temperature. Filters were washed twice with 5% TCA and
once with 70% ethanol. Remaining radioactivity was
measured using a Liquid Scintillation Analyzer Tri-Carb
2100TR (Packard) with quench indicating parameter set
on tSIE/AEC (transformed spectral index of the external
standard/automatic efficiency control) in 4 ml of Rotiszint
Eco Plus scintillation liquid (Roth GmbH) in Snaptwist
vials (Simport). Samples were measured for 30 min or until
the 20 value reached 2%. The percentage of hmC per total
cytosine was calculated from the incorporation of
["H]glucose using a calibration curve measured with the
reference fragment series for every experiment. The per-
centage of hmC was then corrected for the difference in C
abundance between reference fragment (35%) and mouse
genome (42%).

c¢DNA synthesis and real-time PCR

Five hundred nanograms of total RNA were used for
cDNA synthesis with the High-Capacity cDNA Reverse
Transcription Kit (with RNase Inhibitor; Applied
Biosystems). Equal amounts of cDNA were used for
real-time PCR with Power SYBR Green PCR Master
Mix (Applied Biosystems) on a 7500 Fast Real-Time
PCR System (Applied Biosystems) according to the manu-
facturer’s instructions. Gene expression levels were
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normalized to Gapdh and calculated using the compara-
tive Ct method (AACt method).

Primers for quantitative real-time PCR were designed
with the Primer Express software (Applied Biosystems)
and contained the following sequences: Gapdh forward
5-CAT GGC CTT CCG TGT TCC TA-3, Gapdh
reverse 5-CTT CAC CAC CTT CTT GAT GTC
ATC-3, Tetl forward 5-CCA GGA AGA GGC GAC
TAC GTT-3/, Tetl reverse 5-TTA GTG TTG TGT
GAA CCT GAT TTA TTG T-3/, Tet2 forward 5-ACT
TCT CTG CTC ATT CCC ACA GA-3/, Tet2 reverse
5-TTA GCT CCG ACT TCT CGA TTG TC-3, Tet3
forward 5-GAG CAC GCC AGA GAA GAT CAA-3
and Tet3 reverse 5-CAG GCT TTG CTG GGA CAA
TC-3'.

RESULTS AND DISCUSSION

T4 B-gt was expressed in bacteria as a 6 x His tag fusion
and purified to homogeneity by sequential nickel-NTA,
size exclusion and ion exchange chromatography
(Figure 1B). To assess whether transfer of [’H]glucose to
DNA is proportional to the hmC content within the range
previously reported for mammalian tissues, we prepared a
series of standard DNA substrate samples with global
hmC content ranging from 0.25 to 2% of total cytosine
by mixing corresponding proportions of two preparations
of the same 1.2 kb DNA fragment, one having all cytosine
residues replaced by hmC and the other containing no
hmC (Figure 1C). Using a 325-fold excess of unlabelled
UDP-glucose, the incorporation of radiolabeled glucose in
1 ng of total DNA substrate was strictly linear in this
range. This standard sample series was measured in
every assay to generate a calibration curve for the calcu-
lation of hmC content in genomic DNA samples. We first
measured genomic hmC levels in wild-type and Dnmtl, 3a
and 3b triple knockout (TKO) J1 ESCs (15) (Figure 2A
and B). Due to the absence of all three major DNA
methyltransferases, genomic DNA from TKO ESCs is
expected to contain very little, if any, cytosine methyla-
tion. Indeed, the measured level of genomic hmC in TKO
ESCs was at the detection limit (0.025%) of our assay,
while genomic DNA from wild-type ESCs contained
0.3% hmC relative to total cytosine. Real-time reverse
transcription (RT) PCR analysis showed that Tetl-3
mRNA levels are similar in wild-type and TKO ESCs,
with Tetl transcripts largely preponderant and Tet3
mRNA the least abundant (more than 40-fold lower
than Tetl). It was previously shown that differentiation
of mouse ESCs by withdrawal of LIF from monolayer
cultures for 5 days results in a reduction of genomic
hmC and concomitant decrease in Tetl transcripts (2).
We followed genomic hmC and Tetl-3 transcript
dynamics during EB differentiation of two commonly
used wild-type ESC lines (Figure 2A and B and
Supplementary Figure S1). In both cases, a sharp
decrease of hmC content was evident after 4 days of EB
culture, but a substantial recovery was observed after add-
itional 4 days of culture (Day 8). Interestingly, the tet
genes showed distinct expression dynamics during ESCs
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Figure 2. Quantification of genomic hmC and Tet transcripts in mouse tissues, undifferentiated ESCs and EBs. (A and C) hmC glucosylation assays.
The percentage of hmC per total cytosine was calculated from the incorporation of [*H]glucose using a calibration curve from the reference fragment
(see Figure 1C). Shown are average values and error bars from two (A) or one (C) biological replicates, each measured in two independent assays,
with the exception of hippocampus that was measured only once. In every assay, each sample was measured in duplicate. The dashed line in
(A) indicates the estimated limit of detection. (B and D) Real-time RT-PCR analysis for Tet transcript levels. Expression levels are all relative to
Tetl in kidney (set to 1), so that values in b and d are directly comparable. Shown are average values and error bars from two (B) and one
(D) biological replicates, each measured from two independent cDNA synthesis reactions. In every real-time PCR reaction, each sample was
measured in triplicate. Genomic DNA and RNA samples used in A/C and B/C, respectively, were isolated from the very same cell and tissue lysates.

differentiation. Tetl transcripts drastically decreased
in the first 4 days and further dropped by Day 8 of EB
culture. Tet2 mRNA levels also decreased in the first
4 days, but were fully restored in Day 8 EBs.
In contrast, Tet3 transcripts doubled at Day 4 and in-
creased about 20 times by Day 8 of EB culture. Thus,
the relatively high hmC content in undifferentiated ESCs
correlates with high levels of Tetl and, to a lower extent,
Tet2 transcripts, while the partial recovery of genomic
hmC in Day 8 EBs correlates with increased Tet2 and
Tet3 mRNA levels.

We then analyzed several adult mouse tissues
(Figure 2C and D). As reported earlier, the highest
levels of genomic hmC were found in brain regions,
although kidney also showed relatively high levels. In all
cases, the hmC content was at least four times higher than
the detection limit, while in a previous report using a dif-
ferent assay the same non-neural tissues were either mar-
ginally above or right at the detection limit (5). Abundant
hmC in brain tissues correlated with high levels of Tet3
and to a lower extent Tet2, a pattern similar to Day 8 EBs.
Thus, most differentiated tissues are characterized by very
low levels of Tetl and high levels of Tet3, while undiffer-
entiated ESCs show the opposite pattern. It will be

interesting to determine whether all pluripotent cell types
have this pattern and at which stages along the specifica-
tion of the various somatic lineages the relative expression
levels of tet genes change. Interestingly, kidney represents
an exception among the adult tissues analyzed as it shows
relatively high hmC content and a prevalence of Tet2 tran-
scripts. This is consistent with a cellular defect in proximal
convoluted tubules of the kidney as the only phenotype
described for Tet2 null mice (16). These observations
suggest that Tet proteins have redundant roles and that
the lack of a specific Tet family member may result in
phenotypic alterations only in tissues where high levels
of that Tet enzyme cannot be compensated by the other
family members. In this context, it should be noted
that the assay described here could also be employed to
measure the enzymatic activity of Tet proteins and their
mutants identified in leukemia patients by using mC-
containing DNA substrates.

In conclusion, we have established an accurate assay for
the quantification of genomic hmC that: (i) is more sensi-
tive than previously described methods; (ii) is not subject
to sequence bias; (iii) allows simultaneous processing of
large sample numbers; and (iv) does not require
specialized and expensive equipment. It should be noted
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that lower concentrations of ‘cold” UDP-glucose should
allow scaling down the amount of substrate DNA
without loss of signal. This assay will be highly useful to
determine the global abundance of hmC in genomic DNA,
especially in situations where limited amounts of tissue are
available such as isolates of rare primary cell types and
clinical samples.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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