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Abstract

Background: We consider the problem of identifying motifs, recurring or conserved patterns, in the biological
sequence data sets. To solve this task, we present a new deterministic algorithm for finding patterns that are
embedded as exact or inexact instances in all or most of the input strings.

Results: The proposed algorithm (1) improves search efficiency compared to existing algorithms, and (2) scales
well with the size of alphabet. On a synthetic planted DNA motif finding problem our algorithm is over 10× more
efficient than MITRA, PMSPrune, and RISOTTO for long motifs. Improvements are orders of magnitude higher in the
same setting with large alphabets. On benchmark TF-binding site problems (FNP, CRP, LexA) we observed
reduction in running time of over 12×, with high detection accuracy. The algorithm was also successful in rapidly
identifying protein motifs in Lipocalin, Zinc metallopeptidase, and supersecondary structure motifs for Cadherin
and Immunoglobin families.

Conclusions: Our algorithm reduces computational complexity of the current motif finding algorithms and
demonstrate strong running time improvements over existing exact algorithms, especially in important and difficult
cases of large-alphabet sequences.

Background
Finding motifs or repeated patterns in data is of wide
scientific interest [1-4] with many applications in geno-
mic and proteomic analysis. The motif search problem
abstracts many important problems in analysis of
sequence data, where motifs are, for instance, biologically
important patterns. For example, elucidating motifs in
DNA sequences is a critical first step in understanding
biological processes as basic as the RNA transcription.
There, the motifs can be used to identify promoters, the
regions in DNA that facilitate the transcription. Finding
motifs can be equally crucial for analyzing interactions
between viruses and cells or identification of disease-
linked patterns. Discovery of motifs in music sequences,
text, or time series data is a fundamental, general means
of summarizing, mining and understanding large

volumes of data. For the purpose of this study, motifs are
(short) patterns that occur in an exact or approximate
form in all or most of the strings in a data set. Consider a
set of input strings S of size N = |S| constructed from an
alphabet Σ. The solution for the (k, m, Σ, N)-motif finding
problem (Figure 1) is the set M of k-mers (substrings of
length k), M ⊆ Σk, such that each motif a Î M, |a| = k, is
at minimum Hamming distance of at most m from all (or
almost all) strings s Î S.
In this work, we focus on a deterministic, exhaustive

approach to motif search. Exhaustive motif finding
approaches are guaranteed to report all instances of
motifs in a set of sequences, but are faced by the expo-
nential complexity of such search. As a consequence, the
problem quickly becomes intractable for even moderately
long motifs and small alphabets. We present a new deter-
ministic algorithm for finding common patterns with the
search complexity that scales well with the size of the
alphabet. Compared to existing algorithms in this class
(e.g. [5,6]) that have strong dependency on the alphabet
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size and work with small-alphabet input, our algorithms
significantly improve search efficiency in the important
case of large-alphabet inputs (e.g. protein alphabet,
extended DNA alphabet, etc.) and inputs of large length.
As we show in the experiments, using both synthetic and
real data, our algorithms are orders-of-magnitude faster
than existing state-of-the-art deterministic search algo-
rithms, especially on large-alphabet inputs (e.g., protein
sequences). This result extends applicability of the exact
motif search algorithms to more complex problems
requiring analysis of biological sequence data modeled as
strings over large alphabets. The problem of motif dis-
covery has been tackled extensively over the past two
decades [7]. Within the class of exhaustive methods, a
number of approaches have been proposed, including
graph methods (WINNOWER) [2], explicit trie traversal
(MITRA) [5], explicit mapping (Voting algorithms) [8],
suffix trees [6,9], sorting and enumeration [10], etc. Exist-
ing exhaustive algorithms use explicit exploration of the
motif space and require time proportional to the size of
the neighborhood of a k-mer, i.e. the number of k-mer
sequences at Hamming distance of at most m from it.
This size, V k m i

m
i
k i( , ) ( )( ) ,= ∑ ∑ −=0 1 depends on the alphabet

size, and can lead to high computational complexity and
running times, as shown in Table 1.
Explicit mapping (voting) algorithms proposed in [8]

use an indicator array V of the maximum size |Σ|k to find
motifs through voting. Each length-k substring observed
in the input has at most one vote for each input sequence
and gives this vote to all of its V(k, m) neighbors. The

substrings that occur in every input string will receive N
votes and will be included in the output motif set M. The
algorithm takes O(km+1|Σ|mnN) time and requires at least
O(km+1|Σ|mnN) space. The large space requirement of
the algorithm restricts its usage to small values of k and
m, as well as to small alphabet size |Σ|.
One of the most efficient exact algorithms for motif

search, the mismatch tree (MITRA) algorithm [5], uses
efficient trie traversal to find a set of motifs in the input
strings. Under a trie-based computation framework
[5,11], the list of k-long contiguous substrings (k-mers)
extracted from given strings is traversed in a depth-first
search manner with branches corresponding to all possi-
ble symbol substitutions from alphabet Σ. Each leaf node
at depth k corresponds to a particular k-mer feature
(either exact or inexact instance of the observed exact
string features) and will contain a list of matching fea-
tures from each string. The leaf nodes corresponding to
motifs will contain instances from all (or almost all)
strings. The complexity of the trie-based traversal algo-
rithm for motif finding is O(km+1|Σ|mnN). Note that the
algorithm essentially explores the neighborhood of all O
(nN) k-mers in the input.
Another class of efficient algorithms is based on sort-

ing and enumeration [10]. The PMSP algorithm enu-
merates all possible neighboring k-mers for the first
string s1 and outputs k-mers that occur in every string
with Hamming distance at most m, similar to the Vot-
ing algorithm [8]. The PMSprune algorithm [10]
employs a more efficient search strategy to traverse the
candidate space and is an improvement, in the expected
case, over the PMSP. We note that explicit enumeration
is employed by all above-mentioned algorithms.
While the exact algorithms focus on retrieving all pos-

sible motif patterns, an important issue of estimating
significance of the found motif patterns can be
addressed with existing techniques as used in, for
instance, non-exhaustive algorithms based on stochastic
optimization (e.g., MEME [12]).
In contrast to existing exact exhaustive algorithms, we

approach the problem of motif finding by performing an
efficient search over patterns with wildcards. As a

motif
(unknown)

motif instances
(inexact copies -
 unknown)

sequences
(known)

Figure 1 The motif search problem.

Table 1 Exact algorithms for motif search

Algorithm Time Complexity Space Complexity

SPELLER [9] O (nN2V(k, m)) O (nN2/w)

MITRA [5] O (knNV (k,m)) O (nNk)

CENSUS [20] O (knNV (k,m)) O (nNk)

Voting [8] O (nNV (k,m)) O (nV (m,k))

RISOTTO [6] O (nN2V (k,m)) O (nN2)

PMS [10] O (n2NV (k,m)) O (n2N)
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consequence, the proposed method’s complexity
becomes independent of the alphabet size.

Methods
Combinatorial algorithm for motif search
In this section, we develop an efficient combinatorial
algorithm for motif finding with the search complexity
independent of the size of the alphabet |Σ|. The algo-
rithm begins by finding a set of candidate motifs, fol-
lowed by the construction of the intersections of those
candidates’ neighborhoods, the sequences that are at
most m symbols apart from each candidate pair. In a cru-
cial departure from other approaches, this set is effi-
ciently represented using stems, or patterns with
wildcards. The number of the stems does not depend on
the alphabet size and is a function of the motif length (k),
the number of mismatches (m) and the Hamming dis-
tance between k-mers. Patterns common to all (or almost
all) input strings are then found by pruning the stems
that do not satisfy the motif property (i.e., do not occur
in all input strings). The main idea of our approach is to
construct a candidate set C which includes all motifs M
plus some non-motifs, i.e. M ⊆ C, and then efficiently
select true motifs from the candidate set. Given C, the
complexity of motif finding is then proportional to
itssize: the motifs can be extracted from C by checking
each candidate against the motif property, a task we
accomplish using ( )m

k
rounds of counting sort in Algo-

rithm 2. To generate C, we collect the sets of stems
which characterize the common neighbors of the pairs of
k-mers (a, b) in the input. We call these sets the stem
sets, H(a, b). Finding each H(a, b) is independent of the
alphabet size and is accomplished in Algorithm 3. To
further reduce the complexity, we construct the stem sets
only for potential motif instances I, those k-mers that are
at Hamming distance of at most 2m from every input
string. We find I using ( )2m

k
rounds of counting sort

(Algorithm 2). We outline our motif search algorithm
below:
This algorithm uses as its main sub-algorithm (in

step 2) a procedure that finds the intersection of k-mer
neighborhoods for any pair of the k-mers a, b. This
intersection finding algorithm is described in Section
‘Motif generation’. We describe selection and pruning
steps (steps 1 and 3) in Section ‘Selection algorithm’.
The overall complexity of the algorithm is

O nN HIm
k

m
k(( ) ( ) ),2

2+ where H is the maximum size of H(a, b),
and I is the size of I, the number of k-mers used to con-
struct the candidate set C. The important fact that makes
our algorithm efficient in practice is that typically I ≪
min(nN, |Σ|k) and H ≪ V(k, m), particularly for large
alphabets. We demonstrate this in our experimental
results and provide an expected-size analysis in Section
‘Selection algorithm’.

Selection algorithm
A necessary condition for a group of k-mers to have a
shared, common neighbor (motif) is that the Hamming
distance between any pair of patterns cannot exceed
2m. We will use this condition to select k-mers from
input that are potential motif instances and place them
in set I. A particular k-mer a in the input is a potential
motif instance if it is at the minimum Hamming dis-
tance at most 2m from each of the input strings. All
other k-mers that violate the above condition cannot
be instances of a motif and can be discarded. To select
the valid k-mers, we use multiple rounds of count sort
by removing iteratively 2m out of k positions and sort-
ing the resulting set of (k − 2m)-mers. A k-mer is
deemed a potential motif instance if it matched at least
one k-mer from each of the other strings in at least
one of the sorting rounds. The purpose of sorting is to
group same k-mers together. Using a simple linear
scan over the sorted list of all input k-mers, we can
find the set of potential motifs and construct I. This
algorithm is outlined in Algorithm 2. As we will see in
the experiments (Section ‘Results and Discussion’), the
selection step
significantly reduces the number of k-mer instances

considered by the algorithm and improves search effi-
ciency. The number of selected k-mers, i.e. the size of I,
is small, especially for large-alphabet inputs. This can be
seen from the expected case analysis. For this purpose
we assume that sequences are generated from a back-
ground process with few motifs implanted in the back-
ground-generated sequences. Assuming an iid
background model with equiprobable symbols, the
expected number of k-mers in the input of N strings of
length n that match each of the N strings with up to 2m
mismatches by chance is

E I pB
k

k m
n N

k
i
k

k i
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where pk ,2m is the probability that two randomly
selected k-mers are at distance of at most 2m. For
instance, for a set of N = 20 protein sequences (sampled
from alphabet |Σ| = 20) of length n = 600 the expected
number of potential motifs of length k = 13, m = 4 by
chance is about 8, with p13,8 = 2.9 10−4. Given t
implanted motif instances, the average number of k-
mers that will be selected from nN input samples, or
the expected size of I, is

E[I] = t + nN(1 − (1 − pk,2m)
t) + E[IB].
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Since t and p are typically small, for small pn, E[I] ≪
nN, the number of k-mers in the input. In the protein
example above the expected size of I is about 1 + 3 +
8=12 for t = 1, which is orders of magnitude smaller
than nN = 12000, signifying the importance of creating I
first. This is empirically demonstrated in Section ‘Results
and Discussion’.
Pruning using selection
The sorting approach of Algorithm 2 is also used to
select patterns satisfying the motif property from the
candidates C (Step 3 in main Algorithm 1). The pruning
step is based on verifying the motif property (i.e.
whether given patterns match all input sequences with
up to m mismatches) and can be accomplished using
( )m

k
rounds of counting sort.

Motif generation
In what follows, we describe an efficient algorithm that
finds the set of stems that represent the set of k-mers
shared by a pair of k-mers a and b. This process is used
to create set C from potential instances I, which is sub-
sequently pruned to yield the true motif instances.
The number of k-mers in the common neighborhood

of any two particular k-mers a and b assumes a fixed
set values depending on the Hamming distance d(a, b)
between k-mers [13], for given values of |Σ|, k, and m.
We want to represent the shared k-mers in this intersec-
tion using a set of stems, patterns with wildcards. How-
ever, the number of stems will not depend on the
alphabet size |Σ|.
To find all stems shared by k-mers a and b, consider

two sets of positions: mismatch region in which a and b
disagree and match region in which a and b agree. We
consider two cases depending on the number of mis-
match positions (i.e. Hamming distance between a, b).
In the first case, the distance d(a, b) is at most m, the
maximum number of mismatches allowed. In the sec-
ond case, the distance d(a, b) exceeds m. When d(a, b)
≤ m, wildcard characters can appear both inside and
outside of the mismatch region. When d(a, b) >m, wild-
card characters can appear only inside the mismatch
regions. Consider for example, the case of d(a, b) = 0
and m = 1. In this case, the set of stems is the set of
patterns with 1 wildcard at each of the possible k

positions (with the remaining positions as in a) plus one
stem with 0 wildcards. When m = 2, and d(a, b) = 1,
the set of stems will include patterns with 0 or 1 wild-
card in k − d positions and 0 or 1 wildcards in the
remaining d = 1 positions. For example, for the pair (tgt,
tgc) the corresponding patterns with wildcards are tg?,
t??, ?g?, t?c, and ?gc, where ? denotes a wildcard.
We outline our algorithm for finding set of stems for

the k-mer neighborhood intersection in Algorithm 3.
The number of stems generated by the algorithm is
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The number of stems describing all the explicit k-mers
shared between a, b does not depend on the alphabet size.
The complexity of the stemming algorithm is proportional
to the number of stems generated. The maximum number
of stems H is O i

m
i
k( ( ))∑ =0

2
for typical values of m <k/2.

Algorithm 3 Algorithm 3 Stem generation (independent
of the alphabet size |Σ|)

Input: pair of k-mers a, b

Output: set of stems (patterns with wildcards) shared by a and b

if if d(a, b) ≤ mthen

Set stem = a

Set i = 0 … d positions in the mismatch region of the stem as
in b

Place j1 = 0 … d − i wildcards inside the mismatch region

Place j2 = 0 … m − max(d − i, j1 + i) wildcards outside the
mismatch region

end if

ifd(a, b) >mthen

Set stem = a

Fix i = d − m … m positions in the mismatch region of the
current stem as in b

Place j = 0 … m − i wild-cards in the remaining d − i
positions in the mismatch region

end if

Output resulting stems (patterns with wildcards)

Algorithm 2 Algorithm 2 Selection algorithm

Input: set of k-mers with associated sequence index, distance
parameter d

Output: set of k-mers at distance d from each input string

1. Pick d positions and remove from the k-mers symbols at the
corresponding positions to obtain a set of (k − d)-mers.

2. Use counting sort to order (lexicographically) the resulting set of
(k – d)-mers.

3. Scan the sorted list to create the list of all sequences in which k-
mers appear.

4. Output the k-mers that appear in every input string.

Algorithm 1 Algorithm 1 Motif search algorithm

1. Use multiple rounds of counting sort to iterate over input strings and
construct a set of potential motif instances I, k-mers that are at
Hamming distance of at most 2m from each string (Algorithm 2).

2. Construct candidate set C by building stem sets H(a, b) for k-mer
pairs in I (Algorithm 3)

3. Prune all stems from C that do not satisfy motif property using ( )m
k

rounds of counting sort (Algorithm 2, Section ‘Pruning using selection’)

4. Output remaining stems as motifs.

Kuksa and Pavlovic BMC Bioinformatics 2010, 11(Suppl 8):S1
http://www.biomedcentral.com/1471-2105/11/S8/S1

Page 4 of 10



We use Algorithm 3 for every pair of k-mers in I (step 2)
to construct C as outlined in the main algorithm.

Algorithm analysis
The complexity of the selection step 1 for constructing I
is O nNm

k(( ))2 and does not depend on the alphabet size
|Σ|. Steps 2 and and 3 have the complexity O HIm

k(( ) )2
and

again do not depend on |Σ|. As a consequence, the three-
step procedure gives us an efficient, alphabet-independent
motif search algorithm that outputs all motifs embedded
in the input S. Our experiments will next demonstrate
that this allows efficient exploitation of sparsity of typical
solutions—we explore only a small portion of the motif
space by focusing (using Algorithm 2) only on the support
samples that are potential instances of the motifs. This
results in significant reductions in running times, espe-
cially for large-alphabet inputs, i.e. the cases difficult for
the current exact motif finding algorithms.

Extensions
Our proposed framework can be used to reduce search
complexity for other exact search-based motif finding
algorithms. Existing exhaustive algorithms typically (e.g.
[5,8,10]) use the entire input (i.e. all the k-mers in the
input) and find motif by essentially exploring neighbor-
hoods of every k-mer in the input. Their search com-
plexity can be improved by using a reduced set of
k-mers instead of all input samples. This reduced set of
k-mers can be obtained using our linear time selection
algorithm (Algorithm 2, Section ‘Selection algorithm’).
Using reduced set of k-mers, the actual search complex-
ity after the selection step becomes sublinear in the
input size (since the number of selected k-mers I = |I| is
much smaller than input length O(nN)). For instance,
the search complexity of the trie-based algorithms (e.g.,
[5]) can be reduced to O knN IV k mm

k(( ) ( , ))+ instead of
O(knNV(k, m)), where V(k, m) is O(km|Σ|m). This will
lead to a more efficient search especially for large-alpha-
bet since a possibly large input (O(knN)) is replaced
with a smaller set I of k-mers that match with up to 2m
mismatches every string in the input.

Results and discussion
We evaluate our algorithms on synthetic benchmark
motif finding tasks and real data sets. We first test our
algorithms on the planted motif problem commonly
used as a benchmark for evaluation of the motif finding
algorithms [2,5,10]. We then illustrate our method on
several DNA and protein sequence data sets.

Planted motif problem
A planted motif problem [2] is the task of finding motifs
and their instances in a set of sequences with variants of
the consensus string (motif) implanted with up to m

mismatches in every string. This task represents a well-
defined subtle motif discovery problem. Instances of this
problem with large number of mutations m are known
to be challenging for most of the motif finding
algorithms.
We follow the standard setting used in previous stu-

dies [2,5,10] and generate N = 20 random strings of
length n = 600 using iid, uniformly distributed symbols
from an alphabet of size |Σ|. We then embed a copy
(with up to m substitutions at random positions) of a
motif at a random location in every string. The task is
then to identify motifs hidden in the input.
In Table 2, we compare the running time of our algo-

rithms with state-of-the-art motif finding algorithms on
several challenging instances of the planted motif pro-
blem. We give the running time comparison for large-
alphabet (|Σ| = 20 − 100) instances in Table 3. As we
can see from the results in Table 2 and Table 3, our
algorithms show significant reduction in running times
compared to state-of-the-art methods, especially for
large-|Σ| inputs (Table 3). For large alphabets and large
k,m trie traversal takes substantial amount of time and
results in these cases are not reported. In Figure 2, we
show the running time ratio (logarithmic scale) between
the mismatch trie traversal (MITRA) algorithm and our
algorithm as a function of the alphabet set size. The
running time is measured on (13,4) instances of the
planted motif problem. For relatively small alphabet of
size 20 our algorithm is about 104 times faster than the
mismatch trie. The difference in running time increases
with the size of the alphabet. Large alphabets can, for
instance, arise when encoding the 3D protein structure,
a necessity in cases when sequences share little similar-
ity at primary level.
Figure 3 shows efficiency of the selection (step 1 in

the algorithm) as a ratio between the input size and the
number of the selected samples (k-mers) |I|. We observe
that across different input sizes selection reduces the
number of samples by a factor of about 103. The
observed number of selected samples I = |I| agrees with

Table 2 Running time comparison on the challenging
instances of the planted motif problem (DNA, |Σ| = 4,
N = 20 sequences of length n = 600). Problem instances
are denoted by (k,m, |Σ|), where k is the length of the
motif implanted with m mismatches.

Motif problem instances (k, m, |Σ|)

Algorithm (9,2,4) (11,3,4) (13,4,4) (15,5,4) (17,6,4) (19,7,4)

Stemming 0.95 8.8 31 187 1462 8397

MITRA [5] 0.89 17.9 203 1835 4012 n/a

PMSPrune [10] 0.99 10.4 103 858 7743 81010

RISOTTO [6] 1.64 24.6 291 2974 29792 n/a
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the theoretical estimates (Section ‘Selection algorithm’)
(e.g., for |Σ| = 50, n=5000, N=20, we expect about 52 k-
mers to be selected, and the observed size of I is 103 k-
mers).

Identifying TF binding sites
We use several data sets with experimentally confirmed
TF binding sites: CRP, FNR, and LexA. The CRP data
set contains 18 DNA sequences of length 105 with one
or two CRP-binding sites [2,14]. The FNR and LexA
data sets are obtained from RegulonDB [15] database
and contain 30 and 91 sequences known to have sites of
length 14 and 20 bases. The task is to identify the
sequence motif corresponding to the binding sites and
the positions of sites within sequences.
For CRP, we use relatively long k-mers of length k =

18, with a large number of allowed mismatches (m = 7)
from a given set of 18 DNA sequences (|Σ| = 4). For
FNR and LexA data sets, we set motif length to k = 14

and k = 16 bases, with the maximum number of mis-
matches set to m = 4 and m = 6, respectively.
Figure 4 illustrates motifs found by the algorithm on the

CRP data set. In the figure, colors indicate the importance
of positions as measured by the number of hits between
the found motif patterns and the sequences, with blue hor-
izontal lines denoting true (confirmed) locations of the
binding sites. The set of discovered locations agrees with
the set of experimentally confirmed primary positions.
The discovered motif patterns correspond to instances of
the reference consensus motif TGTGAnnnnnnTCACA
[14,16]. Because of large k and m we observe running time
improvements similar to the benchmark planted motif
problems: our algorithm takes about 6 minutes, while the
mismatch trie traversal requires about 12 times as long
(4489 seconds). Allowing a large number of mismatches
(m = 7) in this case is critical for the motif prediction
performance, because fewer mismatches do not lead to
successful identification of the binding sites.
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Figure 2 Running time ratio (TMITRA/Tstem) as a function of the alphabet size (planted motif problem, k = 13, m = 4), logarithmic scale.

Table 3 Running time, in seconds, on large-|Σ| inputs. (k, m) instances denote implanted motifs of length k with up to
m substitutions

|Σ| (9,2) (11,3) (13,4) (15,5)

MITRA Stemming MITRA Stemming MITRA Stemming MITRA Stemming

20 8.39 0.637 1032.17 1.07 28905 5.247 n/a 12.31

50 89.82 0.633 12295.73 0.963 685015 2.244 n/a 11.92

100 265.94 0.645 n/a 0.967 > 1 month 2.227 n/a 11.86
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Figure 3 Ratio between input size (nN) and the number of selected samples (I = |I|) as a function of the input length and alphabet size (planted
motif problem, k = 13, m = 4). Note logarithmic scale.

Figure 4 Recognition of CRP binding sites (k = 18, m = 7, |Σ| = 4).
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For FNR and LexA motifs, our algorithm correctly
finds consensus patterns TTGATnnnnATCAA and
CTGTnnnnnnnnnCAG, in line with the validated tran-
scription factor binding sites, with the performance
coefficients [2] of 83.69 and 90.38.

Protein motif finding
We also apply our algorithm to finding subtle sequence
motifs on several protein sequence datasets, a challen-
ging task due to the increased alphabet size (|Σ| = 20)
coupled with large k and m.
Lipocalin motifs. We first consider motifs in lipoca-

lins which are topologically similar but have very diverse
primary sequences. Using k-mer of length k = 15 with
m = 7 mismatches, we identify motifs containing 15
residues with the instance majority FD[IKLW]S
[AKNR]FAGTWYE[ILMV]AK (Figure 5), which agrees
with the known reference motif [17]. Our algorithm
takes about 5 minutes to complete this task, while the
mismatch trie algorithm takes more than a day. As in
the case of the DNA, a large number of mismatches is
critical for finding motifs, while smaller values of k, m
do not result in motif identification.
Zinc metallopeptidase motif. In this experiment, 10

relatively long (average length is 800) human zinc metal-
lopeptidase sequences used to test motif finding. Identi-
fication of subtle motifs in this case is made even more

challenging by the length of the sequences. We use 11
residues long k-mer with m = 5 mismatches and find
sequence motifs with the instance majority VAAHELGHS
[GL]G in 9 out of 10 sequences that correspond to pre-
viously confirmed locations. We note the large number
of mismatches (m = 5) was critical to motif
identification.
Super-secondary structure sequence motifs. We con-

sider now two data sets of protein sequences with interest-
ing 3D sandwich structure studied previously by biologists,
for which existence of corresponding sequence motifs has
been postulated [18]. Using Cadherin and Immunoglobin
superfamilies as an example, our algorithm finds sequence
patterns that correspond to the supersecondary structure
(SSS) motifs [18,19], i.e. arrangements of the secondary
structure units (loops, strands). In particular, in Cadherin
superfamily we find long motifs of length 20 (using m = 4
mismatches) corresponding to the secondary structure
units strand 1 - loop - strand 2 (VIPPISCPENE[KR]
GPFPKNLV) and strand 3 - loop - strand 4 (YSITGQGAD
[KNQT]PPVGVFII) (3D SSS motif [19]). Figure 6 shows
identified motif positions within the sequences. Our algo-
rithm finds 36 potential motif instances (out of 330 sam-
ples) after the selection (step 1) and takes about 47 seconds
(compared to about 600 seconds using the trie traversal).
In Immunoglobin superfamily (C1 set domains), we find a
sequence motif of length 19 SSVTLGCLVKGYFPEPVTV

Figure 5 Lipocalin motifs (k = 15, m = 7, |Σ| = 20).
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which corresponds to strand 2-loop-strand 3 secondary
structure units (2E SSS motif).

Conclusions
We presented a new deterministic and exhaustive algo-
rithm for finding motifs, the common patterns in
sequences. Our algorithm reduces computational com-
plexity of the current motif finding algorithms and
demonstrate strong running time improvements over
existing exact algorithms, especially in large-alphabet
sequences (e.g., proteins), as we showed on several motif
discovery problems in both DNA and protein sequences.
The proposed algorithms could be applied to other
cases and challenging problems in sequence analysis and
mining potentially characterized by large alphabets, such
as text mining.
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