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Abstract

T cells adopt a polarized morphology in lymphoid organs, where cell-to-cell transmission of HIV-1 is likely frequent.
However, despite the importance of understanding virus spread in vivo, little is known about the HIV-1 life cycle, particularly
its late phase, in polarized T cells. Polarized T cells form two ends, the leading edge at the front and a protrusion called a
uropod at the rear. Using multiple uropod markers, we observed that HIV-1 Gag localizes to the uropod in polarized T cells.
Infected T cells formed contacts with uninfected target T cells preferentially via HIV-1 Gag-containing uropods compared to
leading edges that lack plasma-membrane-associated Gag. Cell contacts enriched in Gag and CD4, which define the
virological synapse (VS), are also enriched in uropod markers. These results indicate that Gag-laden uropods participate in
the formation and/or structure of the VS, which likely plays a key role in cell-to-cell transmission of HIV-1. Consistent with
this notion, a myosin light chain kinase inhibitor, which disrupts uropods, reduced virus particle transfer from infected T
cells to target T cells. Mechanistically, we observed that Gag copatches with antibody-crosslinked uropod markers even in
non-polarized cells, suggesting an association of Gag with uropod-specific microdomains that carry Gag to uropods. Finally,
we determined that localization of Gag to the uropod depends on higher-order clustering driven by its NC domain. Taken
together, these results support a model in which NC-dependent Gag accumulation to uropods establishes a preformed
platform that later constitutes T-cell-T-cell contacts at which HIV-1 virus transfer occurs.
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Introduction

One of the primary natural targets of HIV-1 is the T cell. HIV-

1 spread between infected and uninfected T cells likely occurs

frequently in densely packed environments such as lymph nodes in

vivo. Two-photon imaging studies have shown that a majority of T

cells in lymph nodes are highly motile and have a polarized

morphology [1,2,3,4,5,6]. Therefore, it is likely that, in lymphoid

organs, HIV-1 replicates within and is transmitted by polarized T

cells. However, the life cycle of HIV-1 in polarized T cells has not

been examined in detail.

HIV-1 assembly occurs at the plasma membrane and is driven by

the HIV-1 polyprotein Gag. Gag is the primary structural protein

of retroviruses, including HIV-1, and is both necessary and

sufficient for formation of virus-like particles [7]. HIV-1 Gag is

composed of four structural domains: matrix (MA), capsid (CA),

nucleocapsid (NC) and p6. MA mediates Gag targeting and binding

to the plasma membrane, primarily through the myristoyl group on

the N terminus of MA, which inserts into the plasma membrane, as

well as MA basic amino acids that interact with phosphatidylino-

sitol-4,5-bisphosphate [PI(4,5)P2], a plasma-membrane-specific

phospholipid [8,9,10,11,12,13,14,15,16,17,18,19,20]. CA mediates

Gag dimerization through an interface in its C terminal domain

(CTD), in which amino acids W184 and M185 play key roles

[21,22,23,24,25,26,27,28,29,30,31,32,33]. NC binds specifically to

the viral genomic RNA, which is essential for packaging viral

genomes into virions [34]. In addition, NC contributes to

multimerization of Gag, whereby RNA is thought to serve as a

scaffold [21,25,28,35,36,37,38,39,40,41,42,43]. p6 contains pep-

tide sequences that recruit cellular endosomal sorting complex

required for transport (ESCRT) proteins, which facilitate the

release of virus particles [44,45,46].

A polarized T cell forms a leading edge at the front and a

protrusion called a uropod at the rear [47,48,49]. There are

several proteins known to be enriched in the uropod, including

intercellular adhesion molecule (ICAM)-1, -2, and -3, P-selectin

glycoprotein ligand (PSGL)-1, CD43, and CD44 [50,51]. The

microtubule organizing center (MTOC) is also known to localize

to the base of the uropod [49,52]. Previous studies have observed

that in T cells and monocytes, HIV-1 proteins localize to a cell

protrusion, which resembles a uropod [53,54,55,56,57]. Further-

more, virus particles are enriched in several uropod-associated
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proteins, such as ICAM-1, ICAM-2, CD43 and CD44 [58,59]. A

raft-associated lipid known to localize to uropods, GM1 [60], also

associates with virus particles [54,61,62]. Altogether, these

observations suggest that uropods potentially serve as sites of virus

assembly in polarized T cells. However, the nature of Gag

localization in polarized T cells and its significance to virus spread

have yet to be fully determined.

T cell uropods have been shown to mediate contact between T

cells and other cells, which is consistent with the observation of

adhesion molecule enrichment in uropods [63,64,65]. Thus, it is

possible that HIV-1 accumulation at the uropod may play a role in

cell-to-cell transmission. Cell-to-cell transmission is ten to several

thousand times more efficient than cell-free transmission

[53,57,66,67,68,69,70,71]. Recent studies have described specific

cell contact structures that facilitate cell-to-cell transmission

[67,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86]. Live cell im-

aging studies have revealed that particles of HIV-1 and murine

leukemia virus (MLV) are transferred from infected cells to

uninfected target cells along the surface of filamentous extensions

called membrane nanotubes and cytonemes [80,81,82,87,88].

Virological synapses (VS), which appear to structurally resemble

immunological synapses [77,78,89,90,91,92,93,94,95,96,97], are

also thought to facilitate the direct transfer of budding virus

particles from one cell to another [53,67,71,78,80,95]. However,

the mechanisms leading to the establishment of these transmission

routes, especially the VS, remain to be elucidated.

In this study, we determined unambiguously that the uropod is

the cell structure to which membrane-associated Gag accumulates

in polarized T cells. Gag-containing uropods mediated frequent

contact with uninfected target cells. Virtually all observed VS,

defined by accumulation of CD4 and Gag to cell contacts, showed

enrichment of the uropod marker CD43, suggesting a major role

for HIV-1 localization to the uropod in virus spread. Consistent

with this possibility, upon disruption of uropod formation, cell-to-

cell transfer of HIV-1 was significantly reduced. Gag on the cell

surface copatched strongly with uropod markers not only in

polarized T cells but also in non-polarized T cells. Gag-containing

patches dispersed on the membrane of non-polarized cells

appeared to laterally move and concentrate at the uropod when

cells became polarized. These patches maintained colocalization

with uropod markers, suggesting that uropod-directed microdo-

mains play a role in polarized Gag localization. Uropod

localization of Gag required higher-order multimerization or

clustering mediated by NC. These findings strongly support that

multimerization-dependent Gag localization to uropods represents

one mechanism by which the VS is formed.

Results

Gag localizes to uropods in polarized T cells
To examine Gag localization in polarized T cells, we expressed

a YFP-tagged Gag (Gag-YFP) in either primary T cells or in a

polarized T cell line, P2. To express Gag-YFP, T cells were

infected with VSV-G-pseudotyped HIV-1 that encodes Gag-YFP.

Two days post-infection, cells were immunostained for uropod

markers PSGL-1 or CD43 (Figure 1A and B). Alternatively, the

MTOC, which localizes to the base of the uropod, was detected

using anti-a-tubulin (Figure 1C). In both primary CD4+ T cells

and P2 cells, approximately 50-60% of cells showed polarized

morphology, and infection with VSV-G-pseudotyped HIV-1 did

not substantially alter the percentage of polarized cells (Table 1).

Primary CD4+ T cells expressing Gag-YFP showed strong

colocalization of Gag on the plasma membrane with both uropod

markers PSGL-1 and CD43, as well as co-polarization with the

MTOC in virtually all Gag-positive cells with uropods (Figure 1A–

C and Table 2). In contrast, Gag showed segregation from LFA-1,

a non-uropod-associated protein [98] (Figure 1D). Similar to

primary T cells, P2 cells also showed strong colocalization of

PSGL-1 and Gag-YFP, as well as co-polarization of the MTOC

and Gag-YFP (Figure 1E and F and Table 2). In these cells,

plasma-membrane-associated Gag was highly polarized and

detected only in the uropod region (Gag polarization was

quantitatively analyzed as shown below). Similarly, untagged

Gag detected at the plasma membrane using anti-Gag antibodies

also showed strong colocalization with uropod markers (Figure

S1). These results indicate that Gag localizes to uropods in

polarized T cells. To determine whether uropod localization of

Gag-YFP is stable, we performed live cell analysis of primary T

cells expressing Gag-YFP. We observed that Gag-YFP maintains

localization in the uropod during T cell migration for a minimum

of almost 30 min (Figure 1G and Movie S1).

To determine whether uropod-associated Gag is able to form

mature particles, P2 and primary CD4+ T cells were infected with

VSV-G-pseudotyped HIV-1 encoding Gag-iYFP. This Gag

derivative contains YFP inserted between MA and CA and forms

mature Gag proteins and free YFP upon cleavage by viral protease

[99]. When cells expressing Gag-iYFP were immunostained with

an anti-p17MA antibody, which only recognizes the mature,

cleaved matrix domain of Gag [100,101], the YFP signal was

observed to colocalize substantially with p17MA signal at the

uropod (Figure 2A and Table 3). We also observed that both Gag-

iYFP and Gag-YFP colocalize well with HIV-1 Env in the uropod

(Figure 2B and Table 3). These results suggest that at least a subset

of Gag localized at uropods is capable of forming Env-containing

virus particles that undergo Gag processing essential for virion

maturation. It should be noted that, similar to previous studies

[61,96], we performed immunostaining of Env prior to fixation.

Thus, the possibility of antibody crosslinking playing a role in Env

localization should be considered.

Uropods mediate contact between infected and target T
cells

Uropods in uninfected T cells have been shown to mediate

contact between T cells and other cells [63,65]. Therefore,

accumulation of Gag to, and particle formation at, the uropod

Author Summary

CD4+ T cells are natural targets of HIV-1. Efficient spread of
HIV-1 from infected T cells to uninfected T cells is thought
to occur via cell-cell contact structures. One of these
structures is a virological synapse where both viral and
cellular proteins have been shown to localize specifically.
However, the steps leading to the formation of a
virological synapse remain unknown. It has been observed
that T cells adopt a polarized morphology in lymph nodes
where cell-to-cell virus transmission is likely to occur
frequently. In this study, we show that in polarized T cells,
the primary viral structural protein Gag accumulates to the
plasma membrane of a rear end structure called a uropod.
We found that Gag multimerization, driven by its
nucleocapsid domain, is essential for Gag localization to
uropods and that HIV-1-laden uropods mediate contact
with target cells and can become part of the virological
synapse. Our findings elucidated a series of molecular
events leading to formation of HIV-1-transferring cell
contacts and support a model in which the uropod acts
as a preformed platform that constitutes a virological
synapse after cell-cell contact.

HIV-1 Gag Localization to Uropods & T-T Contacts
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may facilitate cell-to-cell transmission of HIV-1. To examine

whether contact of HIV-1-infected T cells with target T cells is

preferentially mediated by uropods, we performed live cell

imaging experiments. Fresh target primary T cells were stained

with a blue fluorescent dye, CMAC, and cocultured with Gag-

YFP-expressing primary T cells. This coculture was then

immunostained with anti-PSGL-1, which had been prelabeled

with Zenon AlexaFluor594. We observed that the uropod

containing Gag-YFP maintained contact with CMAC-stained T

cells for over 20 min as the cells moved through the field

(Figure 3A and Movie S2). These observations suggest that HIV-1-

infected T cells are able to mediate stable contacts with target cells

through their uropods. We next quantified the newly formed

contacts between Gag-YFP-expressing primary T cells and

CMAC-stained target primary T cells formed during a 3-h

coculture period. An example of T cell contacts is shown in

Figure 3B. We found that the majority of newly formed contacts

occurs at the uropod (Figure 3C), despite the average uropod

constituting only approximately 25% of the total cell surface (data

not shown). These results indicate that Gag-containing uropods

stably and preferentially form new contacts with uninfected T

cells. In these experiments, when target cells are also polarized,

infected cell uropods formed a similar number of contacts with

both ends of target cells (data not shown).

Gag-containing uropods of infected cells participate in
the formation and/or structure of the VS to which CD4 of
target T cells accumulates

It is possible that cell contacts formed by the infected cell

uropods observed above actively participate in VS formation. To

address this possibility, we examined localization of CD4, which is

known to accumulate to the VS on the cell surface of target cells.

P2 cells infected with VSV-G-pseudotyped HIV-1 expressing Gag-

CFP and Env were immunostained for CD43 and mixed with

target cells prelabeled with non-blocking, FITC-conjugated anti-

CD4. After 3 h of coculture, cells were analyzed by live cell

microscopy. When infected P2 cells were in contact with target

SupT1 cells, CD4 on the surface of SupT1 cells accumulated to

junctions formed between Gag-CFP-positive, CD43-positive

uropods and target cells (Figure 4A). We found during quantitative

analyses that CD4 accumulation to the cell-cell junctions

predominantly takes place when Gag-CFP-positive uropods, but

not non-uropod regions, of infected P2 cells are in contact with

target SupT1 cells (Figure 4C). Such CD4 accumulation was

rarely observed at junctions formed between Gag-CFP-negative or

uninfected P2 cells and SupT1 cells (Figure 4A–C). These results

suggest that infected T cell uropods are actively involved in

recruitment of CD4 to cell junctions, perhaps through accumu-

lation of Env (Figure 2). As cell junctions enriched in viral antigens

such as Gag and the HIV receptor CD4 are defined as the VS in

previous studies [61], these results support a model in which

uropods or uropod-derived membrane components specifically

participate in formation of the VS.

Myosin light chain kinase inhibitor depolarizes cell
morphology and Gag localization and reduces cell-to-cell
transfer of Gag-YFP

In order to explore whether Gag accumulation to uropods

facilitates transmission of HIV-1, we performed a cell-to-cell virus

transfer assay. In this flow-cytometry-based assay, we measured

transfer of YFP fluorescence, representing virions, from infected

P2 cells expressing Gag-YFP to CMTMR-stained SupT1 target

cells. Similar assays have been used in previous studies for

analyzing cell-to-cell virus spread [53,71,102,103,104]. Represen-

tative flow cytometry plots for control cocultures are shown in

Figure 5A. In these assays, we and others have observed that

binding of cell-free virions to target cells is undetectable [53] (data

not shown). Therefore, transfer of fluorescence represents cell-to-

cell virus transfer. Consistent with previous reports [53], we

observed a significant decrease in virus transfer when cells were

cocultured in the presence of an anti-CD4 antibody (Leu3A) that

prevents CD4-Env interaction, but not an isotype control IgG

(Figure 5A and C). These data confirm the importance of Env in

Figure 1. Gag stably localizes to the uropod in polarized T cells.
Primary T cells (A–D) and P2 cells (E–F) expressing Gag-YFP (green)
were immunostained for uropod and non-uropod markers as described
in the Materials and Methods section, and observed using an
epifluorescence microscope. Uropods were identified by the presence
of PSGL-1 (A and E) and CD43 (B) as well as by the location of the
MTOC determined by immunostaining with anti- a-tubulin (C and F,
arrows). LFA-1 (D) is a known non-uropod marker and served as a
negative control. G) Cells expressing Gag-YFP (green) were immuno-
stained with anti-PSGL-1 prelabeled by AlexaFluor-594-conjugated anti-
mouse IgG (red). Images were acquired every 30 s for 30 min as the
polarized cell migrated through the field. Yellow color indicates
colocalization of PSGL-1 and Gag-YFP.
doi:10.1371/journal.ppat.1001167.g001

HIV-1 Gag Localization to Uropods & T-T Contacts

PLoS Pathogens | www.plospathogens.org 3 October 2010 | Volume 6 | Issue 10 | e1001167



cell-to-cell transfer of HIV-1. Using this assay, we examined effects

of cell depolarization on cell-to-cell HIV-1 transfer using a myosin

light chain kinase inhibitor, ML7. As expected, treatment of Gag-

YFP-expressing P2 cells with this inhibitor disrupted uropod

formation and dispersed Gag-YFP on the plasma membrane

(Figure 5B). ML7 did not have a major impact on efficiency of

VLP release by Gag-YFP calculated as the amount of virion-

associated Gag as a fraction of total Gag (Figure S2 and Text S1).

However, because ML7 treatment reduces protein synthesis (data

not shown), it was possible that any decrease in cell-to-cell virus

transfer by treatment with ML7 may have arisen from reduced

Gag expression instead of disruption of cell polarity. To rule out

the indirect effect of protein synthesis inhibition on virus transfer,

we included 10 mg/ml cycloheximide in all coculture conditions,

including those treated with Leu3A and control IgG described

above. As shown in Figure 5A, substantial virus transfer occurred

even in the presence of cycloheximide. Finally, we observed that in

the presence of cycloheximide, ML7 treatment significantly

decreased cell-to-cell virus transfer (Figures 5C and S3). Together

with the data showing that the uropod participates in formation of

the VS (Figure 4), these results suggest that polarized localization

of Gag and/or assembling particles at the uropod contributes to

cell-to-cell transfer of virus particles to target cells.

Gag localizes to uropod-specific microdomains
Because the results presented thus far suggest that Gag-laden

uropods play a major role in cell-to-cell virus transmission, we next

sought to elucidate the mechanism by which Gag accumulates to

uropods. Gag has been shown previously to associate with

microdomains, such as lipid rafts and tetraspanin-enriched

microdomains (TEMs) [10,54,61,105,106,107,108,109,110,111,

112], and these microdomains are observed at the VS

[61,80,113,114]. Since subsets of these microdomains are

implicated in polarized localization of proteins in leukocytes

[49,60,115,116,117,118], it is conceivable that Gag utilizes

uropod-specific microdomains for transport to the uropod. In this

case, one would expect to observe copartitioning of Gag and

uropod markers to the same microdomain even in unpolarized

cells. A common method to test whether two proteins share a

propensity for associating with the same microdomain is to test for

colocalization, or ‘‘copatching’’, after crosslinking with antibodies

specific to each of the two proteins [119,120,121,122,123,124].

We used this assay to examine whether Gag-YFP associates with

uropod-directed microdomains in unpolarized P2 cells. As Gag

forms multimers on its own, antibody-mediated crosslinking was

needed only for cell surface marker proteins that include the

uropod markers PSGL-1 and CD43 and the non-uropod marker

LFA-1. Because Gag has been previously shown to colocalize with

TEMs using similar methods [109], we also included the

tetraspanin CD81 in the analysis. As observed in previous reports

[109], we found that Gag copatches with CD81 (Figure 6A)

(correlation coefficient or CC = 0.46; Figure 6E). Relative to

CD81, however, the uropod markers PSGL-1 and CD43

copatched more extensively with Gag-YFP (CC = 0.69 and 0.70,

respectively; Figure 6E). On the other hand, even though LFA-1

showed punctate localization as well, we observed a segregation of

LFA-1 and Gag-YFP (Figure 6D) as indicated by the negative

correlation coefficient (CC = 20.14; Figure 6E). Because copatch-

ing between Gag and uropod markers was observed even in non-

Table 1. Quantification of T Cell Polarization.

Gag-Expressing Cells Non-Gag-Expressing Cells

Polarized (% of total) Unpolarized (% of total) Total Polarized (% of total) Unpolarized (% of total) Total

Primary CD4+ T cells 253 (64.4%) 140 (35.6%) 393 530 (56.6%) 406 (43.4%) 936

P2 cells 176 (51.9%) 163 (48.1%) 339 97 (47.1%) 109 (52.9%) 206

Primary CD4+ T cells and P2 cells infected with VSV-G-pseudotyped HIV-1 encoding Gag-YFP were cultured for two days, fixed, immunostained for cellular proteins, and
examined by fluorescence microscopy. Gag-YFP-positive and -negative cells were categorized based on cell morphology, and cells in each category were counted. Cells
with circularity below 0.8 (see Materials and Methods) were categorized as polarized cells.
doi:10.1371/journal.ppat.1001167.t001

Table 2. Copolarization of Gag with Cellular Markers.

Marker Gag Polarized Gag Not Polarized Total Cell Number

Copolarized with
Marker

Not Copolarized with
Marker

Primary CD4+ T cells PSGL-1 96% 2% 2% 58

CD43 100% 0% 0% 58

MTOC 96% 1% 3% 69

LFA-1 13% 86% 1% 69

P2 cells PSGL-1 79% 19%a 2% 63

MTOC 83% 9%b 8% 111

Primary CD4+ T cells and P2 cells infected with VSV-G-pseudotyped HIV-1 encoding Gag-YFP were cultured for two days, immunostained for cellular proteins, and
examined by fluorescence microscopy (see Materials and Methods). Gag-YFP-positive cells that were categorized as polarized cells based on cell morphology were
further examined for polarized localization of Gag-YFP and copolarization of Gag-YFP with cellular markers.
aIn P2 cells where Gag did not copolarize with PSGL-1, PSGL-1 did not show polarized localization.
bIn P2 cells where Gag did not copolarize with MTOC, MTOC localized near the center of cells.
doi:10.1371/journal.ppat.1001167.t002
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polarized cells (Figure 6B and C), these results suggest that Gag

localizes to uropod-specific microdomains prior to, and perhaps

during, T cell polarization.

To examine whether Gag localized at uropods had originated

from the Gag-positive patches observed in morphologically

unpolarized cells, we conducted live-cell microscopy of Gag-

YFP-expressing P2 cells that were first depolarized by low

temperature treatment prior to image recording at 37uC. In these

experiments, we observed that Gag-containing patches maintained

colocalization with PSGL-1 and laterally moved on the plasma

membrane to the forming uropod as cells re-polarized. (Figure 6F

and Movie S3). Lateral movement of Gag-YFP was also observed

in cells that were not immunostained for any marker, indicating

that the observed movement was not caused by antibody-mediated

crosslinking (Movie S4). These observations support a model in

which Gag associates with uropod-specific microdomains while

establishing localization at the rear end of polarized T cells.

Env is not required for Gag localization to the uropod
It has been shown that Gag and Env interact with each other

[125,126,127,128,129,130,131]. Furthermore, it has been shown

that Env is required for the formation of virological synapses

between infected and uninfected T cells [53,61,67,68,78,80,89],

unlike those formed between uninfected T cells and infected

macrophages [75]. Therefore, Env may play an active role in Gag

localization to uropods. To address this possibility, we examined T

cells expressing an HIV-1 molecular clone that encodes Gag-YFP

but not Env (KFS/Gag-YFP). In these cells, Gag-YFP co-localized

strongly with PSGL-1 and copolarized with the MTOC at the

uropod (Figure 7A), just as observed in cells expressing both Gag-

YFP and Env (Figure 1). To examine microdomain partitioning,

we also performed copatching assays for KFS/Gag-YFP and

uropod markers in unpolarized cells. We observed that KFS/Gag-

YFP copatches with the uropod markers PSGL-1 and CD43

(Figure 7B) at comparable levels to wild type (data not shown). We

also compared Gag polarization indices between cells expressing

Gag-YFP in the presence (Gag-YFP) or absence (KFS/Gag-YFP)

of Env. The Gag polarization index describes the extent of Gag

distribution along the plasma membrane from one cell pole to the

other (see Materials and Methods). A lower index represents

stronger polarization. We observed that the polarization index for

KFS/Gag-YFP is nearly identical to that for Gag-YFP (Figure 7C,

p = 0.28). We also found that the absence of Env had no impact on

the preference for uropod-mediated contact between Gag-YFP-

expressing primary T cells and CMAC-stained target primary T

cells (Fig 7D, p = 0.23). This finding suggests that Env may not be

required for initial contact formation, even while it is required for

transfer of virus particles (Figure 5) [53,132] and maintenance of

cell-cell conjugates [53,68,78,80]. Taken together, these results

indicate that HIV-1 Env is dispensable for localization of Gag to

the uropod.

MA and CA are not required for Gag localization to the
uropod

To identify the molecular determinants of Gag that facilitate its

localization to the uropod, we examined a panel of Gag mutants

(Figure 8). Because MA is essential for specific targeting of Gag to

the plasma membrane [11,12,100,133,134,135,136,137,138,139],

it is conceivable that MA also regulates specific localization of Gag

to uropods. To test this possibility, we examined the effect of MA

deletion on Gag localization to uropods. As MA is also essential for

general membrane binding, to restore Gag membrane binding of

the MA deletion mutant, we added to the N terminus of Gag a

heterologous membrane binding sequence, an N-terminal 10-

amino-acid sequence of Fyn kinase [Fyn(10)]. This sequence

contains acylation signals for one myristoyl and two palimitoyl

groups, and fully restores Gag membrane binding in the absence

of the entire MA sequence [11]. Notably, the Fyn(10) sequence by

itself is not capable of targeting proteins to uropods. As shown in

Figure 9A, CFP attached to the Fyn(10) sequence [Fyn(10)-CFP]

localized around the entire plasma membrane. In contrast,

Fyn(10)/Gag-YFP localized to the uropod in the same cell

(Figure 9A). These results indicate that the addition of Fyn(10)

did not alter uropod localization of full-length Gag [Fyn(10)/Gag-

YFP] in T cells, and that some region in Gag is required for its

uropod localization. Notably, we observed that Fyn(10)/DMA/

Gag-YFP, in which the entire MA sequence is deleted, still

localized to the uropod efficiently in T cells (Figure 9B). Taken

Figure 2. Mature Gag and Env localize to the uropod. Primary
CD4+ T cells and P2 cells were infected with a VSV-G-pseudotyped HIV-1
encoding Gag-iYFP (green) (A and B) or Gag-YFP (green) (C). A) For
detection of mature Gag, cells were fixed, permeabilized, and
immunostained with anti-p17MA (red) as described in Materials and
Methods and observed with an epifluorescence microscope. B) and C)
For detection of Env on the cell surface, infected cells were incubated
with anti-gp120 (IgG1 b12) and subsequently with AlexaFluor-594-
conjugated anti-human IgG prior to fixation as described in Materials
and Methods.
doi:10.1371/journal.ppat.1001167.g002
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together, these results indicate that Gag localization to the uropod

requires sequences downstream of MA and not the MA sequence

itself.

The downstream sequence of MA includes CA and NC

domains. During virus particle formation, these domains are

known to promote the dimerization and multimerization of Gag.

To examine the roles played by Gag-Gag interactions in uropod

localization, we analyzed Gag derivatives with changes in either

CA or NC. Because Gag multimerization defects also reduce

steady-state membrane binding [28,42,140], the Fyn(10) sequence

was added to the CA and NC mutants. We first examined the

plasma membrane localization of two YFP- and CFP-tagged CA

mutants: an amino acid substitution mutant WM184,185AA

(Fyn(10)/WMAA/Gag-YFP/-CFP) and a deletion mutant lacking

the C-terminal domain (Fyn(10)/delCA-CTD/Gag-YFP/-CFP).

We observed previously by FRET microscopy that these CA

mutants are deficient in Gag-Gag interactions in HeLa cells [28].

P2 cells were coinfected with VSV-G-pseudotyped viruses

Table 3. Colocalization of YFP-Tagged Gag with Antibody-Detected Viral Proteins.

YFP-Tagged Gag Antibody Cell Type
YFP colocalized with
antibody signal

YFP not colocalized
with antibody signal Total Cell Number

Gag-iYFP Anti-p17MA Primary CD4+ T cells 92% 8% 51

P2 cells 88% 12% 52

Anti-gp120 (b12) Primary CD4+ T cells 92% 8% 50

P2 cells 92% 8% 61

Gag-YFP Anti-gp120 (b12) Primary CD4+ T cells 91% 9% 56

P2 cells 93% 7% 75

Primary CD4+ T cells and P2 cells infected with VSV-G-pseudotyped HIV-1 encoding Gag-iYFP or Gag-YFP were cultured for two days, immunostained for viral proteins,
and examined by fluorescence microscopy. YFP-positive polarized cells were examined for colocalization of the cell surface YFP-tagged Gag proteins and viral antigens
detected by anti-p17MA or anti-gp120 (b12).
doi:10.1371/journal.ppat.1001167.t003

Figure 3. Infected polarized T cells form contacts with target cells via their uropods. A) Primary T cells expressing Gag-YFP (green) were
immunostained with an anti-PSGL-1 antibody (red) as described in Figure 1G and cocultured with fresh primary T cells from the same donor stained
with the fluorescent dye CMAC (blue). Regions of colocalization between Gag and PSGL-1 are shown in yellow. Live cell images were taken every 30 s
for 20 min. A series of images with 5-min intervals is shown. Note that the uropod, enriched in Gag-YFP and PSGL-1, mediates stable contacts with
target cells (*). B) Examples of uropod- and non-uropod-mediated contacts between a Gag-YFP expressing primary T cell (dotted white outline) with
CMAC-labeled primary T cells are shown. C) Uropod-mediated and non-uropod-mediated contacts were counted for a total of 74 polarized Gag-YFP-
positive cells contacting CMAC-labeled cells in two independent experiments. P values were determined using Student’s t test. *, P,0.05.
doi:10.1371/journal.ppat.1001167.g003
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encoding derivatives of Gag-YFP or Gag-CFP, and their

localization and multimerization were examined by fluorescence

and FRET microscopy, respectively. WT Gag-YFP/-CFP and

Fyn(10)/Gag-YFP/-CFP showed high FRET in the uropod,

indicating that Gag multimers localize to uropods (Figure 10A

and B). Notably, both Fyn(10)/delCA-CTD/Gag-YFP/-CFP and

Fyn(10)/WMAA/Gag-YFP/-CFP also showed clear localization

to the uropod (Figure 10C and D) although, as expected, these

Gag mutants displayed low FRET (Figure 10C and D). The

polarization index for Fyn(10)/WMAA/Gag-YFP was also nearly

identical to that of Fyn(10)/Gag-YFP (Figure 10E). Taken

together, these results demonstrate that CA-mediated dimerization

is not required for localization of Gag to the uropod.

NC is essential for localization of Gag to the uropod
To examine the role of NC in Gag localization to uropods, we next

analyzed a mutant Gag that lacks most of the NC sequence (Fyn(10)/

delNC/Gag-YFP/-CFP). In contrast to the MA and CA mutants that

localized to the uropod, Fyn(10)/delNC/Gag-YFP/-CFP localized

over the entire plasma membrane (Figure 11A). An NC mutant in

which 15 NC basic residues essential for RNA binding were

substituted with alanine or glycine (Fyn(10)/14A1G/Gag-YFP/

Figure 4. Gag-positive uropods form contacts enriched in CD4. A) P2 cells expressing Gag-CFP (cyan; pseudo-colored in blue in the merge
panel) were immunostained with anti-CD43 and AlexaFluor-594-conjugated anti-mouse IgG (red). Subsequently, these cells were cocultured with
SupT1 cells prelabeled with FITC-conjugated anti-CD4 (green) for 3 h and examined by live cell microscopy. A target cell (center) in contact with both
Gag-CFP-positive (left) and Gag-CFP-negative (right) cells is shown. B) Uninfected P2 cells were immunostained with anti-CD43 and co-cultured with
SupT1 cells prelabeled for CD4 as done in (A). C) In experiments represented in panels A and B, junctions between target SupT1 cells and Gag-CFP-
expressing, non-Gag-CFP-expressing, or uninfected P2 cells were classified into uropod-mediated and non-uropod-mediated contacts based on the
presence of CD43. The percentage of contacts with accumulation of CD4 relative to total contacts was determined for each category. Data from three
independent experiments were shown as means +/2standard deviation. P values were determined using Student’s t test. ***, P,0.001;
****, P,0.0001. Numbers of contacts detected and examined for CD4 accumulation in each of these three experiments are: Gag-CFP-positive/CD43-
positve contacts, 56, 56, 57 (total 169); Gag-CFP-positive/CD43-negative contacts, 21,17,18 (total 56); Gag-CFP-negative/CD43-positive contacts, 26,
35, 39 (total 100); Gag-CFP-negative/CD43-negative contacts, 17, 24, 28 (total 69); uninfected/CD43-positve contacts, 56, 67, 86 (total 209); and
uninfected/CD43-negative contacts, 20, 38, 55 (total 113).
doi:10.1371/journal.ppat.1001167.g004
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-CFP) also showed non-polarized localization (Figure 11B). These

results indicate that NC is required for Gag localization to the

uropod. Pleitropic impacts of NC mutations on Gag assembly

precluded us from obtaining interpretable results regarding the effects

of these mutations on cell-to-cell transfer (Figure S2 and Text S1).

NC-mediated multimerization is required for Gag
localization to the uropod

As confirmed by FRET microscopy (Figure 11A and B), both

Fyn(10)/delNC/Gag-YFP/-CFP and Fyn(10)/14A1G/Gag-

YFP/-CFP that are defective in polarized localization are also

defective in Gag-Gag interaction. Therefore, it is possible that NC-

mediated Gag multimerization or clustering plays a key role in

Gag localization to the uropod. Alternatively, other functions of

NC may facilitate Gag localization to the uropod. To distinguish

between these possibilities, we examined a Gag derivative in which

NC was replaced by a leucine zipper sequence (LZ) derived from

GCN4 (LZ/Gag-YFP/-CFP). Gag derivatives in which NC is

replaced with this LZ sequence, which has no homology to NC,

have been shown previously to multimerize efficiently

Figure 5. ML7 depolarizes cell morphology and Gag localization and reduces cell-to-cell transfer of Gag-YFP. A) Transfer of Gag-YFP
fluorescence from infected P2 cells to CMTMR-stained SupT1 target cells during a 3-h coculture period was measured by flow cytometry. ML7, DMSO,
or antibodies, along with 10 mg/ml cycloheximide, were added at the beginning of the coculture period. Flow cytometry plots for CMTMR-labeled
target cells co-cultured with uninfected cells as well as CMTMR-labeled target cells cocultured with Gag-YFP-expressing infected cells in the presence
or absence of IgG or Leu3A are shown. Gate A, CMTMR-labeled target cells; gate B, double positive cells representing target cells with transferred
Gag-YFP particles; and gate C, YFP-expressing cells either fused or conjugated to CMTMR-labeled target cells. B) Images of cycloheximide-treated P2
cells expressing Gag-YFP were acquired after 3-h coculture with CMTMR-stained SupT1 cells in the presence or absence of DMSO or ML7. Note that
almost all the cells adopt round unpolarized morphology upon treatment with ML7 and that ML7-treated infected cells show dispersed Gag-YFP
localization. The latter point is clearer in the higher magnification image (bottom panel) of a region specified in the middle row. Also note that the
cell density of the cocultures in experiments shown in panel A (images shown in Figure S3 and discussed in Text S1) is 10 fold higher than in panel B.
C) Relative efficiencies of cell-to-cell virus transfer were calculated as the percentage of double positive cells out of the total CMTMR-labeled cells
(Virus transfer efficiency = B/(A+B+C)*100; error bars represent standard deviation). P values were determined using Student’s t test. ***, P,0.001.
doi:10.1371/journal.ppat.1001167.g005
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[141,142,143]. We observed that LZ/Gag-YFP/-CFP localized to

the uropod in a majority of cells expressing this Gag derivative and

yielded a WT level of FRET (compare Figure 11C with

Figure 10A). Quantitative analysis of polarization indicated that

LZ/Gag-YFP was not as efficiently polarized as WT, but

nonetheless significantly more polarized than the NC point

mutant Fyn(10)/14A1G/Gag-YFP (Figure 11D). These results

suggest that NC promotes Gag localization to the uropod through

its ability to facilitate higher-order Gag multimerization. As the LZ

sequence used above is a dimerization sequence, it would drive

higher-order multimerization only in the presence of an additional

dimerization motif such as CA-CTD. Thus, we hypothesized that

although Fyn(10)/delCA-CTD/Gag-YFP/-CFP and Fyn(10)/

WMAA/Gag-YFP/-CFP localize to uropods (Figure 10C and

D), in these contexts, LZ in the place of NC would be unable to

promote Gag localization to uropods (Figure 11E and F). Indeed,

cells expressing these constructs, Fyn(10)/WMAA/LZ/Gag-YFP

and Fyn(10)/delCA-CTD/LZ/Gag-YFP, showed localization of

Gag over the entire plasma membrane, a pattern identical to that

of the NC mutants (compare Figure 11E and F with A and B).

Taken together, these results demonstrate that dimerization

mediated by either CA-CTD or LZ alone is insufficient for

localization to the uropod. However, NC-mediated higher-order

multimerization or clustering of Gag, which likely occurs even in

the absence of the CA-CTD dimerization motif, is essential for

localization to the uropod.

Figure 6. Gag associates with uropod-specific microdomains that carry Gag to the uropod. Unpolarized P2 cells expressing Gag-YFP
(green) were examined for copatching with CD81 (A), CD43 (B), PSGL-1 (C), or LFA-1 (D). Cells were incubated with specific primary mouse
monoclonal antibodies premixed with the fluorescent secondary antibody (red) followed by fixation. Z series of images of morphologically
unpolarized cells were acquired and used to generate maximum projection images of each color using Metamorph 6 software. Merged images are
shown in the right column of each panel. Several small copatching puncta are indicated by arrows. E) Quantification of copatching. Correlation
coefficients between Gag-YFP and cell surface marker signals were calculated from a total of 18 cells for each marker. A value of 1 represents perfect
colocalization, a value of -1 represents complete segregation, and a value of 0 represents a random distribution. P values were determined using
Student’s t test. NS, not significant. **, P,0.01. ***, P,0.001. F) Time lapse images of a Gag-YFP-expressing T cell during repolarization. Gag-
YFP(green)-expressing P2 cells were immunostained for PSGL-1 (red) as described for panels A–D. Cells were then depolarized by incubation at 4uC
for 30 min. Approximately 5 min after chamber coverslips containing depolarized cells were transferred to the microscope stage maintained at 37uC,
acquisition of live cell images at indicated time points was begun. Note that the small patches (arrows) migrate and coalesce to the large patch
(arrowheads) at the cell pole that eventually forms the uropod.
doi:10.1371/journal.ppat.1001167.g006
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Discussion

In lymphoid organs, where HIV-1 likely spreads efficiently from

infected to uninfected T cells, T cells adopt a polarized

morphology and are highly motile. Thus, studying HIV-1

replication in polarized T cells may help us to better understand

how the virus spreads in vivo. In this study, we found that HIV-1

Gag accumulates to, and forms mature virions at, the uropod in

polarized T cells (Figures 1 and 2). These observations led us to ask

whether uropod localization of HIV-1 Gag plays a role in the

spread of the virus. In uninfected T cells, uropods are enriched in

adhesion molecules and known to mediate contact with other cells

Figure 7. Env is not required for Gag localization to the
uropod. A) P2 cells expressing KFS/Gag-YFP (green) were immuno-
stained after fixation with anti-PSGL-1 (red, upper panel) or anti- a-

tubulin (red, lower panel, arrow indicates MTOC) as described for
Figure 1. B) KFS/Gag-YFP-expressing P2 cells were immunostained for
PSGL-1 or CD43 (red) using the co-patching method as described for
Figure 6, and Z-series of images of unpolarized cells were acquired.
Maximum projections of each color were generated from the Z stacks
and merged to examine colocalization (yellow). Several small copatch-
ing puncta are indicated by arrows. C) The Gag polarization index was
determined as described in the Materials and Methods section for cells
expressing Gag-YFP and KFS/Gag-YFP. Four separate experiments (32,
23, 39, and 37 cells each) for a total of 131 cells for Gag-YFP and 3
separate experiments (34, 48, and 30 cells each) for a total of 112 cells
for KFS/Gag-YFP were used for quantification of Gag polarization. P
values were determined using Student’s t test. NS, not significant. D)
Cell-cell contact assays were performed as in Figure 3. This graph
compares the results of Figure 3 to the results obtained with cells
expressing KFS/Gag-YFP, which had been obtained concurrently. P
values were determined using Student’s t test. *, P,0.05.
doi:10.1371/journal.ppat.1001167.g007

Figure 8. Gag derivatives used in this study and their
localization pattern. HIV-1 molecular clones that express Gag-
fluorescent protein fusions (WT Gag-YFP/-CFP) were generated.
Deletions or amino acid substitutions were created in the MA domain
(Fyn(10)/DMA/Gag-YFP/-CFP), CA domain (Fyn(10)/delCA-CTD/Gag-
YFP/-CFP and Fyn(10)/WMAA/Gag-YFP/-CFP) and the NC domain
(Fyn(10)/delNC/Gag-YFP/-CFP, Fyn(10)/14A1G/Gag-YFP/-CFP and LZ/
Gag-YFP/-CFP). Gag derivatives containing LZ replacement of NC
combined with the CA mutations were also used (Fyn(10)/delCA-CTD/
LZ/Gag-YFP/-CFP and Fyn(10)/WMAA/LZ/Gag-YFP/-CFP). The Fyn(10)
sequence, a single myristylation and dual palmitoylation signal, was
added to the N terminus of all Gag derivatives except WT Gag-CFP/-YFP
and LZ/Gag-CFP/-YFP. Results as to whether these Gag derivatives
localize specifically to the uropod (Y) or distribute over the entire cell
surface (N) are summarized in the right column.
doi:10.1371/journal.ppat.1001167.g008

HIV-1 Gag Localization to Uropods & T-T Contacts

PLoS Pathogens | www.plospathogens.org 10 October 2010 | Volume 6 | Issue 10 | e1001167



[49]. Therefore, polarized virus assembly at uropods could

facilitate cell-to-cell transmission of HIV-1. Consistent with this

possibility, live cell microscopy and quantitative cell-cell contact

analyses showed that HIV-1-infected cells contact target cells

preferentially through their uropods (Figure 3). Furthermore, a

substantial majority of Gag- and CD4-positive cell-cell contacts,

which define the VS [61], were observed where uropod-derived

(CD43-positive), but not non-uropod (CD43-negative), regions of

infected cells mediated contact with target cells (Figure 4).

Consistent with these microscopy data, we observed that ML7, a

myosin light chain kinase inhibitor that blocks the polarization of

T cells and formation of uropods, both dispersed Gag over the cell

surface and reduced cell-to-cell transfer of virus particles

significantly (Figure 5). We note that ML7-sensitive, actin-

myosin-based processes besides cell polarization may affect cell-

to-cell virus transfer. However, taken together, these results

indicate that uropods of polarized T cells play an important role

in cell-to-cell transfer of HIV-1. Notably, bone marrow hemato-

poietic stem cells have been shown to mediate not only contacts

with osteoblasts, but also cell-to-cell transfer of plasma-membrane-

associated molecules via their uropods [144]. This process,

postulated to mediate intercellular signal transfer, may be a

common cell-cell communication mechanism shared among cells

of the hematopoietic cell lineage, including T cells. Thus,

localization of HIV-1 components to, and subsequent virus

assembly at, the uropod may represent yet another example in

which viruses hijack cellular processes to facilitate its own

replication.

It has been reported by several groups that cell-to-cell HIV-1

transmission occurs via the VS. However, the steps leading to

formation of the VS are not well defined. Observations described

in this study suggest that at least one path toward establishment of

the VS is the accumulation of viral components and assembling

virions to the uropod. Uropods could then serve as a pre-formed

platform that constitutes a VS upon cell-cell contact [Figure 12B

(a)]. Consistent with this possibility, previous studies showed that

disruption of the cytoskeleton, which also impairs cell polarity,

reduces Gag accumulation to contact sites between infected and

uninfected T cells [77,78,80,145]. It is conceivable that suppres-

sion of uropod formation or inhibition of Gag localization to

uropods may account for the observed reduction of VS formation

upon cytoskeleton disruption.

It is important to note that our data do not preclude other

modes of VS formation. For example, if morphologically

unpolarized cells with dispersed Gag make contact with a

target cell, Gag could re-localize laterally to the contact site.

Consistent with such Gag movement, a recent imaging study

showed that most cell conjugate formation precedes Gag

redistribution when apparently unpolarized Jurkat cells were

used as donor cells [67]. Such lateral movement could also

occur in polarized cells that initially contact target cells through

a non-uropod region of the cell [Figure 12B (b)]. Movement of

Figure 10. CA-mediated dimerization is not required for Gag
localization to the uropod. A-D) P2 cells expressing Gag-YFP (green)
and Gag-CFP (blue) or their derivatives were stained for a-tubulin (red)
to identify the MTOC. Multimerization efficiency of each Gag mutant
was measured by FRET. A) WT Gag-YFP/-CFP, B) Fyn(10)/Gag-YFP/-CFP,
C) Fyn(10)/delCA-CTD/Gag-YFP/-CFP, and D) Fyn(10)/WMAA/Gag-YFP/
CFP. Note that Gag derivatives with CA changes both localize to the
uropod but show low FRET. Color scale bar indicates colors associated
with high (1) or low (0) FRET. E) Polarization indices were calculated for
Fyn(10)/Gag-YFP and Fyn(10)/WMAA/Gag-YFP (see Materials and
Methods). Three separate experiments (a total of 89 P2 cells for
Fyn(10)/Gag-YFP and 78 P2 cells for Fyn(10)/WMAA/Gag-YFP) were used
for quantification. Error bars represent standard deviation. P values
were determined using Student’s t test. NS, not significant.
doi:10.1371/journal.ppat.1001167.g010

Figure 9. The MA sequence is not required for Gag localization
to the uropod. A) P2 cells were co-transfected with plasmids that
express Fyn(10)/Gag-YFP (green) and Fyn(10)-CFP (blue). Cells were
then stained for a-tubulin (red, arrow indicates MTOC). B) Cells
expressing Fyn(10)/DMA/Gag-YFP (green) were immunostained with
anti-a-tubulin (red, arrow indicates MTOC).
doi:10.1371/journal.ppat.1001167.g009
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Gag-containing patches to contact sites has been observed in

recent VS studies [67,80]. It is possible that these patches may

have originated at the uropod, although this point remains to be

determined by long-term live cell monitoring of polarized T

cells. Thus, in either mode of VS formation, prior formation of a

platform enriched in Gag and other viral components, which

takes place at the uropod, may be an important first step in cell-

to-cell virus transfer.

Our data support that polarized localization of Gag to the

uropod plays an important role in HIV-1 spread. If so, what drives

localization of Gag and virus assembly to uropods? Previous

studies have shown that some cell-surface proteins localize to the

uropod upon antibody crosslinking through an undefined

mechanism [146,147,148]. As dimerization and multimerization

can be considered to be a form of crosslinking, we examined

whether Gag localization to uropods similarly depends on Gag

multimerization. While CA dimerization mutations did not alter

localization of Gag to the uropod (Figure 10), mutations that

disrupt higher-order multimerization mediated by NC-RNA

interactions did (Figure 11). Mutations in NC caused Gag to

localize over the entire plasma membrane despite the presence of

the CA dimerization interface. Furthermore, a heterologous

dimerization sequence, LZ, restored the uropod localization of

NC-deleted Gag. Finally, this LZ-dependent localization required

the intact CA dimerization interface, supporting the importance of

higher-order Gag multimerization. Therefore, although both CA

dimerization and NC-RNA interaction are important for Gag

assembly, it is the NC-dependent higher-order multimerization

that is essential for Gag localization to the uropod. In this regard,

uropod localization of Gag may be driven by a mechanism similar

to the one targeting multimerizing proteins to endosome-like

domains reported recently to exist on the plasma membrane[149].

The nature of the NC-dependent higher-order multimer directed

to uropods remains to be elucidated; however, as CA dimerization

mutants that did not yield substantial FRET signals still localized

to uropods (Figure 10), it is likely that the uropod targeting process

does not require the NC-dependent multimer to be in a highly

aligned and packed form. As NC by itself can bind RNA in the

absence of CA [150], we speculate that Gag clustering through

binding to the same RNA molecule is sufficient for localization to

uropods.

Protein-protein interactions, which include clustering or

multimerization of membrane proteins, are known to stabilize

the microdomains with which those proteins associate [151]. In

this study, we showed that Gag copatches moderately with CD81

and strongly with uropod markers PSGL-1 and CD43 even in

non-polarized cells (Figure 6). We also observed, using live cell

analysis, that Gag patches move laterally on the cell surface of

unpolarized cells and accumulate at the forming uropod as cells

polarize. These results support a model in which Gag, a

multimerizing protein, associates with uropod-specific microdo-

mains that carry Gag to the uropod. However, the mechanism by

which these microdomains localize to the uropod remains

unclear. It is important to note that not all types of microdomains

are destined for the uropod. GM3-containing lipid rafts have

been shown to localize to the leading edge [60,118,152].

Therefore, it is likely that there are complex sorting mechanisms

by which specific subsets of microdomains are moved to the

uropod. In this regard, it is of note that although LFA-1 behaves

as a leading edge/non-uropod marker in T cells in suspension

[153] (this study), this adhesion molecule redistributes to mid-cell

and uropod regions upon contact with ICAM-1-containing

surfaces [154,155]. Therefore, LFA-1 in infected cells may still

modulate uropod-mediated T-cell-T-cell contacts upon encoun-

Figure 11. Higher-order multimerization mediated by NC is
required for Gag localization to the uropod. A–C) P2 cells
expressing Gag-YFP and Gag-CFP that contain an NC deletion or
substitutions (green/blue) were immunostained with anti-a-tubulin
(red, arrow indicates MTOC). Note that Fyn(10)/delNC/Gag-YFP/-CFP (A)
and Fyn(10)/14A1G/Gag-YFP/-CFP (B) localize over the entire plasma
membrane. Both mutants show reduced levels of FRET. In contrast, LZ/
Gag-YFP/-CFP (C) mostly localizes to the uropod. High FRET is observed,
indicating that multimerization is rescued as well. D) Polarization
indices were calculated for LZ/Gag-YFP and Fyn(10)/14A1G/Gag-YFP
and compared to WT Gag-YFP. LZ/Gag-YFP is less efficient in
polarization, but significantly more efficient than Fyn(10)/14A1G/Gag-
YFP. A total of 131 cells for Gag-YFP, 79 cells for LZ/Gag-YFP, and 69
cells for Fyn(10)/14A1G/Gag-YFP from three separate experiments were
measured for polarized localization of Gag. Error bars represent
standard deviation. P values were determined using Student’s t test.
*, P,0.05. ****, P,0.0001. E) and F) Double mutants containing the LZ
sequence with the two different changes in the CA C-terminal domain,
Fyn(10)/WMAA/LZ/Gag-YFP/-CFP (E) and Fyn(10)/delCA-CTD/LZ/Gag-
YFP/-CFP (F), were expressed in P2 cells. Note that both Gag derivatives
fail to localize to the uropod despite the presence of the LZ sequence.
doi:10.1371/journal.ppat.1001167.g011
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tering ICAM-1-bearing target cells, which would be in agreement

with previous studies [96,103].

While our data showed that patches of Gag laterally move to the

uropod as cells re-polarize, they do not rule out the possibility that

in an already polarized cell, de novo assembly of viruses

preferentially occurs at the uropod or the cell contact without

the lateral movement of Gag clusters. A recent study showed that

MLV, another retrovirus, preferentially forms particles at contact

sites in HEK293 cells [88]. This observation indicates that the site

of retrovirus assembly can be polarized upon cell-cell contact

formation in otherwise unpolarized cells. Notably, the polarized

budding of MLV in HEK293 cells was found to be dependent on

the MLV Env cytoplasmic tail. Similarly, the cytoplasmic tail of

HIV-1 Env was reported to be important for polarized HIV-1 Gag

localization in Jurkat T cells that appeared morphologically

unpolarized [156]. In contrast, in our study, we found that in the

absence of Env or cell-cell contact, Gag-YFP remained efficiently

localized to the uropod in polarized T cells, including P2 and

primary CD4+ T cells (Figures 1G and 7; data not shown).

Therefore, it is possible that in T cells with a high propensity to

establish front-rear polarity, Gag may not require Env or cell-cell

contact to achieve polarized assembly. Further studies will

determine the molecular mechanisms by which assembly sites

for retroviruses are polarized in different cell types.

Although Env was dispensable for Gag localization to the

uropod, formation of stable cell conjugates as well as virus transfer

have been shown to require Env-receptor interaction

[53,67,68,78,80,132]. Consistent with these findings, we observed

that anti-CD4 blocking antibody (Leu3A) diminished cell-to-cell

virus transfer (Fig. 5) and that prelabeling of infected P2 cells with

anti-Env antibody (b12) reduced formation of cell conjugates with

SupT1 cells (data not shown). Therefore, while uropods are

enriched in adhesion molecules and form contacts with other cells

frequently [49] regardless of the presence of Env, the Env-CD4

interaction is likely to stabilize such contacts during formation of

the VS.

In summary, this study elucidates a series of molecular events

leading to the formation of a VS. The observations made in this

study has led us to form a working model (Figure 12) in which

higher-order multimerization, or clustering, mediated by NC is

required for Gag association with uropod-specific microdomains.

This microdomain association then facilitates localization of the

assembling virus to the uropod. According to this model, the

uropod, laden with HIV-1 components and particles, then serves

as a pre-formed platform that mediates contact with target cells

[Figure 12B (a)] or redistributes to contacts formed elsewhere

[Figure 12B (b)]. Such contacts could then constitute a VS, which

likely facilitates cell-to-cell virus transfer of HIV-1.

Figure 12. Working model. A) Based on the findings in this study, we have postulated a working model in which NC-mediated clustering of Gag
allows association of Gag with uropod-specific microdomains that facilitate movement to the uropod in polarizing T cells. B) The virus-laden uropod,
acting as a pre-formed platform that may either mediate contact with target cells (a) or relocalize to contacts formed elsewhere subsequently (b),
constitutes a VS that facilitates cell-to-cell transmission of HIV-1.
doi:10.1371/journal.ppat.1001167.g012
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Materials and Methods

Plasmids
The HIV-1 molecular clone pNL4-3 [157] and its derivatives

encoding Gag-YFP and Gag-CFP fusion proteins (pNL4-3/Gag-

YFP/-CFP) [11,28] were described previously. The latter two

constructs contain an extensive deletion of pol and silent mutations

to reduce ribosomal frameshift to the pol reading frame and does

not express Vif or Vpr. For YFP and CFP, monomeric Venus

[158,159] and monomeric Cerulean [160] variants were used,

respectively. pNL4-3/WM184,185AA/Gag-YFP/-CFP (renamed

as pNL4-3/WMAA/Gag-YFP/-CFP), pNL4-3/delCA-CTD/

Gag-YFP/-CFP, pNL4-3/14A1G/Gag-YFP/-CFP, pNL4-3/

delNC/Gag-YFP/-CFP and the Fyn(10)-modified versions of

those plasmids were previously described [28]. In this study,

pNL4-3/Fyn(10)fullMA/GagVenus described previously [11,28]

was renamed as pNL4-3/Fyn(10)/Gag-YFP for simplicity. pNL4-

3/Fyn(10)/DMA/Gag-YFP was previously described [11]. pNL4-

3/KFS/Gag-YFP was generated by cloning the XhoI-SalI

fragment of pNL4-3/KFS (a kind gift from Dr. Eric Freed

[161]) into pNL4-3/Gag-YFP. To construct pNL4-3/LZ/Gag-

YFP/-CFP, the sequence encoding GCN4 leucine zipper in the

ZWT plasmid, a kind gift from Dr. Heinrich Gottlinger [142], was

cloned into pNL4-3/Gag-YFP/-CFP using standard molecular

cloning techniques. The double mutants pNL4-3/Fyn(10)/

WMAA/LZ/Gag-YFP/-CFP and pNL4-3/Fyn(10)/delCA-

CTD/LZ/Gag-YFP/-CFP were generated by cloning a fragment

containing the leucine zipper sequence from pNL4-3/LZ/Gag-

YFP into pNL4-3/Fyn(10)/WMAA/Gag-YFP/-CFP and pNL4-

3/Fyn(10)/delCA-CTD/Gag-YFP/-CFP, respectively. pNL4-3/

Gag-iGFP (a kind gift from Dr. Benjamin Chen [99]) was used to

construct pNL4-3/Gag-iYFP.

Virus stocks
Stocks of HIV-1 mutants, pseudotyped with vesicular stomatitis

virus G protein (VSV-G), were prepared by transfecting 5.66105

293T or HeLa cells with 1.5 mg pNL4-3 derivative encoding a Gag-

YFP/-CFP fusion protein, 1.5 mg pCMVNLGagPol-RRE [105],

and 0.5 mg pHCMV-G (a kind gift from Dr. J. Burns [162]). Two

days post transfection, virus-containing supernatants were filtered

through a 0.45 mm filter and used for inoculation of T cells.

Cells
To prepare a polarized T cell line, T cell clones were obtained

by limiting dilution of A3.01 T cells (AIDS Research and

Reference Reagent Program). Typical A3.01 cell cultures naturally

contain 10–20% of cells with a polarized morphology. After

limiting dilution, T cell clones were examined for cell morphology

and polarized PSGL-1 localization. A cell clone, in which

approximately 50–60% of cells were polarized, was designated

‘‘P2’’ and used for experiments in this study. These cell lines, as

well as the SupT1 cell line (AIDS Research and Reference

Reagent Program), were cultured in RPMI containing 10% fetal

bovine serum (FBS)(RPMI-10%FBS). Primary T cells were

isolated from buffy coats obtained from the New York Blood

Center. The buffy coats were diluted in a 1:1 ratio with phosphate

buffered saline (PBS) containing 2% FBS (PBS-2%FBS), and

peripheral blood mononuclear cells (PBMCs) were isolated using

centrifugation through ficoll (GE Healthcare) according to the

manufacturer’s instructions. Isolated PBMCs were then plated on

polystyrene petri dishes for 2 h to separate the adherent

monocytes and non-adherent lymphocytes. Lymphocytes were

activated in RPMI-10%FBS containing phytohemagglutinin

(PHA) (Sigma. St. Louis, MO) (6 mg/ml) and IL-2 (20 units/ml)

(Roche. Basel, Switzerland) for 2–3 days. Primary CD4+ T cells

were isolated with the MACS magnetic antibody bead kit

(Miltenyi Biotec. Bergisch Gladbach, Germany) using anti-CD4

beads and MS columns. Cells were then cultured overnight in

RPMI-10%FBS and IL-2 (20 units/ml) and used for experiments.

IL-2 has been shown to induce a comparable level of T cell

polarization and locomotion to those induced by chemokines such

as RANTES and MIP-1a [163,164].

Infection
Cells were infected with virus stocks by spin infection; 36105 P2

cells or 56105 primary T cells were resuspended in 200 ml virus

stock with 4 mg/ml polybrene and centrifuged at 2500 rpm for 2 h

at 15uC. Cells were cultured at 37uC in RPMI-10% FBS for 2–3

days (in the presence of 20 units/ml IL-2 for primary T cells).

Copatching assay
Mouse anti-PSGL-1 (NP_002997.1), CD43 (AH003828.1),

CD81, or LFA-1 (all from BD Biosciences Pharmingen. San

Diego, CA) were prelabeled with the secondary antibody

(AlexaFluor-594-conjugated goat anti-mouse IgG (Invitrogen.

Carlsbad, California)) for 30 min. Infected cells were cultured in

200 ml of RPMI-10%FBS containing this antibody mixture for 1 h

at 37uC, after which they were washed with RPMI-10%FBS and

fixed in 1 ml 4% paraformaldehyde in PBS (PFA). After washing

with PBS-2%FBS, cells resuspended in a small volume (,10 ml) of

the same buffer were mixed with equal volume of Fluoromount-G

(SouthernBiotech. Birmingham, Alabama), and 3 ml of this

mixture was mounted on glass slides. Images were acquired with

a Nikon TE-2000U inverted epifluorescence microscope. Z-series

of images were acquired with 0.2 mm intervals between focal

planes. Maximum intensity projection images of the z-series

images composed of 56 focal planes were obtained with ImageJ

software (NIH; downloaded from http://rsbweb.nih.gov/ij/).

Copatching quantification was performed using the correlation

plot function of the Metamorph 6 software (Molecular Devices.

Sunnydale, California). To identify punctate signals objectively

and to remove background signals from copatching analyses, the

background, calculated as the median intensity of a 32632-pixel

region surrounding each pixel, was subtracted from the original

image[165], point noise was removed using a 363 median

filter[166], and the minimum threshold was set to twice the

average fluorescence intensity of the cell of interest and applied to

the images. These images were then used for calculation of

Pearson’s correlation coefficients (CC), representing copatching.

Immunostaining
To avoid altering cell morphology, cell suspensions were placed

in round-bottom tubes and left still at 37uC in the presence of 5%

CO2 for at least 1 h prior to fixation. Subsequently, most of the

culture supernatant was removed carefully, and cells were fixed in

1 ml 4% PFA for 20 minutes. Fixed cells were washed with PBS-

2%FBS and then incubated for 1 h in PBS-2%FBS containing

primary antibodies against cell surface molecules (PSGL-1 and

LFA-1) followed by washing with PBS-2%FBS. For experiments in

which CD43 was used as a uropod marker, cells were first incubated

with anti-CD43 for 30 min as done in previous studies [64].

Subsequently, cells were rinsed with RPMI-10%FBS twice,

incubated with AlexaFluor 594-conjugated anti-mouse IgG for

30 min, rinsed with RPMI-10%FBS twice, and cultured for an

additional 30 min at 37uC prior to fixation. Detection of Env on the

cell surface was performed similarly, except that primary and

secondary antibodies used were anti-gp120 (IgG1 b12; AIDS

Research and Reference Reagent Program) and AlexaFluor-594-
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conjugated anti-human IgG (Invitrogen), respectively. For detection

of a-tubulin (to identify the MTOC) and mature p17MA, fixed cells

were permeabilized by a 10-min incubation in PBS containing 0.2%

saponin (Fluka Biohemica. Buchs, Switzerland) and 5% FBS prior

to incubation with primary antibodies, anti-a-tubulin (Sigma; clone

B-5-1-2) and anti-p17MA (Applied Biotechnologies. Columbia,

Maryland), respectively. Primary antibodies were detected by

treating cells with AlexaFluor 594-conjugated goat anti-mouse

IgG for 30 minutes. Cells were then washed again with PBS-2%FBS

and mounted on glass slides, as described above, for microscopy.

Live cell microscopy
Cells were infected with VSV-G-pseudotyped HIV-1 encoding

Gag-YFP. Two days post-infection, cells were immunostained with

anti-PSGL1 prelabeled with Zenon AlexaFluor 594 reagent

(Invitrogen) according to manufacturer’s instruction or AlexaFluor

594-conjugated anti-mouse IgG as described for the copatching

assay. To morphologically depolarize cells, 4-well chamber

coverslips (Nunc. Rochester, NY), containing Gag-YFP-expressing

cells, were placed at 4uC for 30 min. To repolarize cells, the

chamber coverslips were then transferred to a pre-warmed (37uC)

microscope stage. Time-lapse images were acquired with an

interval of 30 s for up to 1 h. The images were then converted to

AVI files by ImageJ.

Fluorescence Resonance Energy Transfer (FRET) analysis
Cells were co-infected with VSV-G-pseudotyped HIV-1

encoding YFP- and CFP-tagged versions of each Gag mutant,

cultured and fixed as described above. Cells were subsequently

permeabilized, immunostained for a-tubulin, and mounted as

described above. Images were collected using four filter combina-

tions: AlexaFluor 594 excitation/AlexaFluor 594 emission, YFP

excitation/YFP emission, CFP excitation/CFP emission, and CFP

excitation/YFP emission. FRET was calculated using FRET

stoichiometry as previously described [28,167].

Analysis of cell-cell contact and VS
56105 primary CD4+ T cells were infected with VSV-G

pseudotyped HIV-1 encoding Gag-YFP or KFS/Gag-YFP. Two

days post infection, 56105 fresh primary CD4+ T cells were

stained with 1 mM CMAC (Invitrogen) for 30 min. Infected T cells

were then co-cultured with CMAC-stained target T cells for 3 h in

a chamber coverslip at 37uC. Images of 50–60 polarized and YFP-

expressing cells were then acquired, and the number of contacts

these cells formed with CMAC-labeled cells, which represent

newly formed contacts, were quantified and categorized as

uropod- or non-uropod-mediated contacts.

For analysis of the VS, 26105 P2 cells were infected with VSV-

G-pseudotyped HIV-1 encoding Gag-CFP. Two days post-

infection, cells were immunostained with anti-CD43 and a

minimal amount of AlexaFluor-594-conjugated anti-mouse IgG.

After extensive washing, 16105 of these cells or the same number

of uninfected P2 cells were mixed with 16105 target cells (SupT1

cells) that were prelabeled with non-blocking FITC-conjugated

anti-CD4 (Clone L120, BD Biosciences. San Jose, California) and

cocultured for 3 h in chamber coverslips at 37uC. These cocultures

in the chamber coverslips were placed on a microscope stage set at

37uC, and images were acquired using appropriate excitation and

emission filters.

Cell-to-cell virus transfer assay
26105 P2 cells were infected with VSV-G-pseudotyped HIV-1

encoding Gag-YFP. Two days post-infection, 56105 target SupT1

cells were stained with 1 mM CellTracker CMTMR (Invitrogen.

Carlsbad, California) for 15 min, washed with RPMI-10%FBS,

incubated for 2 h in RPMI-10%FBS, and washed again in RPMI-

10%FBS. Infected donor and CMTMR-stained target cells were

cocultured in 0.5 ml RPMI-10%FBS for 3 h in the presence or

absence of the myosin light chain kinase (MLCK) inhibitor, ML7

(40 mM) (EMD Biosciences. San Diego, California), or the solvent

negative control DMSO. The CD4 blocking antibody Leu3A

(0.25 mg/ml) (BD Biosciences) and isotype anti-mouse IgG control

antibody (0.25 mg/ml) (Santa Cruz Biotechnology. Santa Cruz,

California) were utilized to validate the assay, as it was shown

previously using a similar assay that virus transfer was dependent

on Env-CD4 interaction [53](Figure 4A). To rule out the

possibility that inhibitors affect viral protein synthesis and thereby

indirectly alter virus transfer, 10 mg/ml cycloheximide, which

abolishes protein synthesis, was added at the beginning of

coculture. After 3 h of coculture, cells were fixed in 4% PFA.

Double-positive cells, which represent CMTMR-positive target

cells that received YFP-containing virus particles, were identified

by flow cytometry (see Figure 4A for examples). Results were

presented as a percentage of double-positive cells compared to

total CMTMR-stained target cells.

Quantification of polarization
To measure morphological polarization of T cells, outlines of

Gag-YFP-expressing P2 cells were determined by manually

tracing the cell perimeter using the ImageJ program. Circularity

values were then calculated based on this outline using the

Measure function of ImageJ. The output values range between 0

and 1, with 1 representing a perfect circle. This method has been

described previously [168]. Morphologically polarized cells with

circularity values below 0.8 were further examined for polariza-

tion of Gag localization. To quantify polarity of Gag localization,

a 10-segmented grid was placed over each cell along the cell’s

longest axis. The number of segments that contained plasma-

membrane-associated Gag was then used as the polarization

index. Lower values correspond to more polarity of Gag on the

cell surface. Examples of these quantifications are shown in

Figure S4.

Supporting Information

Text S1 This file includes Supplementary Materials and

Methods and Supplementary Discussion.

Found at: doi:10.1371/journal.ppat.1001167.s001 (0.06 MB

DOC)

Figure S1 Untagged Gag detected at the plasma membrane

using anti-Gag antibodies shows strong colocalization with uropod

markers. P2 cells infected with wild type HIV-1 (NL4-3) were

labeled with anti-PSGL-1 or anti-CD43 (red) prior to fixation.

Fixed cells were permeabilized and immunostained with anti-

p17MA or anti-p24CA (green). Note that when Gag is detected on

the cell surface, it colocalized with uropod markers.

Found at: doi:10.1371/journal.ppat.1001167.s002 (4.17 MB TIF)

Figure S2 Effects of ML7 on VLP release efficiency. P2 cells

expressing Gag-YFP or Fyn(10)delNC Gag-YFP were metaboli-

cally labeled with [35S] methionine/cysteine for 2 h in the

presence of 40 mM ML7 (+) or DMSO (-). Cell and virus lysates

were subjected to immunoprecipitation of viral proteins using

HIV-Ig. Virus release efficiency was calculated as the amount of

virion-associated Gag as a fraction of total (cell plus virion) Gag

synthesized during a 2-h metabolic labeling period.

Found at: doi:10.1371/journal.ppat.1001167.s003 (6.93 MB TIF)
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Figure S3 Depolarization of T cells by ML7 treatment

reduces cell-to-cell transfer of virus particles. A) Transfer of

Gag-YFP fluorescence from infected P2 cells to CMTMR-

stained SupT1 target cells during a 3-h coculture period was

measured by flow cytometry. ML7, DMSO, or antibodies,

along with 10 mg/ml cycloheximide, were added at the

beginning of the coculture period. Flow cytometry plots are

shown. Gate A, CMTMR-labeled target cells; gate B, double

positive cells representing target cells with transferred Gag-YFP

particles; and gate C, YFP-expressing cells either fused or

conjugated to CMTMR-labeled target cells. B) Representative

brightfield (top panels) and fluorescence (bottom panels) images

of cocultures untreated or treated with DMSO or ML7 are

shown. Gag-YFP and CMTMR signals were shown in green

and red, respectively.

Found at: doi:10.1371/journal.ppat.1001167.s004 (9.96 MB TIF)

Figure S4 Examples of polarity index calculations. To measure

morphological polarization of T cells, outlines of Gag-YFP-

expressing P2 cells were determined by manually tracing the cell

perimeter using the ImageJ program. Circularity values were then

calculated based on this outline using the Measure function of

ImageJ. The output values range between 0 and 1, with 1

representing a perfect circle. To quantify polarity of Gag

localization, a 10-segmented grid was placed over each cell along

the cell’s longest axis. The number of segments that contained

plasma-membrane-associated Gag was then used as the polariza-

tion index. For clarity, the outline and the grid were removed from

the lower right panel.

Found at: doi:10.1371/journal.ppat.1001167.s005 (7.90 MB TIF)

Movie S1 Migrating T cell stably maintains uropod localization

of Gag. Cells expressing Gag-YFP (green) were immunostained

with anti-PSGL-1 prelabeled by AlexaFluor-594-conjugated anti-

mouse IgG (red). Images were acquired every 30 s for 30 min as

the polarized cell migrates through the field. Yellow color indicates

colocalization of PSGL-1 and Gag-YFP.

Found at: doi:10.1371/journal.ppat.1001167.s006 (3.13 MB

MOV)

Movie S2 Infected T cells mediate stable contacts with target

cells via their uropods. Primary T cells expressing Gag-YFP

(green) were cocultured with fresh primary T cells from the same

donor stained with the fluorescent dye CMAC (blue) and

immunostained with an anti-PSGL-1 antibody (red) as described

in Materials and Methods. Regions of colocalization between Gag

and PSGL-1 are shown in yellow. Live cell images were taken

every 30 s for 20 min. Note that the uropod, enriched in Gag-YFP

and PSGL-1, mediates stable contacts with target cells.

Found at: doi:10.1371/journal.ppat.1001167.s007 (2.75 MB

MOV)

Movie S3 Cell surface patches containing Gag and a uropod

marker laterally move to and accumulate at a forming uropod.

Time lapse images of a Gag-YFP-expressing T cell during

repolarization. Gag-YFP(green)-expressing P2 cells were immu-

nostained for PSGL-1 (red) as described in Figure 6. Cells were

then depolarized by incubation at 4uC for 30 min. Approximately

5 min after chamber coverslips containing depolarized cells were

transferred to the microscope stage maintained at 37uC,

acquisition of live cell images at 30-s intervals was begun and

continued for 27 min. Note that the small patches migrate and

coalesce to the large patch at the cell pole that eventually forms the

uropod.

Found at: doi:10.1371/journal.ppat.1001167.s008 (1.55 MB

MOV)

Movie S4 Gag puncta move to and accumulate at a forming

uropod in the absence of a crosslinking antibody. Time lapse

images of a Gag-YFP-expressing T cell during repolarization.

Gag-YFP(green)-expressing P2 cells were depolarized by incuba-

tion at 4uC for 30 min. Approximately 5 min after chamber

coverslips containing depolarized cells were transferred to the

microscope stage maintained at 37uC, acquisition of live cell

images at 30-s intervals was begun and continued for 26 min. Note

that even as the cell rotates and changes direction, the small

patches migrate and coalesce to the large patch at the cell pole that

eventually forms the uropod.

Found at: doi:10.1371/journal.ppat.1001167.s009 (4.69 MB AVI)
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