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TASSER_WT: A Protein Structure Prediction Algorithm with Accurate
Predicted Contact Restraints for Difficult Protein Targets
Seung Yup Lee and Jeffrey Skolnick*
Center for the Study of Systems Biology, Georgia Institute of Technology, Atlanta, Georgia
ABSTRACT To improve the prediction accuracy in the regime where template alignment quality is poor, an updated version of
TASSER_2.0, namely TASSER_WT, was developed. TASSER_WT incorporates more accurate contact restraints from a
new method, COMBCON. COMBCON uses confidence-weighted contacts from PROSPECTOR_3.5, the latest version,
PROSPECTOR_4, and a new local structural fragment-based threading algorithm, STITCH, implemented in two variants
depending on expected fragment prediction accuracy. TASSER_WT is tested on 622 Hard proteins, the most difficult targets
(incorrect alignments and/or templates and incorrect side-chain contact restraints) in a comprehensive benchmark of 2591
nonhomologous, single domain proteins %200 residues that cover the PDB at 35% pairwise sequence identity. For 454 of
622 Hard targets, COMBCON provides contact restraints with higher accuracy and number of contacts per residue. As contact
coverage with confidence weight R3 (FwtR3

cov) increases, the more improved are TASSER_WT models. When FwtR3
cov > 1.0

and > 0.4, the average root mean-square deviation of TASSER_WT (TASSER_2.0) models is 4.11 Å (6.72 Å) and 5.03 Å
(6.40 Å), respectively. Regarding a structure prediction as successful when amodel has a TM-score to the native structureR0.4,
when FwtR3

cov > 1.0 and > 0.4, the success rate of TASSER_WT (TASSER_2.0) is 98.8% (76.2%) and 93.7% (81.1%),
respectively.
INTRODUCTION
Owing to intensive effort over the last several decades, the
accuracy of protein structure prediction methods has seen
continual improvement (1–6). There are two basic
approaches to the prediction of protein structure: those
that are structural template-based (TB), and those that
do not use any preexisting structural information, i.e.,
template-free (TF) (2,4,6–9). Both comparative modeling
and threading are based on the same strategy that identifies
a set of templates that have related structures to the target
sequence. Although comparative modeling mainly relies
on evolutionary relationships between the target and
template, in principle, threading aims to identify target-
template pairs that adopt similar structures whether or not
they are evolutionary related (10). However, in practice,
the best threading methods have a strong evolutionary
component and purely structure-based approaches have
not been competitive (11,12). For single domain proteins,
TB methods can identify structurally related templates for
~75% of sequences in an average proteome (13). However,
given that the Protein DataBank (PDB) is likely complete
for single domain proteins, it fails for the remaining 25%
of targets either because structurally similar templates are
either evolutionarily unrelated or because they are far too
distant to be detected with accurate alignments (14). On
the other hand, TF methods predict the tertiary structure
of the target protein simply from protein sequence without
any extrinsic structural information. Conceptually, TF
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methods are the most elegant, but their accuracy is on
average much worse than TB approaches (15).

The reason that TB methods are the most successful
structure prediction approaches is due to the improvement
in fold recognition algorithms (16,17) and the increased
number of solved protein structures in the Protein DataBank
(PDB) (18). However, for those target proteins that are
weakly (distantly related)/nonhomologous to proteins in
the PDB, TB methods often perform quite poorly (13).
Recent developments of the TASSER protein structure
prediction algorithm and its variants (among the top-ranked
algorithms in CASP8 (13,14,19–25)) have shown some
progress for these difficult targets. Although TASSER can
operate in the TF limit with moderate success (24,26), it is
the most effective when it incorporates template alignments
and side chain contact restraints from threading (e.g., from
PROSPECTOR_3.5) for refining the structures (13,14).
Therefore, the performance of TASSER is dependent on
the accuracy and coverage of predicted contact restraints.

The next generation of TASSER, TASSER_2.0 (14)
provided for improved contact prediction accuracy on
a comprehensive, large-scale benchmark test set consisting
of 2,591 nonhomologous, single domain proteins having
% 200 residues. Based on their threading score significance,
target proteins are categorized into Easy (1802 targets) with
accurate template identification/alignments, Medium (167
targets), templates with good structural alignments but
poor threading alignments, and Hard (622 targets) with
acceptable structural alignments at low coverage but on
average poor threading alignment accuracy. This classifica-
tion indicates the relative confidence in the prediction accu-
racy. The accuracy of predicted side-chain contact restraints
doi: 10.1016/j.bpj.2010.09.007
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FIGURE 1 Flow chart of the COMBCON and TASSER_WTalgorithms.

The COMBCON algorithm is delineated by the dashed lines. A given

protein sequence is subject to the four threading algorithms, PROS-

PECTOR_3.5, PROSPECTOR_4, STITCH_high, and STITCH_low, and

the resulting set of contacts are weighted by the total frequency of occur-

rence in the four methods. These frequency-weighted contacts are then

provided to the TASSER_WT structure assembly algorithm along with

the set of PROSPECTOR_4-provided template alignments.

TASSER_WT Protein Structure Prediction 3067
as well as template alignments are dependent on target diffi-
culty. In the benchmark set, the average contact prediction
accuracy (number of correctly predicted contacts divided
by the number of contacts predicted; strictly speaking, this
is the contact prediction precision) improved from 0.37
using wild-type sequences in PROSPECTOR_3.5 to 0.60
(with an average number of contacts/residue of 1.34) (13)
in TASSER_2.0. Hard targets have an average side-chain
contact prediction accuracy of 0.50, but the coverage is
low, with 0.25 contacts/residue on average. Because of the
small number of correctly predicted contacts, TASSER_2.0
fails to generate reasonably accurate models for many Hard
targets (14). Therefore, improvement in prediction accuracy
for Hard targets is needed.

In this work, as part of our ongoing efforts to improve the
accuracy of the predicted side chain contact restraints, we
develop a new (to our knowledge) approach for template
identification/contact prediction. In addition to using wild-
type template sequences in PROSPECTOR_3.5, we develop
an improved threading algorithm PROSPECTOR_4 that
differs from previous generations of PROSPECTOR
(14,27,28) in a number of important respects: For the
sequence profile component of the scoring function, for an
11-residue window centered at each target residue i and
template residue j, we calculate the average sequence profile
score. Given that score and the alignment (i�5,j�5),
.(iþ5,jþ5), we calculate the probability that at least
50% of these aligned pairs correspond to the best structure
alignment as provided by fr-TM-align (29). The second
pass uses the alignment generated in the first pass to
evaluate the partners used to the calculation of the pair
interactions, also averaged over an 11-residue window.
As shown below, compared to PROSPECTOR_3.5,
PROSPECTOR_4 provides an ~3% higher TM-score. We
next use the top five templates selected by PROS-
PECTOR_4 as structural splines in a newly developed frag-
ment-stitching algorithm, STITCH. STITCH takes
advantage of the fact that for even for Hard targets, ~77%
of PROSPECTOR_4 identified templates have good struc-
tural alignments to the target’s native structure, even though
the sequence alignments are of moderate to poor accuracy.
Two local fragment scores provide two sets of target-
template alignments. In the prediction of tertiary contacts,
we combine all four approaches to provide a set of weighted
contact predictions whose weight is strongly correlated with
contact prediction accuracy; we term this composite
approach, COMBCON. The predicted contacts plus the
template alignments provided by PROSPECTOR_4 are
implemented into a new structure refinement approach,
TASSER_WT. We benchmarked TASSER_WT on the 622
Hard targets of our previous comprehensive benchmark
test set (14) and provide a detailed comparison with the
previous TASSER_2.0 predictions. Significant improve-
ment of TASSER_WT for the majority of difficult, Hard
set of targets is demonstrated.
MATERIALS AND METHODS

Overview

TASSER and its variants are basically composed of template identification

and side chain and contact restraint prediction by threading, followed by

structure assembly and final model selection. As shown in the flow chart

of the methodology, in Fig. 1, after running the various threading

algorithms, we combine the side chain contacts predicted by

PROSPECTOR_3.5, PROSPECTOR_4, and SPLINE_high/low, with the

weight of a predicted contact between side chains i and j, wt(i,j), given

by the number of times it is found in the four approaches. TASSER_WT

uses the modified additional contact restraint energy function previously

developed in TASSER_2.0 to increase the influence of more accurately

predicted contacts as well as the template alignments provided from

PROSPECTOR_4 as input. Because the same procedures for structure

assembly and final model selection are used by TASSER_2.0 and

TASSER_WT (13,14,30), we focus on the newly developed

PROSPECTOR_4 and SPLINE_high/low methods and the modified

contact restraint energy.

PROSPECTOR_3.5

In what follows, we use the template wild-type sequences and their associ-

ated sequence profiles of PROSPECTOR_3.5, as described in Lee and Skol-

nick (14). From the final iteration of PROSPECTOR_3.5, a pair of residues

(>4 residues apart in sequence) are predicted to be in contact if in the up to
Biophysical Journal 99(9) 3066–3075
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30 scoring templates as ranked by their z-score R4, the following condi-

tions hold: For those contacts occurring in at least three of the templates

(assigned a weight of unity each time it occurs), the weight of all aligned

contacts within 53 residues of a contact is increased by 1 if the

BLOSUM62 (31) matrix elements of the two target/template pairs of

aligned residues are >0. If the resulting contact weight >4, the pair is

predicted to be in contact.

PROSPECTOR_4

PROSPECTOR_4 incorporates many of the ideas of PROSPECTOR_3.5

(14), but gives improved accuracy at roughly 60% of the computational

cost due to the decreased number of iterations required to achieve conver-

gence. For the e10 sequence profiles (those sequences whose PSIBLAST

(32) E-value to the target or template sequence is %10) of the target

(template) of length M (N), let xi (Xi) be a 20-dimensional vector, the lth

element of which is the frequency of occurrence of amino acid type

a (a ¼ 1,2,...,20) at position i. We then calculate the corresponding

z-score (score in standard deviation units relative to the mean) of the target

and template residues i and j of type a as

zai ¼ �
xai �

�
xai
��
=si; (1a)

Ya
i ¼ �

Xa
i �

�
Xa
i

��
=si; (1b)

where sk is the standard deviation in amino-acid frequency and h.i is the
average value (0.05) at position k. The (i,j) matrix element of the score asso-

ciated with aligning target residue i to template residue j is related to the

probability p1/2 that a window of ‘ ((¼ 2uþ1) ¼ 11) residues centered at

i with average correlation coefficient

Cði; jÞ ¼
Xu

D¼�u

X20
a¼ 1

zaiþDY
a
jþD=20‘ (2)

have a best structural alignment to the native structure (which is of course

unknown at the time of the alignment because no knowledge of the native

structure is used) for at least 50% of the residues by

S1ði; jÞ ¼ a þ bp1=2Cði; jÞ: (3)

(The list of nonhomologous training proteins used to derive this is found at

http://cssb.biology.gatech.edu/skolnick/files/TASSER_WT/LIST.train.) The

value p1/2 for a given score Ci;j is given in Table 1, where we use a set of

discretized values. The correlation coefficient between the fraction of resi-

dues in the window that correspond to the best structural alignment and

Cði; jÞ is 0.71. We use a ¼ 0.19, b ¼ 0.2 with gap creation and propagation

penalties of �2.15 and �0.16. Values a and b were obtained by optimizing
TABLE 1 Probability that a given correlation coefficient over

an 11- residue window has at least half of its residues

corresponding to the best target-template structural alignment

Correlation coefficient, Cb p1/2

<0 0.0

0.0 0.097

0.1 0.142

0.2 0.219

0.3 0.344

0.4 0.506

0.5 0.694

0.6 0.818

0.7 0.88

0.8 0.898

0.9 0.909

1.0 0.918
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the accuracy of the threading alignments on the first 99 proteins found in

LIST.train.

Let M1(j) be the alignment of template residue j to target residue i given

by the first pass of threading using Eq. 3. We then use this target/template

structure alignment to identify the partners for the evaluation of the pair

interactions in the second pass of threading as

S2ði; jÞ ¼ S1ði; jÞ þ 0:15
Xu

D¼�u

3pair
�
i;M1ðj þ DÞ��‘; (4)

where 3pair is the sum of the target protein’s multiple sequence averaged,

protein-specific pair potential and our previously derived quasichemical

pair potential (33). In practice, for template ranking, we calculate the

z-score of the difference between the target-template score and that when

the target sequence is reversed; the latter is designed to remove composition

dependences of the scoring function. (The quasichemical pair potential may

be found at http://cssb.biology.gatech.edu/skolnick/files/TASSER_WT/

quasichemical_pair .)

In PROSPECTOR_4, template rankings and alignments are taken from

the second pass of threading. For the top-ranked, up to 30 templates, all

having a z-score > 1.75, we set the weight of a contact that is equal to 1,

if the z-score < 20; otherwise, the weight ¼ 3. We then sum the weights

over all the examined templates. As in PROSPECTOR_3.5, we follow

the identical procedure to augment the weights of the contacts with favor-

able BLOSUM62mutation matrix elements. A pair of residues are then pre-

dicted to be in contact if the weight of the contacts constructed by the

aforementioned procedure >1.
STITCH fragment assembly algorithm

Fragment selection

As shown below, for ~77% of Hard targets, even when PROSPECTOR_4

fails to generate a good threading alignment, the templates have a good

structural alignment to native. As will be shown elsewhere (J. Skolnick

and M. Brylinski, unpublished), the reason these templates are selected is

that they often retain the ancestral functional site of the target, but have

diverged to the point that the sequence profile component of Eq. 3 is too

weak to generate a good alignment. The idea of the STITCH algorithm is

to identify 13-residue local fragments that are then aligned to the template

structure and combined or stitched together to generate a global alignment.

The template is then used to position the overlapping fragments whose

average coordinates constitute the alignment. The template also provides

a subset of predicted contacts used in the contact-weighting procedure

described below.

The set of the top, up to 30, PROSPECTOR_4 templates whose z-score

R 4 provides the structures from which the fragments are extracted. We

consider ‘¼ 13 residue fragments. For target residue i, the score of the

template fragment centered at residue j, Efrag(i,j), is given by a combination

of the sequence covariation term, Eq. 2 with u ¼ 6, the fraction of residues

in the fragment where the template’s secondary structure agrees with the

predicted target secondary structure (14), fsec(i,j), a sequence profile aver-

aged, backbone dihedral angle potential, 3dih(i,j) and a target sequence

profile averaged side-chain contact number potential, 3con(i,j). Based on

optimization over the training set, we take

Efragði; jÞ ¼ Cði; jÞ þ 0:5ðfsecði; jÞ=10 þ 3dihði; jÞ
þ 3conði; jÞÞ: (5a)

In Eq. 5a, we use the predicted secondary structure from the neural network

described in Lee and Skolnick (14) and averaged over ‘; namely,

fsecði; jÞ ¼
Xu

D¼�u

diþD; jþD=ð‘Þ; (5b)

http://cssb.biology.gatech.edu/skolnick/files/TASSER_WT/LIST.train
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FIGURE 2 Cumulative number of protein targets whose TM-score is less

than or equal to the TM-score threshold specified on the abscissa (solid

representation) for the best of top five PROSPECTOR_3.5 threading align-

ments; (cross-hatched), the best of top five PROSPECTOR_4 threading

alignments; (diagonal pattern), the best structural alignment of the top

five ranked PROSPECTOR_4 templates; and (open representation), the

best structural alignment, SA, to any protein in the structural template

library.
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where diþD, jþD ¼ 1 when the predicted secondary structure of residue iþD

is the same as that of template residue jþD; it is zero, otherwise. Next, we

consider the sequence-profile-averaged, dihedral angle potential

3dihði; jÞ ¼
Xu�1

D¼�uþ 1

3FiþD; jþD=ð‘� 3Þ; (5c)

where there are ‘� 3 dihedral angles in a fragment of length ‘. We consider

three torsional states per dihedral angle, that between 0� and 120�, 120� and
240�, and 240� and 360�, respectively, where the planar, all trans Ca back-

bone has 4 ¼ 180�. We have constructed a statistical potential that depends

on the two (three state) torsional angles, 4i�1 and 4i of amino acids gi�1 and

hi at positions i�1 and i, 3dihed(4i�1, 4i�1, g, h).

The parameters can be found at http://cssb.biology.gatech.edu/skolnick/

files/TASSER_WT/energ_dihedral, and is constructed using the quasi-

chemical approximation (34). The sequence profile is averaged, and the

dihedral angle potential associated with residue i is given by

34ðf�1;f; iÞ ¼
XNs

s¼ 1

3dihedðf�1;f;gi�1ðsÞ; hiðsÞÞ=Ns; (5d)

where there are Ns sequences in the e10 profile. Then,

3FiþD; jþD ¼ 34
�
fjþD�1;fjþD; i þ D

�
; (5e)

where 4jþD�1 and 4jþD are the dihedral angle conformational states of

residues j�Dþ1 and j�D, respectively. Finally, we consider the fragment-

averaged, contact number potential. Let 3resconðn;gÞ be the statistical potential
when residue type g has n contacts with other residues as defined in Lee and

Skolnick (14). (The potential may be found at http://cssb.biology.gatech.

edu/skolnick/files/TASSER_WT/energ_contacts.) Then, the sequence-

profile-averaged potential is given by

3conðn; iÞ ¼
XNs

s¼ 1

3resconðn;giðsÞÞ=Ns; (5f)

from which

3conði; jÞ ¼
Xu

D¼�u

3conðncðj þ DÞ; i þ DÞ=l; (5g)

where the number of contacts at template residue jþD is nc(jþD).

In practice, we generate fragments for two sets of cutoff values,

cut, a restrictive one where Efrag(i,j) > 0.5 and a more permissive set where

Efrag(i,j)R 0.48. Each fragment set will be independently used to generate

alignments to the top five templates selected by PROSPECTOR_4.
Stitch threading alignment refinement algorithm

As shown in Results and Discussion, even for the Hard targets in the

622-benchmark protein set, for the top five templates selected by

PROSPECTOR_4, 479 (77%) have a structural alignment to native

whose TM-score (35) is R0.40. We note that a TM-score R0.4 denotes

a statistically significant alignment. Thus, although the alignment gener-

ated by PROSPECTOR_4 is poorer for Hard targets (see Fig. 2 for the

cumulative histogram of TM-scores), nevertheless it identifies a useful

template. Our goal here is to use the set of predicted fragments to

generate a better target-template alignment. We denote by STITCH_low

(STITCH_high) with Efrag (i,j) > cut ¼ 0.48 (0.50), the results of the

fragment-based threading when lower (higher) confidence fragments

are generated.

Let the number of fragments predicted for target residue i be nf. For

each of these fragments, using the Kabsch rotation matrix that minimizes

the root mean-square deviation (RMSD) between the fragment and the
template (36), we calculate a pseudo TM-score between the kth such frag-

ment as

TMkði; jÞ ¼
Xu

D¼�u

Qði þ D; j þ DÞ
.
‘
�
k ¼ 1; ::nf

�
: (6a)

Let dij be the distance between fragment residue i and template residue j

after optimal superposition. If dij > d0, then

Qði; jÞ ¼ 0: (6b)

Otherwise,

Qði; jÞ ¼ 1� �
dij=d0

�2:5
: (6c)

We have set d0 ¼ 2 Å. The goal of Eq. 6 is to strongly penalize fragments

whose geometry disagrees with that of the template. In practice, we take the

fragment that gives maximum value over all the fragments,

TMmaxði; jÞ:
We then calculate the score matrix between target residue i and template

residue j as

Sf ði; jÞ ¼ af þ TMmaxði; jÞ; (7a)

when

TMmaxði; jÞ > 0:3

and

Sf ði; jÞ ¼ 0 otherwise: (7b)

Based on training set optimization, af ¼ 0.1, and we take the gap opening

and propagation parameters as in PROSPECTOR_4.

After generating the fragment library template alignment, if the z-score

of the template from PROSPECTOR_4 >20, each predicted target contact

extracted from the target-template alignment is assigned a weight of 2;

otherwise, it is assigned a weight of 1. For those contacts whose weight
Biophysical Journal 99(9) 3066–3075
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is >1, we add an additional weight of 1 if the BLOSUM62 mutation matrix

associated with contacting pairs within 53 residues of an aligned target-

template pair is positive. Finally, we examine the contact weight matrix

and assign a residue pair as being in contact if their contact weight matrix

>1 and the residues are at least five amino-acids apart in the protein

sequence. In practice, two fragment libraries (generated when difference

fragment similarity cutoffs are used), so that the STITCH algorithm

provides two sets of predicted contacts for each target protein.

In a similar fashion, we can generate tentative target-template align-

ments. The simplest approach would be to just take the aligned template

residues. However, we have found better results if we use the template as

a reference frame to generate the local alignment of the up to ‘ fragments

that have a template residue i
0
associated with template fragment j

0
. In

practice, we generate the superposition of all (up to ‘) aligned fragments

that contain residue i. The average value of the coordinates associated

with the ith residue is taken to be its predicted coordinates. Once again,

because two fragment libraries are used, each provides a set of five struc-

tural predictions.
Confidence-weighted contact predictions
in TASSER_WT

Each of the four threading algorithms, PROSPECTOR_3, PROS-

PECTOR_4, STITCH_low, and STITCH_high, provide a set of predicted

contacts. The weight of a predicted contact, wt(i,j), is the sum of the number

of times the contact appears in the four methods; we term this method of

side-chain contact prediction, COMBCON. In practice, wt(i,j) ranges

from 1 to 4. As shown below, the contacts become more accurate as their

weight increases. To increase the effect of these contact restraints in

TASSER, we introduce a modified contact restraint function into

TASSER_WT. When the ith and jth residues are in contact as predicted by

COMBCON, their contact energy (Eadd–wt) is defined by

Eadd wt ¼
�
1þ

�
rði;jÞ
r0ði;jÞ � 1

�2�
wtði; jÞ; rði; jÞ > r0ði; jÞ

¼ 0; rði; jÞ% r0 ði; jÞ
; (8)

where r(i,j) is the distance between the side-chain centers of mass of the ith

and jth residues, r0(i,j) is the corresponding cutoff distance for a contact

between their side-chain centers of mass, and wt(i,j) is the corresponding

confidence weight.
Structure assembly and final model selection

Besides the additional contact-weighted restraints of Eq. 8, the energy func-

tion of TASSER_WT is identical to that of TASSER_2.0 (14) and is

composed of knowledge-based long- and short-range correlations, the

propensity for predicted secondary structures, protein specific pair interac-

tions, and a residue-based solvent accessibility term. The protein represen-

tation (Ca atoms and the side-chain centers of mass) and conformational

search scheme, Parallel Hyperbolic Monte Carlo Sampling (37), are the

same as in the original TASSER (13). The resulting structures are clustered

using SPICKER (38), and the top five models from the 14 lowest tempera-

ture replicas constitute the set of predicted structures.
Benchmark proteins and template library

For benchmarking TASSER_WT, we use 622 Hard targets from the

previous benchmark test set of 2591 nonhomologous single domain

proteins having % 200 residues (14). (The list is provided at http://cssb.

biology.gatech.edu/skolnick/files/TASSER_WT/LIST.Hard.) These bench-

mark proteins have <35% sequence identity to each other. (The structure

template library used by all four approaches is available at http://cssb.

biology.gatech.edu/skolnick/files/TASSER_WT/LIST.templates.) All targets
Biophysical Journal 99(9) 3066–3075
have <30% sequence identity to their closest template, with an average

pairwise sequence identity of 13.3%.
RESULTS AND DISCUSSION

Comparison of PROSPECTOR_3.5,
PROSPECTOR_4, and the best structural
alignments

In Fig. 2, for the 622-protein benchmark set, we present
a histogram of the cumulative number of proteins whose
best of top five templates has a TM-score greater than or
equal to the specified value for PROSPECTOR_3.5 (solid),
PROSPECTOR_4 (cross-hatched), the structural alignment,
SA, of the best of top five PROSPECTOR_4 templates to the
native structure obtained using fr-TM align (29) (diagonal
stripes), and the best SA of the target to the entire template
library (open histogram). Comparing PROSPECTOR_3.5
with PROSPECTOR_4, the average TM-score increases
from 0.409 to 0.424, but, most importantly, the number of
targets whose TM-score R0.4 increases from 270 to 292,
an 8% improvement.

Indeed, it is over the TM-score range of 0.4–0.5 where
there is significant improvement in the template alignment
quality. We note, however, that the best structural alignment
of the top five PROSPECTOR_4 templates to their
corresponding native structure gives significantly better
results over the entire TM-score range, with a mean
TM-score of 0.535, and 479 (77%) of the targets having
a TM-score R0.4. This validates our previous statement
that the PROSPECTOR_4 selected templates could, in prin-
ciple, be used to generate better results evenwhen their actual
alignment quality is quite poor. The average pairwise target-
template sequence identity of the best of top five templates is
13.5% from PROSPECTOR_4 as compared to 9.4% from
their corresponding best structural alignment to native.
Finally, consistent with the likely completeness of the PDB
(39), all targets have a good structural alignment to some
member of the PDB library with an average best TM-score
of 0.634 and sequence identity of 9.9%. Thus, considerable
improvement could result if we had a means of selecting
the best templates and their associated structural alignments.

Can we exploit the above insights to generate better align-
ments?

On applying STITCH_high to the top 30 templates iden-
tified by PROSPECTOR_4, we found that the average TM-
score is 0.35, with an average coverage (fraction of aligned
residues) of 0.62. Similarly, STITCH_low generated align-
ments, with the best of top five TM-scores of 0.37 and
0.71 average coverage. At first glance, this might appear
to be discouraging as compared to PROSPECTOR_4.
However, as shown in Fig. 3, A and B, there are significantly
more low RMSD alignments at acceptable coverage (frac-
tion of target residues aligned to the template) as compared
to PROSPECTOR_4 or PROSPECTOR_3.5 (which has
somewhat poorer performance than PROSPECTOR_4).

http://cssb.biology.gatech.edu/skolnick/files/TASSER_WT/LIST.Hard
http://cssb.biology.gatech.edu/skolnick/files/TASSER_WT/LIST.Hard
http://cssb.biology.gatech.edu/skolnick/files/TASSER_WT/LIST.templates
http://cssb.biology.gatech.edu/skolnick/files/TASSER_WT/LIST.templates


FIGURE 3 (A) Cumulative fraction of the

number of protein targets whose best of top five

templates has an RMSD less than or equal to the

root mean-squared deviation (RMSD) value speci-

fied on the abscissa. (B) Corresponding cumulative

average coverage for templates with an RMSD to

native less than or equal to the RMSD specified

on the abscissa (open representation) from

STITCH_high, the higher confidence fragment

library (striped representation) from STIT-

CH_low, the lower confidence fragment library,

from PROSPECTOR_4 (cross-hatched), and from

PROSPECTOR_3.5 (solid representation).
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The more accurate alignments as selected by STITCH_high
as compared to STITCH_low are at the expense of lower
coverage. We note that STITCH_high (STITCH_low) has
350 (292) targets with a RMSD %6 Å. This suggests that
the template alignments generated by STITCH could be
profitably used to select more accurate predicted tertiary
contact restraints, a point we now demonstrate.
TABLE 2 Fraction of accurately predicted contacts and

predicted number of contacts per residue with confidence

weight R3 from COMBCON and TASSER_2.0

COMBCON TASSER_2.0

Weight* No.y Fwt
acc

z [SD]

Fwt
cov

x

(Contacts/

residue) [SD] Facc
{ [SD]

Fcov
k

(Contacts/

residue) [SD]

R4 346 0.67 [0.32] 0.48 [0.63] 0.60 [0.30] 0.36 [0.44]

R3 454 0.57 [0.32] 0.51 [0.65] 0.56 [0.32] 0.29 [0.40]

R2 620 0.40 [0.25] 0.87 [0.91] 0.50 [0.34] 0.25 [0.37]

R1 622 0.21 [0.15] 3.65 [1.15] 0.50 [0.34] 0.25 [0.37]

SD ¼ standard deviation.

*Confidence weight from COMBCON.
yNumber of targets in each category from COMBCON.
zAverage fraction of accurately predicted contact restraints from

COMBCON.
xAverage fraction of predicted contacts per residue from COMBCON.
{Average fraction of accurately predicted contact restraints from

TASSER_2.0 for the same targets of each category.
kAverage fraction of predicted contacts per residue from TASSER_2.0 for

the same targets of each category.
Contact restraint prediction

To assess the quality of the predicted contact restraints, we
calculate the fraction of accurately predicted contacts (Facc)
and the fraction of predicted contacts per residue by

Facc ¼ Nc;c

Nc;a

; (9a)

Fcov ¼ Nc;a

Nres

; (9b)

where Nc,c is the number of common contacts in both the
predicted contact restraints and the native structure, Nc,a is
the total number of the predicted contacts, and Nres is the
length of the target protein. Contact restraints from COMB-
CON have a confidence weight ranging from 1 to 4. The
higher weight indicates more confidently predicted contact
restraints. In what follows, FwtRm

acc and FwtRm
cov indicate

Facc and Fcov at a confidence weight Rm, respectively.
As shown in Table 2, for contact restraints with weight

R1 and R2, the average FwtR1
acc and FwtR2

acc with
5SD (standard deviation) is 0.21 5 0.15 and 0.40 5
0.25, respectively. The accuracy of these predicted contact
restraints (especially FwtR1

acc) is too low to expect a reason-
ably accurate TASSER model. However, the average
FwtR3

acc and FwtR4
acc from COMBCON is 0.57 5 0.32
and 0.67 5 0.32, respectively. Predicted contact restraints
with confidence weights ¼ 4 have improved accuracy,
compared with 0.60 5 0.33 of TASSER_2.0.

More importantly, TASSER_WT’s coverage is consider-
ably higher, with values of 0.51 5 0.65 and 0.48 5 0.63
Fwt

cov ¼ 3 and 4 as compared to 0.29 5 0.4 and 0.36 5
0.44 of TASSER_2.0 for the identical proteins. In
COMBCON, unlike TASSER_2.0, according to their confi-
dence weights, the more accurately contact restraints can be
identified among all predicted contacts. Among 622 Hard
targets, 454 have at least one predicted contact with con-
fidence weight R3. Thus, because it is the number of
accurately predicted contacts/residue at high confidence
Biophysical Journal 99(9) 3066–3075
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which dictates the performance of TASSER, we would
expect better results from TASSER_WT as compared to
TASSER_2.0.

Based on their accuracy/coverage, for TASSER_WT, we
will use the predicted contact restraints with confidence
weight R3 from COMBCON using Eq. 8, while contacts
with the confidence weight ¼ 2 are very weakly incorpo-
rated into TASSER_WT. We do not use contact restraints
with the confidence weight ¼ 1 in TASSER_WT because
their accuracy is extremely low.
TASSER_WT refinement results

In what follows, we focus on the TASSER_WT prediction
for the 454/622 Hard targets that have at least one predicted
contact with confidence weightR3, because for the remain-
ing 168 targets, COMBCON provides very low accuracy
contact predictions.

In Table 3, we show the average RMSD and TM-score to
the native structure of the top and best-of-top-five ranked
TASSER_2.0 and TASSER_WT models with FwtR3

cov of
COMBCON. When FwtR3

cov > 0.0, the average RMSD
(5SD) of the best-of-top-five (top-ranked) ranked
TASSER_WT models is 7.44 5 4.23 Å (8.74 5 4.84 Å),
whereas TASSER_2.0 models have an average RMSD of
7.79 5 4.09 Å (9.45 5 4.79Å). When FwtR3

cov > 0.4,
TASSER_WT (TASSER_2.0) best-of-top-five models have
an average RMSD of 5.03 5 3.09 Å (6.40 5 3.65 Å).
When FwtR3

cov >1.0, TASSER_WT (TASSER_2.0) best-
of-top-five models have an average RMSD of 4.11 5 2.38
Å (6.72 5 3.80 Å).

In Table 3, we also present the TM-score of the predicted
models to the native structure (40). For targets having
FwtR3

cov > 1.0, the average TM-score of the best-of-top-
five TASSER_WT (TASSER_2.0) models is 0.7435 0.104
TABLE 3 Comparison of models from TASSER_WT and TASSER_

hRMSD to the nativei (SD*), Å
Top1 Best

FwtR3
cov No.* M2.0

y MWT
z M2.0

x MWT
{

>1.0 80 8.48 (4.62) 4.71 (3.03) 6.72 (3.80) 4.11 (2.3

>0.8 104 8.30 (4.60) 5.26 (3.33) 6.54 (3.74) 4.40 (2.5

>0.6 130 8.05 (4.51) 5.56 (3.72) 6.38 (3.65) 4.70 (3.0

>0.4 175 8.11 (4.70) 6.02 (3.83) 6.40 (3.65) 5.03 (3.0

>0.2 224 7.95 (4.55) 6.37 (3.96) 6.37 (3.54) 5.40 (3.2

>0.0 454 9.45 (4.79) 8.74 (4.84) 7.79 (4.09) 7.44 (4.2

SD* is the average standard deviation of the models, shown in parentheses.

*Number of targets in each category.
yTop1: Average RMSD to the native structure of top model among the top five.
zTop1: Average RMSD to the native structure of top model among the top five.
xBest: Average RMSD to the native structure of the best model among the top
{Best: Average RMSD to the native structure of the best model among the top
kTop1: Average TM-score to the native structure of top1 model among the top

**Top1: Average TM-score to the native structure of top1 model among the top
yyBest: Average TM-score to the native structure of the best model among the t
zzBest: Average TM-score to the native structure of the best model among the t
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(0.570 5 0.184). Even when FwtR3
cov > 0.0, the best-of-

top-five (top) TASSER_WT models have an average TM-
score of 0.526 5 0.195 (0.506 5 0.199), compared to
0.489 5 0.175 (0.455 5 0.180) for TASSER_2.0 models.

These results show that:

1. When COMBCON provides at least one contact restraint
with confidence weight R3, TASSER_WT outperforms
TASSER_2.0.

2. As the number of contacts with confidence weight R3
(FwtR3

cov) is increased, TASSER_WT models become
much closer to their native structure than TASSER_2.0
models.

Fig. 4 shows the cumulative fraction of targets with an
RMSDdifference between the best-of-top-fiveTASSER_WT
and TASSER_2.0 models, DRMSD (RMSDTASSER_WT –
RMSDTASSER_2.0) less than the specified DRMSD value
when FwtR3

cov > 0.0, 0.4, and 1.0. When the DRMSD is
negative, the TASSER_WT model has a smaller RMSD to
the native structure than the TASSER_2.0 model. When
FwtR3

cov > 1.0, 79% of the TASSER_WT models become
closer to the native than the TASSER_2.0 models. When
FwtR3

cov> 0.4 and> 0.0, 66% and 52%of the TASSER_WT
models, respectively, have a smaller RMSD to native value
than the TASSER_2.0 models. For those models that are
closer to native than the corresponding TASSER_2.0models,
when FwtR3

cov > 1.0, 81% and 73% of the TASSER_WT
models have an RMSD improvement >0.5 Å and 1.0 Å,
respectively. As the FwtR3

cov increases, TASSER_WT
significantly outperforms TASSER_2.0 because the accu-
racy of the predicted contacts produces better quality
structures.

Fig. 5, a–f, presents representative examples showing the
improvement of the TASSER_WT models over the
TASSER_2.0 models. For 3inkC (Fig. 5, a and b, an
2.0

hTM-score to the nativei (SD)
Top1 Best

M2.0TM
k MWTTM** M2.0TM

yy MWTTM
zz

8) 0.525 (0.192) 0.738 (0.104) 0.570 (0.184) 0.743 (0.104)

3) 0.535 (0.186) 0.714 (0.116) 0.580 (0.176) 0.719 (0.113)

0) 0.531 (0.190) 0.685 (0.151) 0.574 (0.177) 0.692 (0.147)

9) 0.530 (0.181) 0.655 (0.160) 0.570 (0.169) 0.667 (0.156)

8) 0.529 (0.176) 0.631 (0.166) 0.567 (0.165) 0.644 (0.164)

3) 0.455 (0.180) 0.506 (0.199) 0.489 (0.175) 0.526 (0.195)

TASSER_2.0 model.

TASSER_WT model.

five. TASSER_2.0 model.

five. TASSER_WT model.

five. TASSER_2.0 model.

five. TASSER_WT model.

op five. TASSER_2.0 model.

op five. TASSER_WT model.



FIGURE 4 Cumulative fraction of the RMSD difference between the TASSER_WT and TASSER_2.0 models with the fraction of predicted contacts per

residue of the confidence weight R3 (FwtR3
cov) where RMSDTASSER_WT and RMSDTASSER_2.0 is the RMSD of TASSER_WT and TASSER_2.0 models to

the native structure, respectively. The RMSD is negative when the TASSER_WT model has a smaller RMSD than the TASSER_2.0 model.
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a-helical protein), the TASSER_2.0 model was predicted
with contacts having a Facc of 1.00 and Fcov of 0.02; the
resulting model has an RMSD to the native structure of
7.9 Å. The TASSER_WT model has a RMSD of 4.0 Å for
which FwtR3

acc (FwtR3
cov) is 0.69 (1.22). For 1bcpD

(Fig. 5, c and d, a b-protein), the RMSD of the
TASSER_WT model predicted, with a FwtR3

acc (F
wtR3

cov)
of 0.61 (2.69), is 4.2 Å. This is much smaller than the
FIGURE 5 Representative examples showing the improvement of TASSER_

protein), and 1ogcA (a/b protein) in the Hard set. The thick (thin) line refers to

a distance <5 Å after superposition of the predicted model onto the native struc

sition, the native structure is shown in green. Below the models is the RMSD t
RMSD of 11.0 Å of the TASSER_2.0 model generated
with Facc of 0.00 and Fcov 0.04. For 1ogcA (Fig. 5, e and
f, an a/b protein), the TASSER_WT (TASSER_2.0) model
has an RMSD of 3.2 Å (10.5 Å), where FwtR3

acc (Facc)
and FwtR3

cov (Fcov) are 0.66 (0.67) and 3.50 (0.09), respec-
tively. These examples clearly demonstrate that increased
contact prediction accuracy is responsible for the improve-
ment of TASSER_WT over TASSER_2.0 models.
WT models over TASSER_2.0 models for 3inkC (a-protein), 1bcpD (b-

the native structure (predicted model). Red indicates residue pairs having

ture. For the remainder of residues whose distance is R5 Å after superpo-

o the native structure.
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FIGURE 6 Cumulative fraction of the cumulative RMSD distribution ofWT-TASSER and TASSER_2.0 models having a fraction of predicted contacts per

residue whose confidence weight is R3 at different values of the coverage FwtR3
cov.
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In Fig. 6, we show the cumulative histogram of the
RMSD of the TASSER_2.0 and TASSER_WT models for
different FwtR3

acc thresholds. We can define a foldable
protein when the RMSD of a predicted model to the native
structure is <6.5 Å (13,14,20). For FwtR3

cov > 1.0, the frac-
tion of foldable proteins of TASSER_WT (TASSER_2.0)
models is 87.5% (61.3%). When FwtR3

cov > 0.4 TAS-
SER_WT (TASSER_2.0) models have a success rate of
78.9% (62.9%). When FwtR3

cov > 0.0, the success rate of
the TASSER_WT (TASSER_2.0) models drops to 49.6%
(44.9%).

Alternatively, if we define the fraction of foldable
proteins as those with TM-scoresR0.4, then for FwtR3

cov >
1.0, the fraction of foldable proteins of the TASSER_WT
(TASSER_2.0) models is 98.8% (76.2%). When FwtR3

cov >
0.4, the TASSER_WT (TASSER_2.0) models have a success
rate of 93.7% (81.1%). When FwtR3

cov > 0.0, the success
rate of the TASSER_WT (TASSER_2.5) models drops to
69.6% (64.3%). Thus, by both metrics, TASSER_WT has
a larger number of foldable target proteins.

We next examine the fraction of target proteins not
foldable by TASSER_2.0 but which are foldable using
TASSER_WT. TASSER_WT converts 28.7, 20.6,
and 11.9% of these targets into foldable proteins when
FwtR3

cov > 1.0, > 0.4, and > 0.0, respectively. Overall,
TASSER_WT improves the fraction of foldable proteins;
in particular, the largest improvement is seen when
FwtR3

cov > 1.0, because the predicted contact restraints
have both high accuracy and a large number of such accu-
rately predicted contacts per residue.
CONCLUSIONS

To improve the prediction accuracy of TASSER for the most
difficult Hard targets, we have developed TASSER_WT,
which uses the more accurate contact restraints from
COMBCON. COMBCON provides contact restraints with
Biophysical Journal 99(9) 3066–3075
a confidence weight that successfully distinguishes the
more accurately predicted contacts among all predicted
contact restraints; this a priori knowledge is very useful
for TASSER structure prediction.

Here, we examined the performance of TASSER_WT on
the 622 Hard targets of the previous benchmark set consist-
ing of 2591 nonhomologous, single domain protein targets
(14). Previously, the prediction accuracy for these targets
was poor because the average quality of the template align-
ments was quite bad. By using consensus-weighted contacts
extracted from variants of PROSPECTOR as well as a new
fragment-based threading method, STITCH, TASSER_WT
shows significant improvement over TASSER_2.0 for those
targets having higher confidence restraints. By incorpo-
rating contact restraints with both high accuracy and high
contact coverage, TASSER_WT significantly increases the
prediction accuracy for the majority of the Hard targets.
This work suggests that for the regime of the most difficult
targets, template-based approaches for protein structure
prediction can make significant progress for the remaining
20% or so of single domain proteins for which template
identification has not yet been successful.

The key new insight of this approach is the fact that even
for Hard targets, existing threading algorithms can often
identify templates whose structural alignments to the native
structure are quite good, even though the actual threading
alignment quality is quite poor. The outstanding problem
is to better identify these good alignments.

The STITCH fragment-based, threading approach is
designed to take a step in this direction. By selecting the
better predicted regions in the template alignments, this
enables one to extract, more accurately, predicted side-chain
contacts at acceptable levels of coverage. These then allow
for better models to be generated by TASSER_WT. Addi-
tional work that further incorporates information provided
by structural fragments with the goal of generating even
better quality alignments is currently underway.
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